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SUMMARY 
This paper describes a novel numerical algorithm for simulating the evolution of fine-scale conservative fields 

in layer-wise two-dimensional flows, the most important examples of which are the earth’s atmosphere and oceans. 
The algorithm combines two radically different algorithms, one Lagrangian and the other Eulerian, to achieve an 
unexpected gain in computational efficiency. 

The algorithm is demonstrated for multi-layer quasi-geostrophic flow, and results are presented for a sim- 
ulation of a tilted stratospheric polar vortex and of nearly-inviscid quasi-geostrophic turbulence. The turbulence 
results contradict previous arguments and simulation results that have suggested an ultimate two-dimensional, 
vertically-coherent character of the flow. Ongoing extensions of the algorithm to the generally ageostrophic flows 
characteristic of planetary fluid dynamics are outlined. 
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1. INTRODUCTION 
Motivated by the recently recognized significance of fine-scale structure in the 

dynamical-chemical processes leading to stratospheric ozone depletion (McIntyre 1995), 
atmospheric scientists have developed a powerful analysis tool called ‘Contour Advec- 
tion’ (Waugh and Plumb 1994; Norton 1994). To visualize the likely behaviour of nearly- 
conservative fields down to scales well below computational grid-scale, Contour Advection 
(CA) uses the ‘Contour Surgery’ (CS) algorithm (Dritschel 1988, 1989) to represent the 
field as contours (field isolevels) on a given surface (normally a surface of constant poten- 
tial temperature or entropy). Each contour is in turn represented by a variable number of 
computational poinrs (nodes) spaced according to a function of contour curvature. Each 
node is moved (advected) by a velocity which, in CA, is interpolated from gridded data, 
and in CS, is calculated from integrals over the advected contours (something possible 
only for idealized systems in linear balance-see below). Surgery limits the complexity 
of the contours by removing filamentary structures smaller than a prescribed scale and 
topologically reconnecting contours of the same field level or parts of the same contour 
when they get closer than this prescribed scale. Crucially, the scale of surgery is much 
smaller-an order of magnitude smaller-than the typical grid-scale of fields obtained by 
analyses. As a result, CA permits one to ‘see’ features that are invisible in an instantaneous 
grid-generated picture of the field. 

CA appears to get something out of nothing. First of all, it must start with a coarse 
representation of the field, whereas the true field is believed to contain many filamentary 
features, like those revealed by a CA simulation over several days. Evidently, the general 
stretching and thinning of filaments means that the missing filaments would largely be seen 
as a hairy filamentary microstructure superimposed on a newer, fatter filamentary structure 
developing from the original coarse representation of the field. Secondly, CA ignores 
variations in the velocity field below the analysis grid-scale, while it retains variations 
in the advected field well below the grid-scale (Waugh and Plumb 1994 demonstrate the 
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robustness of this approach). In fact, observed velocity spectra do decay rapidly with 
diminishing scale (Gage and Nastrom 1985), but it is critical that this decay be more rapid 
than that for the advected field, and it is for most fields of interest, in particular for the 
potential vorticity (PV) field, the field which, through the ‘invertability principle’, largely 
determines the velocity and temperature fields (Hoskins et al. 1985). The mathematical 
justification for this assumption, reviewed below, is related to the PV’s dependence on 
spatial derivatives of the velocity field. That CA works, and works surprisingly well, is 
proven on real data in Waugh et al. (1994) and in Plumb et al. (1994). 

The algorithm described in this paper takes CA one step further by internally calcu- 
lating the advecting velocity field from a coarse-grained picture of the PV, which is other- 
wise held in a contour representation. Thus, the assumption is made that the fine-scale 
PV contributes negligibly to the advecting velocity field. This assumption may, however, 
be justified along the lines just given. We do not require that the PV entirely determines 
the velocity field (as it must in CS), and hence the idea may be more widely applicable 
to realistic atmospheric and ocean models. In the present algorithm for quasi-geostrophic 
flow though, it does. 

The essential new step is to convert, rapidly, the fine-scale Lagrangian representation 
of the PV field into a coarser-grained Eulerian representation, which may be manipu- 
lated (perhaps along with other fields) to obtain the velocity field again in the Eulerian 
representation. The latter can be used as in CA to move the PV field in Lagrangian form. 

This hybrid algorithm is called the Contour-Advective Semi-Lagrangian (CASL) al- 
gorithm. It is not the semi-Lagrangian scheme now commonly used in weather-forecasting 
models (see Staniforth and Cot6 1991 or Gravel 1996 and refs.); that scheme carries out a 
space and time interpolation to approximate the advective derivative (a/& + u V) per- 
mitting models to use a larger time-step. Fields are not held in a contour representation; 
rather, the object is to determine the trajectory of a fluid particle that arrives at a given grid 
point after one time-step. This gives rise to a nonlinear implicit problem, whose solution 
can be costly for large time-steps. In the present CASL algorithm, the time-stepping is fully 
explicit, since the underlying grid is used only to provide the advecting velocity field. As 
a result of this stability, the time-step is relatively large, being on the advective time-scale, 
and it is chosen only for accuracy. 

The CASL algorithm has some remarkable properties. There is no lateral diffusion 
of PV; this is because such diffusion, often ad hoc, is here unnecessary for numerical 
stability. Rather, the CASL algorithm introduces another model for sub-grid processes in 
which filamentary structures are retained down to a scale much smaller than the grid-scale. 
In other words, sub-grid processes are treated explicitly. Consequently, flow diagnostics 
are sensible down to the scale of surgery. The only question is how to choose the scale 
separation between the grid-scale and the scale of surgery. One can appeal to the rapid 
decay of the energy spectrum (compared to that of the PV) as well as to numerical efficiency 
considerations (see section 3(c) below), but it is perhaps more reliable to actually examine 
the effect of this scale separation in realistic flows. This was done originally by Waugh and 
Plumb (1994) in the context of stratospheric dynamics and recently by Methven (1996) in 
the context of baroclinic life-cycles. It was concluded that it is appropriate to retain scales 
of PV up to ten times finer than the smallest scale of the advecting velocity field. In fact, 
this scale-separation factor is consistent with spectral and efficiency considerations. 

The hybrid character of the CASL algorithm is similar in spirit to the so-called particle- 
in-cell (PIC) algorithm (Christiansen 1973). In fact the two methods differ essentially only 
in their Lagrangian parts: in the PIC algorithm, the vorticity field is represented by a cloud 
of point vortices (delta functions of the vorticity), instead of by contours. This singular 
representation, however, has several disadvantages: there is no canonical way of describing 
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the field in terms of delta functions; there is no analogy of area conservation or topology 
conservation (no notion of symplectic structure); and there is no natural way of adapting 
resolution to maintain an accurate representation for the vorticity field. Furthermore the 
CASL algorithm appears to be more general in the way it can be extended to non-balanced 
systems. The price one has to pay, to represent the field in terms of contours, is a much less 
trivial conversion of the Lagrangian field to the Eulerian field. But though the conversion 
is less trivial, it is still not very costly. 

