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ABSTRACT

The stability characteristics of the surface quasi-geostrophic shielded Rankine vortex are

found using a linearised contour dynamics model. We analyse both the normal modes and

non-modal evolution of the system and compare the results to two previous studies. One is a

numerical study of the instability of smooth surface quasi-geostrophic vortices with which we

find qualitative similarities and the other is a corresponding study for the two-dimensional

Euler system with which we highlight several notable differences.

1. Introduction

The surface quasi-geostrophic (SQG) model (Held et al. 1995) is an approximation to

the motion of a rapidly rotating stratified fluid near a horizontal boundary. It represents

planar advection of the boundary temperature field under the assumption of zero interior

potential vorticity. This is in essence a two dimensional system whereby the streamfunction

is determined entirely by the boundary temperature field via a Green’s function proportional

to 1/r. Applications of the model include the evolution of tropopause undulations (Juckes

(1994), Juckes (1995), Muraki and Snyder (2007)) and near-surface oceanic vortices (Lapeyre

and Klein 2006). This type of dynamics has also been studied by Blumen (1978) under the

name of uniform potential vorticity flow.

Carton (2009) (hereafter C09) provides a numerical study of smooth shielded vortices

in the SQG model and compares the evolutions with those of unstable vortices under the

more familiar two-dimensional Euler dynamics. Here the complementary analytic study is

presented in which linear growth rates of perturbations are calculated for a simple class
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of shielded SQG vortex, the shielded surface Rankine vortex. By this we mean the SQG

analogue of the usual shielded Rankine vortex of two-dimensional Euler dynamics: an inner

circle of temperature θ = θ0 surrounded by an outer annulus of temperature θ = θ1. In the

following we use the same notation and conventions as C09 which should also be referred to

for a full description of the model and its applications.

The shielded surface Rankine vortex provides the simplest analytically tractable example

of an unstable SQG vortex. Further, the corresponding two-dimensional Euler problem is well

studied (Flierl 1988) so this set-up provides a fruitful source of comparisons between the two

systems. The analytical treatment has become possible since Harvey and Ambaum (2010b)

derived the dispersion relation for a single-step surface Rankine vortex, that is, a circular

patch of uniform temperature anomaly analogous to the Rankine vortex of two-dimensional

Euler dynamics. We review the methodology and the main results we require from this study

in Section 2 and then analyse the shielded problem in Section 3. A comparison is made with

the results of C09 in Section 4 and conclusions are provided in Section 5.

2. Single-step surface Rankine vortex dispersion rela-

tion

The dispersion relation for linear perturbations to a single-step surface Rankine vortex,

or temperature ‘patch’, of the form

θ̄(r) =















θ0 r < a

0 r > a,

(1)
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where a is the patch radius and θ0 the temperature anomaly of the vortex, is derived in

Harvey and Ambaum (2010b). Here we review the methodology and the main results from

that study. It is shown there that the azimuthal velocity field corresponding to (1) can be

written as

ū(r) = θ0E1(r/a) (2)

where we introduce the notation

En(r/a) ≡
∫

∞

0

Jn(κ)Jn(κr/a) dκ, (3)

with Jn the Bessel functions of the first kind. Figure 1(a) illustrates (1) and (2) graphically.

Note the logarithmic singularity in ū at r = a which we discuss below.

The dispersion relation is derived by perturbing the patch boundary to the new position

r = a(1 + Re(η(t)einϕ)), (4)

where ϕ is the azimuthal coordinate, and linearising the equation for material advection of

the boundary for small η. The linearised equation of motion is

dη

dt
= lim

r→a

(

−
in

r
ūη +

1

a
v′e−inϕ

)

, (5)

where v′(r, ϕ, t), the linearised perturbation radial velocity field, is derived in Harvey and

Ambaum (2010b) as

v′ =
in

r
aηθ0En(r/a)einϕ. (6)

Note that the right hand side of (5) is the sum of the azimuthal advection of the perturbation

by the basic state (first term) and the radial advection of the basic state by the perturbation

(second term). Both of these terms are singular at r = a, but the combination (5) is
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regular. The velocity singularity is a generic feature of temperature discontinuities under

SQG inversion. However, the singular component of the velocity is always aligned along

the discontinuity and the normal component remains finite. Therefore the evolution of the

temperature field remains relatively slow (Held et al. 1995). This alignment is apparent here

through the cancellation of the singularities in (5), as discussed by Harvey and Ambaum

(2010b). The justification for using this basic state, despite the qualitative difference with

the smooth profiles of C09, comes from the fact that wave propagation on a slightly smoothed

discontinuity is regular in the sharp edge limit, as shown by Juckes (1995).

