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To celebrate the Meteorology Department’s 40th anniversary 
I designed an analogue computer to simulate the Lorenz 1963 
model which produces the butterfly that became the cartoon 
for the science of chaos and the (un-)predictability of weather. 
Analogue computers are wonderful machines. They have 
some remarkable properties.

An analogue computer solves differential equations by repre-
senting values of variables by voltages in a circuit. Wires con-
nect modules that perform specific arithmetic operations. For 
example, a subtraction module will have two input connectors 
and one output connector where the output voltage  equals 
the difference between the input voltages (this particular 
module is in fact simply a differential amplifier with unit gain). 
The topology of an analogue computer is similar to that of our 
brain with the axons being represented by the wires, the cell 
body by the arithmetic modules, and the input ports by the 
dendrites.

Contrast this with a digital computer. In a digital computer 
variables are stored in memory spaces which are then occa-
sionally operated upon by copying these memory spaces to 
the central processor which then changes the values of vari-
ables in other memory spaces.

Digital computers only change values of variables if the cen-
tral processor says this should happen. In an analogue com-
puter values are always consistent. There is no internal clock 
speed; calculations happen instantaneously. So, if for three 
variables a, b, and c we have a+b=c then in an analogue 
computer this is always the case. In a digital computer this is 
only valid after the central processor has performed this addi-
tion and then only until either a or b are updated again.

Time integration is also a very natural process for an ana-
logue computer. The input and the output voltages of a time 
integrating module are always consistently related: at all times 
the output is equal to the time-integral of the input. There are 
no time steps involved. Numerical instability of time-stepping 
routines is not an issue.

Analogue computers have no memory. This makes them essen-
tially equivalent to the systems we try and simulate. A swing-
ing pendulum does not have a memory of its previous states. 
One could connect a computer with analogue--to--digital con-
verters if memory or exact measurements are required, or 
even a tape recorder if you want to stay away from anything 
digital.
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Analogue arithmetic
Integration in time occurs by convert-

ing  a voltage to a current through 
use of an operational amplifier and 

then using this current to charge a 
capacitor. The voltage over the ca-
pacitor is now the time-integrated 
value of the input voltage. Other 

arithmetic operations are also per-
formed with the help of operational 
amplifiers. For example, subtracting 
two voltages happens through a dif-

ferential amplifier of unit gain. Multi-
plication and other related operations 
are more difficult to implement. Dedi-
cated analogue chip are used which 
contain log and antilog converters.



Analogue computers are hard to program: programming the 
computer is the same as building the computer. Clearly this is 
where digital computers are superior. An analogue computer 
is in effect an electronic copy of the system we try and simu-
late. So if we want to simulate a swinging pendulum we build 
an electronic system that oscillates exactly like the swinging 
pendulum. The computer has now become an electronic ver-
sion of the swinging pendulum itself.

This is a very interesting property of analogue computers. 
Think of the Lorenz 1963 system. Apart from a very artificial 
set-up, there is no actual physical representation of the Lorenz 
system; it was designed as a mathematical system. Analogue 
computers are the only way we can get useful physical repre-
sentations of such mathematical systems.

People who see an analogue computer for the first time often 
ask: how fast is it compared to a modern digital computer? In 
fact, their speeds are hard to compare. In a digital computer 
speed is limited by the clock speed of the processor and the 
speed at which variables can be loaded into and out of the 
processor. One such calculation may typically take a nano-
second or so (a billionth of a second). In an analogue com-
puter the speed is limited by the speed at which the opera-
tional amplifiers can follow changes in input voltages (the slew 
rate). Operational amplifiers can change over time scales of a 
few nano-seconds.  However, analogue computers do not per-
form calculations as such; they perform simulations. Asking 
how fast an analogue computer calculates is the same as 
asking how fast the swinging pendulum calculates how it 
moves.

I have been mainly discussing an ideal analogue computer 
where electronic components are perfectly specified, have no 
noise, no drift, no temperature dependence, and no operating 
limits. The real world is not like that. Building an analogue 
computer requires knowledge of the component’s limitations 
and the system’s behaviour to make it work correctly. How-
ever, electronics have improved so much that modern ana-
logue computers are much more stable than the early ana-
logue computers.

I cheated in designing this computer: I used my Mac to simu-
late the likely behaviour of my analogue computer before it 
was built. I am in good company though: Seymour Cray used 
his Mac to simulate the next generation of Cray supercomput-
ers.

The Lorenz equations: E. N. Lorenz:
“Deterministic nonperiodic flow”

J. Atmos. Sci., 20 (1963), 130–141.

Schematic of an inverting integrator. 
The output voltage equals minus the 

time integral of the input voltage

Dr Giles Harrison provided guidance in the 
design and the logistics. The prototype (pic-
tured) was built in the Meteorology Department 
electronic workshop by Stephen Tames.

COP1
R2
R1

Vin
VoutOP2