The following section describes the CASL algorithm in detail for multi-layer quasi- 
geostrophic (QG) flow. Section 3 gives the results of various numerical tests which indicate 
how best to choose the numerical parameters for a desired level of accuracy. Section 3 also 
gives a break-down of the computational costs for a typical application, here to the polar 
stratospheric vortex. Section 4 presents the results of a simulation of nearly-inviscid QG 
turbulence, revealing not only complexity as never seen before in a numerical simulation, 
but also the emergence and persistance of previously unexpected vortical structures. Sec- 
tion 5 discusses a proposed extension of the algorithm to ageostrophic flows, in particular 
to the shallow-water equations. Section 6 presents the conclusions, including remarks on 
the addition of weakly non-conservative effects. 

2. THE ALGORITHM FOR QUASI-GEOSTROPHIC FLOW 

Quasi-geostrophy (Pedlosky 1979; Houghton 1986) is a useful, commonly employed 
approximation valid for a rapidly rotating, stratified fluid (Stegner and Zeitlin 1995). It 
leads to a system with rich dynamics (see, e.g. McWilliams 1989, 1990; Dritschel and 
de la Torre Julrez 1996), much of which carries over to the more complete, ageostrophic 
systems governing atmospheric and oceanic dynamics (Vallis 1996). The CASL algorithm 
is not restricted to the QG system, but it is a useful starting point to illustrate the method. 
Furthermore, the CS algorithm may also be employed (Dritschel and Saravanan 1994) in 
this case, allowing one to establish the CASL algorithm’s conservation properties. Parts 
of the algorithm which require a more general treatment for ageostrophic systems are 
indicated and returned to in section 5. 

The attractive, simplifying feature of quasi-geostrophy is the omission of high-speed 
gravity waves, which, in ageostrophic models, severely erode numerical efficiency by 
forcing a small time-step. To combat this problem, general circulation models used in 
weather forecasting artificially slow down gravity waves by using a semi-implicit time- 
stepping scheme (Simmons et d. 1978) coupled with a larger time-step. The fastest gravity 
waves have the shortest wavelengths and are considered numerical noise, something to 
be eliminated as far as possible. This is not an easy task, and the present strategy is to 
employ semi-implicit time-stepping, rather than an expensive-to-implement ‘balanced’ 
scheme, in which the gravity waves are diagnosed, not evolved (M. E. McIntyre and W. 
A. Norton, personal communication). The QG system employs linear balance, which is 
efficient, but not universally accurate (Stegner and Seitlin 1995). Linear balance means 
that there exists a linear-operator relationship between the QG potential vorticity (PV) 
and the streamfunction, whose spatial derivatives give the velocity and the perturbation 
(potential) temperature or density fields. 

The equations governing QG flow (Hoskins et al. 1985) are given by 

f + V 2 @ + - -  l a (  Po-- $ 2 )  = q  
Po a2 
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u = - -  a @  and u = -  a@ 
aY ax 

where @ is the streamfunction, u and z1 are the horizontal velocity components in the x and 
y directions, q is the QG PV, a scalar function of x ,  y ,  z and time t ,  po ( z )  is the basic-state 
density profile with height z (actually, z is log-pressure, the fluid being in hydrostatic 
equilibrium), f is the Coriolis parameter (twice the planetary angular velocity projected 
normal to the planet’s surface), and N ( z )  is the buoyancy frequency of a neutral particle 
undergoing vertical oscillations. A /?-plane (Cartesian) geometry is adopted for simplicity, 
in which f = f~ + B y  (the notation is the same as adopted in a previous work, Dritschel 
and Saravanan 1994). 

Following Hoskins et al. (1985), we have replaced the generally inhomogeneous 
boundary conditions at the rigid surfaces z = 0 and z = H that arise from variable surface 
temperature distributions and topography by homogeneous ones and equivalent sheet distri- 
butions of PV, y~ and fi, at these surfaces. That is, q includes, generally, y ~ ( x ,  y ,  t ) 6 ( z )  + 
f i ( x ,  y ,  t ) 6 ( z  - H ) ,  and, like q ,  Dm/Dt = 0 and Dm/Dt = 0. Topography, z = 
h ( x ,  y )  4 H (for QG theory to be valid) corresponds to a fixed distribution of sur- 
face PV, - f h ( x ,  y ) / H ,  and, often, a free distribution of surface PV, initially equal to 
+ f h ( x ,  y ) / H ,  to compensate for the topographic PV, but thereafter different as a result 
of advection. Similarly, one can specify the flow (specify @) at either surface through an 
equivalent double-sheet distribution of PV along with the boundary condition @ = 0 for 
the homogeneous problem. In practice, the fluid is divided into a finite number of layers 
or levels, and these singular PV distributions are spread over the layers adjacent to the 
surfaces, with an error proportional to the square of the layer thickness (see, e.g. Dritschel 
and Saravanan 1994). 

One can also consider a free surface at z = H + ~ ( x ,  y ,  t ) ,  r] 4 H ,  which changes 
the boundary condition at z = H to a@/az + N 2 @ / g  = 0, where g is the acceleration due 
to gravity (or reduced gravity in the oceanic context). 

The horizontal boundary conditions to be adopted are doubly-periodic. A spherical 
surface may seem more natural, but QG theory breaks down in equatorial regions, where 
f -+ 0, because one cannot guarantee (q  - f ) / f  4 1 there. Previous studies using CS 
(Dritschel and Saravanan 1994, Dritschel and de la Torre Juarez 1996) adopted an un- 
bounded f-plane (/? = 0), to focus on the dynamics of the polar vortex (McIntyre 1995) 
and other smaller, intermediate-scale vortices found in mid-latitudes. Here, because the 
algorithm relies in part on an underlying grid, it is necessary (without coordinate stretch- 
ing) to use a finite geometry, and a box is the simplest, most common one employed. 
Some applications, such as flow in an idealized ocean basin, might call for rigid horizontal 
boundaries, but such boundary conditions turn out to be easier to handle than doubly- 
periodic ones for the CASL algorithm. The modifications that would be necessary as a 
result of changing the boundary conditions are indicated below. 

Without loss of generality, we consider the square periodic box, -TC < x S n and 
-TC < y < n. This presumes a coordinate scaling. Normally, x and y are scaled on the 
‘Rossby radius of deformation’, LR, equal to NTH,,/fo, where NT = N ( z  = H ) ,  and z is 
scaled on Hp. Here H,, is the ‘density-scale height’, defined from po(z )  = poo exp(-z/H,,) 
for a ‘compressible’ fluid; otherwise, for a ‘Boussinesq’ fluid (constant PO), H,, = H .  It is 
sometimes useful to further scale all three coordinates by a constant c; this is equivalent 
to putting LR = c .  