Putting η(t) ∝ e−iωnt and substituting for ū and v′ from (2) and (6) in (5) gives the

dispersion relation we are after:

ωn =
θ0n

a
lim
r→a

(E1(r/a) − En(r/a)), (7)

which is evaluated analytically in Harvey and Ambaum (2010b) as

ωn =
θ0n

a

1

π

n
∑

j=2

(

1

j − 1/2

)

≡
θ0n

a
αn. (8)

We note that the two-dimensional Euler dispersion relation for waves on a vortex patch

can be obtained similarly. The less localised Green’s function, proportional to log r in that

case, introduces a factor k−1 into the integrand of (3) and the integral can then be evaluated

as E2DE
n (1) = a/2n (Gradshteyn and Ryzhic 2000) so (7) reduces to the standard result

ω2DE
n =

q0

2
(n − 1), (9)

where q0 is the vorticity value of the patch. An important difference between (9) and (8) is

the a in the prefactor: the phase speeds of perturbations, cp = ωa/n, on the SQG vortex

are independent of the vortex radius. This is to be expected on dimensional grounds since
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θ has the dimension of a velocity field whereas the vorticity, q, in the two-dimensional Euler

system has the dimension of a frequency.

3. Shielded surface Rankine vortex dispersion relation

We now use the method from Section 2 to find analytic expressions for the linear growth

rates of perturbations on a shielded surface Rankine vortex. We write the basic state as

θ̄(r) =































θ0 r < a

θ1 a < r < b

0 r > b,

(10)

with a < b the radii of the temperature jumps and θ0, θ1 the inner and outer temperature

anomalies respectively. Through linearity and (2) the corresponding basic state velocity field

is

ū(r) = (θ0 − θ1)E1(r/a) + θ1E1(r/b), (11)

an example of which is illustrated, along with the profile (10), in Figure 1(b).

To analyse the evolution of perturbations on this basic state we follow the procedure

from Section 2 except that here there are two boundaries which must be taken into account.

Consider perturbing each boundary independently to the new positions

r = r1(ϕ, t) ≡ a(1 + Re(η(t)einϕ)) and r = r2(ϕ, t) ≡ b(1 + Re(ν(t)einϕ)), (12)

and linearising the equation for material advection of each boundary, for small η and ν. The
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result is a pair of equations analogous to (5),

dη

dt
= limr→a

(

− in
r ūη + 1

av′e−inϕ
)

(13)

dν

dt
= limr→b

(

− in
r ūν + 1

bv
′e−inϕ

)

, (14)

where ū(r) is given by (11) and the linearised perturbation radial velocity v′(r, ϕ, t) is likewise

a linear sum of contributions from each boundary of the form (6):

v′ =
in

r
(aη(θ0 − θ1)En(r/a) + bνθ1En(r/b))einϕ. (15)

We now substitute for ū and v′, from (11) and (15) into (13) and (14), and write the system

in matrix form for convenience. First we define the nondimensional parameters

λ = b/a and µ = θ1/θ0 (16)

to simplify notation, and note from (3) that En(1/λ) = λEn(λ). The system (13)-(14) can

then be written

i
d

dt









η

ν









=
θ0n

a









(1 − µ)αn + λµE1(λ) −λ2µEn(λ)

−
(1 − µ)En(λ)

λ2

µαn

λ
+ (1−µ)E1(λ)

λ

















η

ν









(17)

≡ F









η

ν









, (18)

where αn is defined in (8). The matrix F contains all the information for the evolution of

linear perturbations. The diagonal elements represent the propagation of the disturbances

on each boundary whereas the off-diagonal elements represent the interaction between the

boundaries. Here we have chosen θ0/a as the dimensional frequency scale for consistency

with the study of Flierl (1988). That is, we imagine a central vortex of amplitude θ0 and

6



radius a and ask how the different ‘shields’ modify the vortex behaviour. An alternative,

which we discuss further below, is to focus on the filament-like nature of the instability. That

is, consider the outer annulus as a circular filament of width b − a, the instability of which

is modified by the circular geometry and the presence of the central vortex.