The steps in the CASL algorithm are described in the following subsections. 
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(a) Initialization 
Before the simulation begins, a script is executed to choose the vertical structure of the 

fluid (PO and N ) ,  its total depth H ,  the number of discrete vertical levels or layers n, (see 
Dritschel and Saravanan 1994), the number of vertical modes M G n, (see section 2 ( 4  
below), various contour-surgery parameters (p,  L )  controlling the node distribution along 
contours and surgery (Dritschel 1989), the time-step At, the horizontal grid resolution I t h ,  

the PV inversion/conversion grid ratio mg (see section 2(c) below), the planetary vorticity 
gradient j3, the bottom topography h ( x ,  y ) ,  and, of course, the PV distribution itself. The 
latter is specified as it normally is in CS, that is, in contour form, in each horizontal layer 
or level. One may alternatively contour a given continuous distribution of PV. Contour 
levels are assumed to be separated by a uniform step increment, Aq.  This simplifies the 
graphical visualization but is not required by the algorithm. Between contours, the PV 
is uniform, so the contours represent jumps in PV, as in CS. This is not a limitation in 
practice: piecewise-uniform PV gives rise to a velocity field scarcely distinguishable from 
that arising from a continuous distribution, as demonstrated in an earlier study (Legras and 
Dritschel 1993). Indeed, the unimportance of fine-scale PV is at the heart of the present 
algorithm. 

The simulation begins by reading the input data, initializing frequently used constants 
(e.g. FFT cosine and sine tables, see below), calculating the average PV in each layer 
directly from the contours (this average does not change in time), and then entering the 
main loop over time-steps. A fourth-order Runge-Kutta time-stepping scheme is used, so 
every time-step requires four evaluations of the velocity field. The latter is obtained by 
executing the following four steps @He) .  

(b) PV contour-to-grid conversion 
The CASL algorithm hinges on the existence of a fast method for converting a con- 

toured field into a gridded field. Normally, the reverse is done for producing pictures from 
the results of conventional simulations, where the fields are retained in a Eulerian repre- 
sentation. The method developed requires an O(n) number of operations, where n is the 
total number of nodes on the PV contours, and it is highly vectorizable. 

Each layer or level in the domain is divided into nh x t z h  equal squares of side length 
A = 2n/nb. The lower-left corner at x = { -n, -n} is indexed (1, l), and the upper-right 
corner at x = {n, n}  is indexed (tzh + 1, I z h  + 1). Of course, due to periodicity, only the 
field values indexed between 1 and t z h  can be distinct. 

Let i ,  j and 1 denote the grid point i , ,  j j  and Z l ,  where 1 denotes the layer or level 
and runs from 1 to n,. ZI is either the mid-layer height or the level height (Dritschel and 
Saravanan 1994). Henceforth, these are just called ‘layers’. 

First, from contours passing through the left face of the domain, that is through 
x = -n, the PV difference, Ayqj , l ,  between grid points ( j ,  1) and ( j  + 1, 1) is calculated 
for all layers 1. The procedure uses the fact that the PV-jump, Aq, across a contour is always 
equal to the PV to the left of the contour minus the PV to the right of it. This directionality 
rule is in fact preserved during the contour reconnections that might take place as a result 
of surgery. Hence, a contour which passes through the left face between j and j + 1 adds 
s Aq to AYqj.[ ,  where s = +1 for a left to right crossing and -1 for a right to left crossing. 

Next, a loop over layers is entered and is not exited until procedure (d) below. The 
gridded PV, i j j , i ,  is determined to within a constant in each layer along the left wall (i = 1) 
by summing these PV differences. (Here the index 1 is suppressed; it indicates where it 
may also be suppressed in the numerical algorithm.) Starting with = 0, we obtain i j  
recursively: i j j + l , l  = i j , ~  + AYqj.l. 
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A similar procedure is then followed to obtain the interior PV. Adjacent nodes xk 
and xk+l on a contour are examined to see if they cross at least one grid line, y = j j .  This 
happens if the integer value of yk/A differs from that of ykfl/A. Using linear interpolation 
between nodes, i.e. x = xk + PAXk, where Axk = (&+I - xk) modulo n, the crossing j 
closest to yk is found, and the following quantities are stored: j ,  x (the first x crossing), Ax 
(the increment in x between crossings), the number of crossings, and the signed PV jump, 
sAq, with s = -signAyk. In the new loop over k,  these quantities are used to construct 
the horizontal PV jump array Axqj,i ,  the jump in PV along a grid line y = y, between grid 
points i and i + 1. Starting with the stored j and x values, i is obtained by the integer 
value of (x + n) /A ,  and sAq is added to Axqj,i. If there is more than one crossing, s is 
added to j and Ax is added to x, and the procedure for finding i and A,qj,i is repeated; 
otherwise, the next k is considered. 

Finally, the PV at each grid point is obtained by summation, ij,,i+~ = ijj,i + Axq,,i, 
and, if p # 0, By is subtracted. The PV so obtained will normally be correct only to 
within a constant, so the average value must be calculated and corrected using the initially 
calculated average value. When using spectral techniques, the procedure is even simpler 
than this, as described in the next step. 

For flow in a channel, periodic in x, the above procedure is essentially unchanged. It is 
slightly simpler, in fact, since one does not need to use modulo arithmetic in the y direction. 
For flow in a box with rigid boundaries (and free slip-there can be no generation of PV), 
the procedure is much simpler, since PV contours must close within the domain. Hence, 
one can build the PV along the left wall (actually, just inside it) simply by summing the 
jumps of all contours running along this wall. The rest of the procedure is the same, apart 
from not having to do modulo arithmetic. 

The procedure can be adapted, with minor modification, to irregular flow domains 
by overlaying a rectangular grid. 

(c) PV averaging 
At this stage, it is possible to pass directly to the next step and obtain the gridded 

velocity field. However, it turns out to be much more economical to average first the gridded 
PV field (perhaps several times) onto a grid m,-times coarser, of grid length = mgA, 
where mg is a power of 2. Each iteration of this procedure doubles the grid scale-and 
halves the number of grid points in each direction by using a standard nine-point weighted 
average of the grid points surrounding and including each target grid point. The averaging 
can be done in a minimum of operations and results in substantial overall savings, since 
the PV inversion (see next step), the most costly step in the whole algorithm, can be 
done on a coarse grid of horizontal dimension n h  x n h ,  where n h  = nh/mg. Remarkably, 
this averaging leads to surprisingly little loss of accuracy, as shown below in section 3(a). 
Evidently, the averaging preserves the characteristics of the PV distribution most important 
to inversion. 

( d )  Inversion 
In QG flow, the PV completely determines the velocity field. This is called the ‘in- 

vertability principle’ (Hoskins et al. 1985) or ‘inversion’ for short. Inversion is particu- 
larly simple in QG flow since a linear operator links the PV with the streamfunction (see 
Eq. (lb)). For other, ageostrophic systems, the procedure below would have to be replaced, 
as discussed in section 5. 

is passed through a two- 
dimensional Fast Fourier Transform (FFT) to obtain the spectral coefficients for the PV 

The inversion is done as follows. The grid-averaged PV, 
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in the Zth layer, & I ,  k = 0, 1, . . . , i i h  - 1, 1 = 0, 1, . . . , &, - 1. Note that in the previous 
steps the gridded PV was constructed only to within a constant: the actual value of 41,1 
was unknown (it turns out that this value is very hard to determine for a doubly-periodic 
domain). The coefficient &,, proportional to the mean value of the PV in the Zth layer, is 
therefore set equal to the correct mean value calculated in the programme initialization, 
step (a)  above. Any fixed topographic PV in the lowest layer is transformed only once 
initially (unless it was already provided in spectral form) and added to the free transformed 
PV there. 

A vertical transform is then effected by projecting these coefficients onto the vertical 
modes for the operator in (1.2) (see Dritschel and Saravanan (1994) for full details). The 
vertical modes, {&, &, . . . , GM), are the discrete solution of the Sturm-Liouville eigen- 
problem, 

- = 0  a t z = O a n d H  
dz 

dprn 

where the am, m = 1, 2, . . . , M ,  are the eigenvalues, often referred to as the ‘inverse radii 
of deformation’, corresponding to the eigenmodes pm. By virtue of Eq. (2b), al = 0 and 
q1 = constant-this is called the ‘barotropic mode’. The Zth element of the discrete eigen- 
vector Gm is approximately equal to qm (Z t ) .  Both the eigenvectors grn and their orthonormal 
counterparts 3m (obtained from the transposed inverse of the matrix of eigenvectors) are 
calculated upon initialization. These are used to carry out the (not-so-fast) vertical trans- 
forms. In particular, the contribution of the lth level to the fully-transformed PV, &p, ,  is 
given by ( ik iq; , ,  for m = 1, 2, . . . , M .  

Note that the number of modes retained, M ,  may be less than n,. Fine vertical scales, 
like fine horizontal scales, contribute little to the advecting velocity field. Differential 
horizontal advection will produce much fine-scale vertical structure, which may be explic- 
itly resolved using a large n,. The dynamical insignificance of these fine-scale structures 
permits choosing M smaller than n,. 

The transformed streamfunction is then simply obtained by division, 

which represents the principle advantage over CS, which must use costly contour inte- 
grations. Furthermore the spectral inversion is done mode-by-mode, whereas in CS the 
inversion involves contour-integrals over all layers. At this point, another loop over layers 
is entered to recover the physical velocity field in each layer. This loop is not exited until 
the completion of the CA step which follows. 

The transformed streamfunction $k, in layer Z is first obtained by projection onto the 
vertical eigenvector: 

M 

m=l 

This is then multiplied by -iZ and i k  to get the corresponding transformed velocity field: 

i k [  = - i l $ k i  ; Gkl 1 ik$ki. (5) 
Both of these fields are passed through a two-dimensional FFT to obtain the gridded veloc- 
ity field in layer 1 ,  Uj,i, i = 1, 2, . . . , &, j = 1, 2, . . . , i i h .  This completes the inversion 
step. 
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(e) Contour advection 
The next step is to interpolate the griddedvelocity field just obtained to get the velocity 

at all nodes on all PV contours. As in previous work (see, e.g. Waugh and Plumb 1994), 
bi-linear interpolation is used within a single grid-box. This is simple and, moreover, it is 
accurate (see, in particular, section 3(a) below). The same interpolation is widely used in 
semi-Lagrangian schemes where accuracy is essential (Staniforth and Cote 1991, Gravel 
1996). 

At this point, the loop over layers is exited. The velocity on the PV contours is known. 
The contours are moved slightly, and it is necessary then to repeat steps (b) through (e) 
until all four stages of the Runge-Kutta integration are completed. 

(f) Surgery 
Every other time-step, or about every twentieth of the ‘rotation’ period T=4n/ 

14 - f l m a x  associated with the maximum PV anomaly, the contours in each layer are exam- 
ined for possible topological reconnections, or ‘surgery’ (Dritschel 1988: 1989). Surgery 
is performed when the distance between two contours containing the same PV or two 
parts of the same contour becomes closer than the ‘cut-off scale’, 6 ,  equal to i p 2 L ,  where 
p L  is approximately the maximum spacing between adjacent nodes on a contour, and L 
is a prescribed large-scale length characterizing the PV structures in the flow. The two 
basic operations are illustrated in Fig. 1 (these differ slightly from the original operations 
described in the above references to improve efficiency). The one in Fig. l(a) results in 
either two contours from one (fission) or one contour from two (fusion), while the one in 
Fig. l(b) shortens the ends of filaments. 

Surgery involves a search for sufficiently close nodes, and this search can be costly 
(proportional to the square of the number of nodes in each layer) unless care is taken to 
minimize the number of contour pairs that need to be examined. This is done in the present 
algorithm by pre-sorting the contours by layer and by PV level; only contours having the 
same PV level (same PV on their left and same PV on their right) may possibly reconnect. 

Figure 1. Illustration of how surgery is performed. (a) Surgery between two close contours or contour parts. (b) 
Surgery near a comer. The solid contours and nodes are the pre-surgery ones and the dashed contours and open 
circles are the post-surgery ones. A new, double node midway between the nodes on the top and bottom contours 
or contour parts replaces the original two nodes. This double node is (momentarily) shared by the left and right 
contour sections. The contour sections in (a) may subsequently separate by the comer surgery illustrated in (b), in 

which nodes near the comer are removed. 
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The new surgical procedure preserves this ordering and minimizes array shifts. In addition, 
for contours in the same layer and of the same PV level, a contour-based test is applied to 
eliminate contour pairs that could not possibly reconnect. Before surgery, the minimum 
and maximum x and y coordinates of each contour are calculated and used to compute the 
centre of each contour’s bounding rectangle (X, Y ) ,  its half-width w and its half-height 
h (taking into account periodicity). Then, when considering the potential fusion of two 
contours C and C’, a point-wise search is conducted only if both 

I X ’ - X I  < h + h ’ + 6  

and 

are satisfied (again taking into account periodicity). Such tests even work for ‘periodic’ 
contours (such as those representing a planetary vorticity gradient), whose half-widths 
equal n. In practice, this is found to greatly improve numerical efficiency, since relatively 
few contour pairs satisfy the above conditions. 

Surgery is absolutely necessary to control the exponential build-up of fine-scale PV. 
Any numerical simulation of significant duration requires a regularization at small scales. 
Surgery appears to be a relatively benign procedure in comparison with, for instance, 
hyperviscosity (Mariotti et al. 1994; Yao et al. 1995; Macaskill and Bewick 1995), which 
is widely used, however, in atmospheric and oceanic numerical models. Moreover, surgery 
in the present CASL algorithm typically operates at a tenth of the (inversion) grid-scale, 
and consequently one may expect that features in CASL are reliable down to the grid-scale, 
something which is certainly not the case in conventional grid-based models. 