The normal mode frequencies of the system are given by the eigenvalues of F which take

the form

Ω±

n =
tr(F)

2
±

√

(

tr(F)

2

)2

− det(F). (19)

There are therefore unstable normal modes when tr(F)2 < 4 det(F). This boundary of

stability in (λ, µ)-space is shown in Figure 2(a) for several wavenumbers. To interpret the

figure we note that the SQG analogue of the Rayleigh theorem requires a radial temperature

profile to contain regions of opposing gradient for growing normal modes to exist (see C09).

These are only present in (10) if µ > 1 or µ < 0 and the regions of normal mode growth in

Figure 2(a) are indeed contained within these regions.

Figure 2(b) shows the corresponding two-dimensional Euler calculation for comparison,

following Figure 2 of Flierl (1988). That is, the stability boundaries for a shielded Rankine

vortex consisting of an inner circular patch with vorticity q0 and an outer annulus with

vorticity q1. The two plots have many qualitative similarities, the main difference being that

the n = 2 mode is stable for all q = q1/q0 > 0 in the two-dimensional Euler case whereas

for the SQG system there is a region of parameter space with µ > 0 where the n = 2 mode

is unstable. Another difference is that for the SQG case the boundaries of stability do not

all continue to large λ. For the two-dimensional Euler case the boundaries of stability all

tend towards q = (n− 1)/(n − 2) at large λ (see Flierl (1988)) whereas for the SQG system
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modes n = 2 − 4 satisfy

µ ∼ 1 +

(

1

2αn
− 1

)

1

λ
for λ & 1, (20)

but modes with n ≥ 5 (for which αn > 1/2) are stable for all µ at λ larger than a critical

value given by the solution to λ2
cE1(λc) = αn. This expression is found by noting that

the stability boundary is given by the implicit equation tr(F)2 = 4 det(F). Expanding this

equation for λ & 0 we find the expression (20), where we have also used the asymptotic

result derived in Harvey and Ambaum (2010b) that En ∼ Cn/λn+1 with C1 = 1/2.

The normal modes of (19) are special perturbation configurations which preserve their

shape in time. In general, unstable solutions to (18) undergo an initial period of transient

development during which they align towards the growing normal mode shape (see Farrell

and Ioannou (1996) and Carton et al. (2010) for further discussion). To analyse this non-

modal evolution we write the full solution of (18) as

η(t) = M(t)η(0), (21)

where η = (η, ν)T and the matrix M is formed from the eigenvectors f+ and f− of F (corre-

sponding to Ω+
n and Ω−

n respectively):

M = (f+, f−)









e−iΩ+
n t 0

0 e−iΩ−

n t









(f+, f−)−1, (22)

and measure disturbance size using the r.m.s waveslope norm

N(t) =

(

1

2π

∫ 2π

0

[

(

1

a

∂r1

∂ϕ

)2

+

(

1

b

∂r2

∂ϕ

)2
]

dϕ

)1/2

=
n√
2
|η(t)| (23)

which is representative of the size of some of the nonlinear terms in the full evolution equa-

tions and is therefore a diagnostic for nonlinear development (Dritschel 1989). The maximum

8



value of the norm at any given time, the so-called singular mode amplitude, then takes the

value

Ns(t) ≡ max
η(0)

(N(t)) =
n√
2

max
η(0)

(

√

η∗(0)M∗
Mη(0)

)

(24)

= N(0)
√

largest eigenvalue of M
∗
M, (25)

where ∗ represents the conjugate transpose. It can be shown that (Farrell and Ioannou 1996)