IY’-YI < W + W ’ + S  

(g) Node redistribution 
Following surgery, nodes on each contour are redistributed to account for increasing 

or decreasing contour curvature and length (Dritschel 1988, 1989). The way in which the 
number of nodes per unit length is computed in the present algorithm differs significantly 
from that described in the above references, so it is given here. 

The mean curvature value K k  between nodes k and k + 1 is provided for each k by 
the local cubic-spline interpolation routine (as in the above references). From this, the 
algorithm calculates z k  = JK,2+1/Lz, which is the curvature the contour would have if 
it were lying on a sphere of radius L (recall that L is a pre-set characteristic length-scale 
of the PV distribution). This is done to keep the spacing of successive nodes smaller than 
p L .  From d k  = I x k + l  - x k l ,  a weight w k  = d k / ( d l +  4S2) is computed and used to get an 
intermediate averaged curvature value i k  at node k ,  namely 

W K - l z k - 1  + W k F k  
i k  = 

w k - 1  + w k  ’ 
which itself is averaged with the value at node k + 1 to get the final interval curvature 
value i k  (effectively, the curvature at four nodes determine &).The number of new nodes 
to be placed per unit length is then computed from 

( i k  L )  1’2 
f kk 

P L  
or 2/6, whichever is smaller (nodes cannot get closer than 6/2). 

A summary of the CASL algorithm is given in Table 1. 
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TABLE 1. A. FLOW CHART OF THE CASL ALGORITHM 

Initialization 
a. Choose vertical structure (PO, N), total depth (H), number of vertical levels (n"), number of vertical 

modes ( M ) ,  horizontal resolution ( i h ) ,  the averaging factor (mg), contour resolution parameters 
(p,  L), time step (At) ,  planetary vorticity gradient (B) ,  and bottom topography (h (x ,  y ) ) .  
Compile the programme, putting in the required dimensions. 
Read in the PV contours at each level. 
Calculate the average PV at each level. 
Sort contours in each layer by PV level. 

b. 
c. 
d. 
e. 
f. Redistribute the nodes. 
Advection 
a. 
b. 
c. 
Surgery 
a. 
Post-surgery 
a. Redistribute the nodes. 
b. 
c. 

Calculate the velocity field (see flow chart B). 
Advect the nodes as prescribed by the Runge-Kutta scheme. 
Perform steps a and b three more times to complete a Runge-Kutta time-step. 

Every other time-step, perform surgery (section 2(f)). 

Periodically save data for post-processing. 
Return to item 2, unless the desired number of time-steps have been taken. 

B. FLOW CHART OF THE VELOCITY CALCULATION 

1. PVCGC 
a. 

b. 
c. 
d. 

PV contour-to-grid conversion (section 2(6)), to obtain the PV field on a grid with resolution 
(m,&)* at each level. 
If desired, perform diagnostics on this PV field. 
Subtract By from the PV field if /3 # 0. 
Perform log2 mg averaging iterates to obtain the PV field (minus By)  on a grid with resolution i t  
at each level. 

FFT of PV field at each level to obtain transformed PV field at each level. 
Make (0,O) component of transformed PV field equal to the pre-computed averages (flow chart 
A, item Id). 
If present, add the topographic contribution to the lowest Ievel. 
Project the transformed PV field onto the vertical modes (Eqs. 2(a, b)). 
Perform the spectral inversion (Eq. 3). 
Project the transformed streamfunction field on the vertical levels (Eq. 4). 
Get the transformed velocity field from the transformed streamfunction field at each level (Eq. 5). 
Inverse FFT to get the velocity field on the grid. 

Bi-linear internolation to obtain the velocitv field at each node on each contour. 

2. Inversion 
a. 
b. 

c. 
d. 
e. 
f. 
g. 
h. 

3. Interpolation 
a. 

3. ACCURACY TESTS AND TIMING 

First in this section, the CASL algorithm is compared with a doubly-periodic two- 
dimensional CS algorithm. In particular, the sensitivity to the horizontal grid resolution nh 
and the averaging factor mg is examined visually and quantified. Next, the sensitivity to 
vertical resolution is addressed for a three-dimensional QG flow simulation by varying the 
number of layers n,  and the number of modes M independently within the CASLalgorithm. 
Finally, the performance of various parts of the algorithm on a Fujistu VPX-240 vector 
processor is examined for a typical application. 
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TABLE 2. BAROTROPIC CASL AND CS SIMULA- 
TIONS 

120 
240 
480 
960 
1920 
CS-lin. 
CS-cub. 

~~ 

mg 

1 2 4 8 

34.6 35.0 49.4 96.4 
93.3 105.2 153.4 340.6 

351.3 403.8 576.9 
1399.6 1574.6 
5770.2 
926.6 

1231.4 

Shown is total CPU time (in seconds) taken on a 
single processor of a Cray J90 supercomputer. All 
results were obtained using the CASL algorithm ex- 
cept for the last two; those were obtained using the 
CS algorithm with linear and cubic-spline interpo- 
lation in the computation of the velocity field. 

(a )  CASL-CS comparison; the effect of horizontal resolution 
A version of the CS algorithm for a single-layer (two-dimensional) flow in doubly- 

periodic geometry permits one to test the essentially new aspect of the CASL algorithm, 
namely the use of a coarse horizontal grid. The vertical discretization in CASL is not 
new-it is used in CS and in conventional numerical algorithms-but its effect too is 
re-examined below. 

The CS algorithm performs contour integrations over the Green function, which, for 
doubly-periodic geometry, is a complicated function (see Legras and Dritschel 1993). The 
Green function is split into a singular part (just the logarithm of distance) and a non- 
singular remainder, which is calculated by table look-up (using 1000 divisions in x and 
in y )  to 7-decimal accuracy (the CS results below are unchanged, to within plotted line 
widths, when 2000 divisions are used). 

The initial condition used in all the simulations performed consists of four vor- 
tices, two positive (q’ = q - f = 4n) and two negative (q’ = -4n), of equal radius 
R = 0.792665 . . . (chosen so that 5% of the domain is occupied by the vortices initially). 
The positive ones are centred at X = (0.24091, -0.05168) and (1.71815, -3.05818), and 
the negative ones are centred at X = (-0.77690, -2.25197) and (-2.35313, 0.07133). 
All the calculations are run with At = 0.025, p = 0.08 and L = 2R, so that there are 63 
nodes per contour initially and a surgical scale of S = 0.0025365 . . . x 2n/2500. 

The CS evolution is depicted in Fig. 2; 0.5 units of time separate each frame, advancing 
to the right and downwards, with positive vorticity rendered a darker shade of grey than 
negative vorticity. The vortices merge with their partners, the loosely combined positive 
vortex then splits momentarily, and all the interactions generate, characteristically, much 
fine-scale structure (see Dritschel.1995, and refs.). 

The CASL algorithm was run with a variety of inversion grid resolutions iih, from 120 
to 1920, and inversion/conversion grid ratios mg, from 1 to 8. Table 2 lists the calculations 
performed and the CPU time required on a single processor of a Cray J90 vector processor. 

All of the CASLsimulations are barely distinguishable from the CS evolution in Fig. 2. 
This is illustrated in line-rendered comparisons in Figs. 3(a)-(d). In Fig. 3(a), the CASL 
simulation with the highest i i h  (bold contours) is compared with two CS simulations, 
one using linear segments between nodes (as in the CASL algorithm) for computing 
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Figure 2. The evolution of four vortices in a doubly-periodic domain as simulated by contour surgery. Time 
advances to the right and downwards in increments of 0.5. Positive vorticity is rendered dark grey, and negative 

vorticity is rendered lighter grey. 

the velocity field (thin contours, but indistinguisable from the bold ones), and the other 
using cubic splines as normally done in CS (dashed contours). The use of cubic splines 
causes visible differences, principally because the splined contours generally have slightly 
greater circulation. These differences may be reduced by using additional points in the PV 
contour-to-grid conversion or by adjusting the contour nodes to eliminate local circulation 
differences. This is work in progress. 

In Fig. 3(b), mg = 2 for all simulations while iih is varied from 960 to 120 (bold, 
thin, dashed and dotted contours). The two highest-resolution cases are indistinguishable, 
and the errors appear to scale with the grid-scale squared, as would be expected from the 
level of accuracy to which the circulation is calculated. Contrast this now with Fig. 3(c) 
in which i i h  = 240 while mg = 8, 4, 2 and 1 (bold, thin, dashed and dotted contours). The 
convergence is much more rapid, though the expected level of error (proportional to the 
PV conversion grid-scale squared) is the same. Finally, in Fig. 3(d), nh = m g z h  = 960 
while both mg and i i h  are varied, with mg increasing and i i h  decreasing from bold to dotted 
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contours. Again, the convergence is much more rapid than displayed in Fig. 3(b). Evidently, 
a fine PV conversion grid is the most important factor in getting an accurate result. A fine 
inversion grid is much less important. 

This is quantified next in Figs. 4(a)-(c). Figure 4(a) shows the total area occupied 
by the vortices divided by the domain area as a function of time for the 16 simulations 
conducted, with distinct symbols used to differentiate ih (or the CS simulations) and 
distinct line styles used to differentiate mg (consult figure). Area is not conserved even in CS 
due to surgery, node redistribution and time-stepping; in the CASL algorithm, moreover, the 
use of a finite grid and bi-linear interpolation give additional sources of error. Nonetheless, 
one can see that the results are clustered together apart from the coarsest-resolution CASL 
simulations, notably the ones with mg = 1 (note that doubling mg gives better results than 
doubling i i h ,  as can be seen in the upper three curves, for instance). 

Figure 4(b) shows the percentage difference in the PV fields, computed by comparing 
the PV values on a 1920 by 1920 grid, between the CASL simulation with f i h  = 1920 
(mg = 1) and all others (same line and symbol styles as above; consult figure). This shows 
even more clearly than the previous figure the great improvement brought about by the 
PV averaging. 

A more dynamically-relevant measure of the differences is shown in Fig. 4(c), which 
displays the normalized velocity-spectrum difference between the CASL simulation with 
i i h  = 1920 (m,  = 1) and all others (as in Fig. 4(b)), x,(v; - vk)*/ zk v;, where %k = v; 
and %$ = vf are the energy spectra for the highest-resolution CASL simulation and any 
other (zk Cek = E ,  the total energy). In this measure, which accounts for the unimportance 
of fine-scale PV in inversion, the differences between the simulations are practically negli- 
gible. As in the previous figures, PV averaging is more effective in reducing the differences 
than halving the inversion grid length. 

(b) The effect of vertical resolution 
We next compare three CASL simulations differing only in the vertical discretization. 

Initially, the flow consists of a single slanting column of uniform anomalous PV (4’ = 
q - f = 4n) of unit radius and of slope dX/dz = N / f  (which appears as a unit slope in the 
plots)inadomainofdepthnN/f.Eachsimulationusesnh = 256, mg = 1, /1. = 0.1, L = 1 
(implying 80 nodes per contour initially and a surgical-scale of 6 = 0.0025 e 2n/2500 x 
A/lO), and At = 0.025. In the first simulation, depicted in Fig. 5, 60 levels and vertical 
modes are used (n, = M = 60). This is the ‘high-resolution’ case. The second simulation 
also uses 60 levels but only 20 modes, while the third uses 20 levels and 20 modes. A 
factor of three in levels is necessary to compare the flow fields at the same heights (the 
middle of the first, second, third . . . layer of a 20-layer simulation is at the same height as 
the middle of the second, fifth, eighth . . . layer of a 60-layer simulation). 

First of all, let us briefly examine the flow evolution in Fig. 5. The column readily 
develops a perpendicular connection to the lower and upper surfaces while deforming 
horizontally and strongly shearing vertically at middle levels. The vortex just avoids being 
broken vertically (it does break for a vortex half as wide) and returns nearly to its initial 
shape. The sequence essentially repeats itself thereafter (at least up to t = 31, the final 
time of the simulation). 

The second simulation, for 60 levels but only 20 modes, cannot be distinguished 
from that shown in Fig. 5. Again, one has to superpose contours to see differences. This 
superposition is done, for all three simulations, in Fig. 6(a) for the joint level closest to 
the bottom of the domain and in Fig. 6(b) for the joint level closest to the middle. The 
two 60-level simulations hardly differ up to t = 8 (fluid particles have then revolved eight 
times within the vortex core), and even well beyond this time; the 20-level simulation does 
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(a) 

Figure 3. Vorticity contour comparison between various barotropic simulations at times t = 1, 2, 3 and 4: (a) CS 
with linear interpolation (bold contours), CASL with iih = 1920 (thin contours), and CS with cubic interpolation 
(dashed contours); (b) CASL simulations all having mg = 2 but Fit, = 960 (bold), 480 (thin), 240 (dashed) and 
120 (dotted); (c) CASL simulations all having i i h  = 240 but mg = 8 (bold), 4 (thin), 2 (dashed) and 1 (dotted); (d) 

CASL simulations all having nh = mgiih = 960 but mg = 8 (bold), 4 (thin), 2 (dashed) and 1 (dotted). 
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Figure 3.  Continued. 
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Figure 4. Diagnostic differences between the various barotropic simulations as a function of time: (a) The total 
area of non-zero vorticity divided by the domain area for the 16 simulations performed, using line styles to 
differentiate mg (1 is bold, 2 is thin, 4 is dashed and 8 is dotted) and symbols to differentiate &, (120 is marked 
with diamonds, 240 with squares, 480 with inverted triangles, 960 with triangles and 1920 with xs). The CS 
simulations are marked with +s, with bold lines for linear interpolation and thin lines for cubic interpolation. @) 
The percentage difference in the PV fields (difference from the CASL simulation with n h  = 1920). Line styles and 
symbols are the same as in the previous figure, except now the x s mark the CS calculation with cubic interpolation 
(+s mark the one with linear interpolation) and thin lines are used for both. (c) The velocity spectrum difference. 