Ns has the following asymptotic limit for small times (t ) |Ω±
n |−1)

Ns(t) ∼ N(0)(1 +
|F12 − F21|

2
t), (26)

where F12 and F21 are the off-diagonal elements of F, and for large times (t & |Ω±
n |−1)

Ns(t) ∼ N(0)
|F12 − F21|
2Im(Ω+

n )
eIm(Ω+

n )t, (27)

if Im(Ω+
n ) > 0 and Ns(t) ∼ 0 otherwise. For small times, Ns grows linearly at a rate larger

than the normal mode rate, whereas at large times the growth is exponential at the normal

mode rate. The non-modal evolution is only short lived, but it has a long lived effect in that

the absolute amplitude of disturbances can be larger than the corresponding normal mode

by the factor |F12 − F21|/2Im(Ω+
n ). This factor varies over parameter space and asymptotes

towards infinity at the stability boundaries where Im(Ω+
n ) → 0.

Figure 3 shows values of the corresponding singular mode equivalent growth rate,

σs(t) =
log(Ns(t)/N(0))

t
, (28)

to illustrate the non-modal evolution. The times shown are t → 0 (given by (26)) and

t → ∞ (given by (27)), and two intermediate cases, t = 4a/θ0 and t = 16a/θ0. The

figure is consistent with the notion that non-modal disturbances of wavenumbers within the
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range of growing normal modes undergo a transient period of growth potentially larger than

the corresponding normal mode growth rate during which they adjust towards the normal

mode shape, followed by what is effectively normal mode growth. Non-modal disturbances

outside the range of the growing normal modes continually undulate around their initial

configuration resulting in a σs which decays in time. The ridges, particularly apparent in

panel (c), are a result of this undulatory non-modal behaviour.

4. Completely shielded vortices

Returning now to analyse the normal modes in more detail, we focus on vortices with

zero net integrated temperature anomaly, that is,

(λ2 − 1)µ = −1, (29)

which is illustrated in Figure 2(a) by the solid line. This class of vortices is important because

it represents vortices with a more localised influence than not-completely-shielded cases. In

particular, the class of vortices studied by C09 are completely shielded.

Figure 4(a) shows the normal mode growth rates of perturbations for completely shielded

vortices as a function of λ. The SQG vortices display the familiar behaviour also observed in

the two-dimensional Euler case, through theory and experiment, that the wavenumber of the

fastest growing normal mode is dependent on the vortex profile, with progressively higher

modes being relevant for smaller λ, or larger µ. The increase in growth rate as λ → 1 is

consistent with a consideration of filament instability, as we show below. First we compare

the growth rates to those of the C09 study.

10



The family of vortices studied by C09 have temperature profiles of the form

θ̄(r) = Θ(r) ≡ Θ0(α)
(

1 −
α

2

( r

R

)α)

e−(r/R)α

(30)

where r is the radial coordinate, R and α are positive constants and Θ0(α) is a normalisation

factor such that the corresponding azimuthal velocity field ū(r) satisfies max(ū) = u0. These

profiles consist of a central temperature maximum surrounded by an annulus of negative

temperature anomaly, as illustrated in Figure 5. We approximate them as shielded surface

Rankine vortices by choosing suitable values for θ0, θ1 and the sizes of the inner and outer

regions.

There is freedom in choosing these parameters; we choose them to satisfy the following

four constraints:

r = a minimises dΘ/dr (31)

r = b maximises dΘ/dr (32)

∫

∞

0

θ̄(r)r dr = 0 (33)

∫ a

0

θ̄(r)r dr =

∫ a

0

Θ(r)r dr. (34)

That is, the locations of the jumps coincide with the points of steepest temperature gradient

and the two temperature values θ0 and θ1 are chosen so that both the total integrated

temperature anomaly is zero and the integrated temperature anomaly in the range r < a

equals that of the smooth profiles. The choice is of course not unique, but it suffices to

provide a qualitative comparison between the systems. Figure 5 illustrates this choice of

parameters for several values of α. The differences between the two growth rates is expected
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to be sensitive in particular for small α where the smooth profiles differ most from the

Rankine profiles.