Line styles and symbols are the same as in (b). 
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Figure 4. Continued. 

differ more, but not excessively so. Figure 7 gives a quantitative measure of the agreement, 
namely the r.m.s. centroid difference, In;' xyLl IX; - X112}1/2 between the two 60-level 
simulations (bold line) and between the 60-level, 60-mode simulation and the 20-level, 
20-mode simulation (thin line) versus time. 

The excellent 60- and 20-mode comparison proves an important point: fine vertical 
structure does not contribute significantly to the advecting velocity field-this is of course 
the principle which underpins the CASL algorithm. The comparison with 20 levels shows 
that many important characteristics can be captured using moderately-coarse vertical res- 
olution. Furthermore, there is no indication that moderately-coarse resolution leads to 
spurious behaviour. Indeed, following Legras and Dritschel(1993), one can estimate that 
the velocity difference between that corresponding to a vertically-continuous PV distri- 
bution and that corresponding to a layered PV distribution scales with l/n:. This follows 
from the nature of the inversion operator. 

(c) Timing 
The speed of the various parts of the CASL algorithm is examined next. A flow 

of significant complexity was chosen for illustration, namely the evolution of the polar 
stratospheric vortex. A conservative QG model had been found to give meaningful results 
in a previous work (Dritschel and Saravanan 1994), and it is again used here. The simulation 
was conducted on a Fujitsu VPX-240 vector processor, whose peak theoretical speed is 
2.6 Gflops. 

The initial condition is a slanted column of non-uniform PV, 

1 ( (.x - x(z ' )>2  + y 2  
q(x ,  y ,  z', 0) - f o  = 4n 1 - 

R2 
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Figure 5. The evolution of an initially slanting column of uniform PV in a box of scaled-height 7r as simulated 
using the CASL algorithm, with n,  = M = 60, j ih  = 256 and mg = 1. The flow is viewed head on from a 60” angle 
from the z axis. Positive PV is dark and (in general) negative PV (which is here absent) is light, using a lighter 
shade for the sides of the structures. Structures seen through the front face are further lightened (a horizontal white 
line shows the top part of the front face; a second white line shows the bottom of the back face, where it is not 
obscured). The visible bottom of the domain is darkened relative to the sides. Time advances to the right and 

downwards in increments of 1 unit. The evolution continues onto the next page. 

where z’ = N z / f o ,  X ( z ’ )  = O.lLR(z’ - zLid), LR = 1 / 3  is the Rossby radius of defor- 
mation, zl id  = N H / 2  fo, H = lOH, (the fluid depth is ten density-scale heights), and 
R = 3LR = 1 is the cross-sectional radius of the vortex. 

A slanting polar vortex was chosen because it has been observed in real data (Waugh 
1997). The initial slope is comparable to those observations. We have chosen a particularly 
deep fluid, ten scale heights, to demonstrate the known instability of the upper part of 
the vortex to vertically propagating waves and the long-term consequences (this is in 
fact related to a true instability of tall vortex columns, as demonstrated by Dritschel and 
de la Torre Juarez 1996). 

A simulation was performed for a 50-layer QG fluid, using 50 modes as well, and 
a horizontal grid resolution of ih = 240 with mg = 2. (A high vertical resolution was 
chosen to resolve the small-scale vertical structures that develop in this example.) The 
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Figure 5.  Continued. 

other numerical parameters used were L = 1 (= R )  and p. = 0.12, giving a surgical-scale 
6 = 0.0036 x i /7.3),  and a time-step At = 0.025. The initially parabolic profile of PV is 
discretized initially into 20 equal steps, except for the outermost, which has half the step 
size (this is the best least-squares approximation to the continuous profile, see Legras and' 
Dritschel 1993). 

A few snapshots of the flow evolution are shown in Fig. 8 (time, in increments of eight 
units, proceeds left to right and then downwards). The highest PVvalues are darkest, and the 
sides of the layers are rendered an intermediate shade to distinguish them from the interior 
PV and the surrounding fluid. Initially, a wave (or a series of waves) travels up the vortex 
and amplifies due to the exponentially decreasing density with height. This amplification 
results in the upper part of the vortex being torn away; this occurs at approximately eight 
scale heights, a little higher than the normally observed height of approximately six scale 
heights (maintained bottom forcing, as in Dritschel and Saravanan 1994, would likely have 
a stronger influence and clip the top of the vortex lower down; this has been verified for a 
column of uniform PV). 

Next, we turn to the computational cost. The entire simulation required 5 hours of CPU 
time. Initially, the contours (1000 in total) were represented by about n = 50000 nodes. This 
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I 
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Figure 6. Vertical resolution CASL inter-comparison (a) at the joint layer nearest the bottom and (b) at the joint 
layer nearest the middle. Bold contours show the simulation with n ,  = M = 60, thin solid contours the one with 

n, = 60 and M = 20, and dashed contours the one with n, = M = 20. Times 2 ,4 ,6  and 8 are compared. 
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Figure 7. Time evolution of the root mean square centroid difference between the 60-level simulations (bold line) 
and between the 60- and 20-level simulations (thin line) versus time. 

climbs to and levels off at a value of 300000 nodes by the end of the simulation. Needless 
to say, the flow is then much more complex than Fig. 8 makes it appear. Computing with 
this level of complexity is a strong test of the algorithm’s efficiency. 

Figure 9 shows the rate of execution, the average CPU time taken per time-step, 
versus time t for the various parts of the algorithm: the FFTs (triangles), the inversion 
(inverted triangles) excluding the FFT and PV contour-to-grid conversion (PVCGC) costs 
but including PV averaging, the PVCGC (fs), surgery (x s), and all other costs (diamonds) 
including advection, node redistribution, and the bi-linear interpolation. Also shown is n 
versus r (bold; see scale on the right). Note that the cost of surgery rises steeply with 
increasing n,  briefly surpassing the total inversion costs (now including the FFTs) and 
then decays again despite the continued growth in n. The decay is due to the elimination of 
many contours and the reduced search costs as the flow settles down. Normally a flow does 
not sustain this level of complexity for very long; a longer simulation would show n itself 
decreasing a little later in time. The cost of the PVCGC also becomes comparable to the 
inversion costs for large n (recall that the conversion is being done on a grid twice as fine 
(480 x 480) as the inversion grid). Part of the PVCGC costs includes grid operations (e.g. 
sweeping to get the PV from PV jump values), and so there is an overhead proportional to 
nt.  The remainder of the cost is proportional to n; in fact, a very good fit of the PVCGC 
cost is obtained by 4.0 x 10-8n,n~ + 1 .0 x 10-5n. The larger prefactor for n is due to the 
partial lack of vectorization of the PVCGC. 