The vortex parameters satisfying the constraints (31)-(34) are given by









a

b









= R





3α+ 1

2α
∓

√

(

3α+ 1

2α

)2

−
(α+ 2)(α− 1)

α2





1/α

, (35)

θ0 = Θ0(α)e−(a/R)α

, θ1 =
−θ0a2

b2 − a2
(36)

where Θ0 and α are as in (30). Figure 4(b) shows the corresponding normal mode growth

rates, Im(Ωn), as a function of α. Note that the data plotted here is identical to that of

Figure 4(a) except for the choice of scalings.

Also shown in Figure 4(b) are the numerically obtained growth rates from C09 for the

corresponding smooth cases. There is a clear similarity between the two cases. The main

difference is a shift towards higher α values in our figure since the first unstable mode appears

near α = 3 whereas there are unstable modes from α = 2 in C09. The magnitude of the

growth rates, however, are comparable between the two cases.

As mentioned above, the increase in growth rates for λ close to one, or equivalently large

α, is consistent with the nature of filament instability in SQG dynamics. For comparison, a

straight temperature filament of width L with a ‘top-hat’ profile, analogous to the Rayleigh

problem of two-dimensional Euler dynamics, is unstable with normal mode growth rates

given by

σfil =
θ

L
F(κ) (37)

where F is a function of the non-dimensional wavenumber κ = kL (Juckes (1995); Harvey
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and Ambaum (2010a)). As such, we define a scaling factor

S ≡
√

|θ1(θ0 − θ1)|
b − a

=
θ0

a

λ

(λ + 1)(λ− 1)2
(38)

which is the ratio of a temperature scale (the geometric mean of the two temperature jumps)

and the annulus width. Figure 6(a) shows that for unstable SQG vortices satisfying (29),

the maximum growth rate is always remarkably close to max(F)S ≈ 0.1292S. We expect a

similar result to hold for the two dimensional Euler system, except in that case there is no

length scale so the instability growth rates will just be proportional to the geometric mean

of the two vorticity jumps.

To highlight the link to the filament instability further, Figure 6(b) shows the dispersion

relation calculated for several vortices towards the limit of a large, but weak, central vortex

with an outer annulus of fixed width L, i.e. λ → 1 with b − a = L. The wavenumber n is

scaled to coincide with the wavenumber κ of the filament in this limit,

κequiv =
n

a
(b − a) = n(λ− 1), (39)

and the growth rates are again scaled by S of equation (38). The growth rates do indeed

appear to coincide with those of the straight filament in the limit of λ → 1. The correction for

larger λ shifts the growth rate curve to slightly larger κequiv values on average but, consistent

with the discussion above, does not alter the maximum growth rate by very much. This shift

in the maximum growth rate seems to be purely a geometric effect of the curvature.

13



5. Discussion and Conclusions

The linear stability of the SQG shielded Rankine vortex has been investigated analyti-

cally. The study explains the numerical results obtained by C09 for a class of similar, but

smooth, temperature profiles as well as providing a comparison to the well-studied two-

dimensional Euler case.

The instability is shown to be related to filament instability in the relevant limit and

is remarkably similar even far from this limiting case. The interesting differences to the

two-dimensional Euler case are a result of the scaling between the advected quantity and

the flow field, which is apparent in the growth rate of the filament instability. Harvey and

Ambaum (2010a) discuss this further in the context of a filament under strain and shear.

As a check of the theory, nonlinear simulations of the completely shielded vortices have

been run at high resolution with a pseudo-spectral code. This was achieved by (very) slightly

smoothing the vortex profile discontinuities. The experiments showed vortex breaking on

the linearly most unstable mode within a shift towards larger λ of order 0.05. In a similar

fashion to the corresponding two-dimensional Euler case of Morel and Carton (1994), the

numerical experiments did not evidence nonlinear stabilisation into multipoles. Instead the

outer annulus breaks nonlinearly into smaller vortices which then pull the central vortex apart

and disperse as dipoles. However, as in the two-dimensional Euler case, stable multipoles

can be achieved if an annulus of zero temperature is introduced between the core vortex and

the active periphery.

An interesting problem following on from this study is to investigate the corresponding

baroclinic problem, that is, to consider two vertically separated SQG temperature patches
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of opposite sign. This can be done either in an unbounded fluid, as an approximation to an

oceanic heton, or confined by horizontal boundaries, as a model of atmospheric baroclinic

instability on the hemispheric scale. This would put the model of Eady (1949) into a more

realistic setting. A similar framework could be applied in either case.

Finally, we conclude by noting that this study provides further evidence towards con-

sidering the often overlooked SQG model, in addition to the two-dimensional Euler system,

as an important model of geophysical processes. Despite first appearances, the system is

analytically tractable in many cases.
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b =
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2 Panel (a): Stability boundary in (λ, µ)-space for wavenumbers n = 2 − 7.
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and the asterisks indicate the positions of the profiles (35)-(36) for several α

values. Panel (b): Stability boundary for the two-dimensional Euler problem.
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4 Panel (a): Normal mode growth rates for completely shielded vortices as a

function of λ. Panel (b) Normal mode growth rates for the parameter values
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from C09 (see text) where dotted is n = 2, dashed is n = 3 and dot-dash is

n = 4. 23
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5 Some example temperature profiles. Smooth curves are the C09 profiles of

(30), for the α values shown, and the discontinuous profiles are the corre-

sponding shielded Rankine vortices given by (35)-(36). 24

6 Panel (a): Normal mode growth rates scaled by S for vortices with zero

integrated temperature anomaly. Wavenumbers 2–4 are indicated, the higher

modes follow the pattern. The most unstable mode at each λ is emphasised by

the heavy line and the dashed line represents max(F)S = 0.1292...S (see text).

Panel (b): Scaled normal mode growth rates versus equivalent wavenumber

κequiv for λ = 1.7, 1.5, 1.3 and 1.1, labelled a–d respectively. The dashed line

shows the dispersion relation for a straight temperature filament. 25
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Fig. 1. Panel (a): Basic state temperature and velocity profiles for the one-step surface
Rankine vortex, (1) and (2). Panel (b): Example temperature and velocity profile for a
shielded surface Rankine vortex, (10), with parameter values b =

√
2a and θ1 = −θ0.
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Fig. 2. Panel (a): Stability boundary in (λ, µ)-space for wavenumbers n = 2− 7. The solid
line indicates vortices with zero integrated temperature, see (29), and the asterisks indicate
the positions of the profiles (35)-(36) for several α values. Panel (b): Stability boundary for
the two-dimensional Euler problem. The solid line indicates vortices with zero integrated
vorticity.
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Fig. 3. Contoured values of σs for wavenumber n = 2 and t values as indicated. The small
and large t plots are given by the formulae (26) and (27) respectively. The contour interval
is 0.05θ0/a with dark shading indicating high values and black shading indicating values
greater than θ0/a.
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n=2
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n=4

Fig. 4. Panel (a): Normal mode growth rates for completely shielded vortices as a function
of λ. Panel (b) Normal mode growth rates for the parameter values (35)–(36) as a function
of α. In both panels, wavenumbers 2–4 are indicated, the higher modes follow the pattern.
In panel (b) the broken lines show data from C09 (see text) where dotted is n = 2, dashed
is n = 3 and dot-dash is n = 4.
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α=2

α=4

α=8

Fig. 5. Some example temperature profiles. Smooth curves are the C09 profiles of (30), for
the α values shown, and the discontinuous profiles are the corresponding shielded Rankine
vortices given by (35)-(36).

24



abcd

n=2n=3n=4

Fig. 6. Panel (a): Normal mode growth rates scaled by S for vortices with zero integrated
temperature anomaly. Wavenumbers 2–4 are indicated, the higher modes follow the pattern.
The most unstable mode at each λ is emphasised by the heavy line and the dashed line
represents max(F)S = 0.1292...S (see text). Panel (b): Scaled normal mode growth rates
versus equivalent wavenumber κequiv for λ = 1.7, 1.5, 1.3 and 1.1, labelled a–d respectively.
The dashed line shows the dispersion relation for a straight temperature filament.
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