The inversion, surgery and PVCGC costs are not independent, but depend on how 
the various parameters are chosen. We recommend, after much experience running the 
CASL algorithm, the following parameter relationships. Having chosen the horizontal 
inversion grid resolution i i h  and a characteristic scale for the PV distribution L ,  choose 
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Figure 8. Evolution of an initially slanting stratospheric polar vortex; times shown are t = 0,  8, 16, 24, 32 and 
38.6 (the tinal time). The view angle is 60" from the x axis, and the rendering is the same as in Fig. 5. 



CONTOUR-ADVECTIVE SEMI-LAGRANGIAN ALGORITHM 1119 

2 -  

10 

8 

CPU / At 

G 

4 

n 

300,000 

200,000 

100,000 

Figure 9. Rate of execution, defined as the average CPU time in seconds per time-step, of the component parts of 
the CASL algorithm, the FFTs (triangles), the inversion (inverted triangles) excluding the FFT and PVCGC costs 
but including PV averaging, the PVCGC (+s), surgery (xs), and all other costs (diamonds). Also shown (in bold) 

is n versus t .  

the surgical-scale 6 to be an eighth of the inversion grid-scale, i.e. 6 = A/8. Since 6 = 
p2 L/4 ,  this determines the dimensionless maximum node separation 1. Next, choose the 
PV inversion/conversion grid ratio mg to be 2 or 4, depending on the accuracy required 
(consult section 3(a)). Choose the number of layers n, and modes M to be 20 or greater to 
properly resolve a continuously stratified flow. The relative costs of the inversion, surgery 
and PVCGC depend on the behaviour of the total number of nodes n, which, for the 
relationships just outlined, depends on tih and n,. Normally, one can expect n o( n,. One 
can also expect n to be inversely related to p and L. From experience, most nodes lie 
on filaments, with a node spacing of about p L  (this is particularly true during the most 
agitated periods of evolution). The maximum total contour length is bounded by the domain 
area divided by the surgical-scale 6. Dividing the point spacing into this estimate for the 
contour length gives an estimate of the maximum number of nodes nmax < c ~ ~ A ~ ~ ~ / / - L ~ L ~ ,  
where Adom is the domain area, or 4n2  here, and c is a dimensionless constant, which from 
experience, lies in the range 1/20 to 1/2. From this relationship, and 6 = &/8, we can see 
that nmax 0: n,nh . The PVCGC cost is thus at most comparable to the inversion and FFT 
costs, proportional to n,nt and n,ni log i h ,  respectively. The surgery cost is the greatest 
unknown, since it can only crudely be estimated as O(n') and thus O(iif). Fortunately, 
though, surgery is expensive only during short periods of extreme complexity. 

The overall speed of execution is greatly enhanced in CASL by using an advective 
time-step: fewer inversions are necessary in CASL to simulate for a fixed time interval than 
in conventional numerical models. A standard, pseudo-spectral simulation of the above 
flow would have required a time-step of 0.00125 to ensure numerical stability (Yao et al. 
1995), a figure which is one-twentieth of that used in the CASL simulation. Moreover the 

-312 



1120 D. G. DRITSCHEL and M. H. P. AMBAUM 

effective resolution of the CASL simulation is ten times greater than the pseudo-spectral 
one. 

4. QUASI-GEOSTROPHIC TURBULENCE 

The long-time behaviour of ‘ freely-decaying’ (or perhaps should it be ‘freely evolv- 
ing’?) QG turbulence (QGT) has attracted considerable interest (Rhines 1979; Hua and 
Haidvogel 1986; McWilliams 1989, 1990; McWilliams et al. 1994; Dritschel and 
de la Torre Judrez 1996). In part, this is because the study of QGT may indicate fun- 
damental vortex dynamical processes which may be found in realistic, atmospheric and 
oceanic flows, and may thus help us interpret what we see, or what we should look for, in 
such flows. 

Like two-dimensional turbulence (2DT), QGT develops from random initial condi- 
tions into a set of widely-spaced coherent regions of PV-‘vortices’ for short-embedded 
within a disorganized field of stretching and twisting filaments. All studies to date have 
considered a Boussinesq fluid (po constant) and, except for Hua and Haidvogel (1986), 
constant buoyancy frequency N ,  constant Coriolis parameter f , and homogeneous bound- 
ary conditions (i.e. no surface temperature gradients or topography). In this case, the 
ratio N / f  can be absorbed into the z coordinate in (lb), rendering the inversion operator 
isotropic. This led Charney (1971) to propose a scaling theory similar to that proposed by 
Kolmogorov (see Kraichnan 1974) for a 3D unstratified, non-rotating fluid. In particular, 
Charney argued that QGT should have an isotropic energy spectrum (in spite of the fact 
that the vertical velocity component is zero, a clear anisotropy in the governing equations; 
see Hua and Haidvogel 1986 for further remarks). 

To date, simulations of QGT do not fully support Charney’s theory, in particular the 
assumption of isotropy. Anisotropy is manifested by vortices of height-to-width aspect 
ratios significantly greater than f / N ,  and by vortices predominantly located near the top 
and bottom boundaries of the domain. 

Recently, it has even been suggested, on the basis of a higher-resolution, longer- 
duration simufation of QGT (McWiHiams et at. 1994), that QGT becomes progressively 
two-dimensional through the vertical alignment of PV structures (Polvani 1991; Viera 
1995). In the simulation presented in McWilliams et al. (1994), two columns of opposite 
PV (4’) are seen at the end of the simulation. This conclusion supports an alternative theory 
(Rhines 1979) that baroclinic components die out in QGT, leaving only the barotropic (z- 
independent) component, i.e. 2DT, a highly-anisotropic flow state. 

The present motivation for re-examining QGT has come from a recent study (Dritschel 
and de la Torre Juirez 1996), which found that sufficiently tall PV columns in a 2D straining 
flow break down into surface-trapped vortices, remarkably similar to those seen in earlier 
pseudo-spectral simulations of QGT (McWilliams 1989). Is, then, the 2D theory robust? 
Might the results of McWilliams et al. (1994) be a consequence of the accumulation of 
ad hoc hyperdiffusive effects over the long duration of the simulation (as suggested in 
Dritschel and de la Torre Judrez 1996)? Does QGT retain a significant 30 character in the 
absence of down-gradient diffusion, as suggested by Charney (1971)? 

To begin to answer these questions, a simulation of QGT was conducted using the new 
CASL algorithm. The simulation started from a 2D basic state superimposed with small 
3D disturbances. Twenty equal-sized uniform PV columns, ten having q’ = q - f = + Q 
and ten having q’ = - Q, were randomly placed within the domain so that 5% of the volume 
had non-zero q’ and no two vortices were closer than 6R,, R, being the vortex radius. The 
height of the domain was chosen to be H = $ f / N ,  giving a vortex full height-to-width 
aspect ratio of 4.431flN. 
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The numerical parameters were set as follows: p = 0.15, L = 2R (together implying 
a resolution of 44 nodes per contour initially), 6 = 0.001994, n, = M = 20, i z h  = 480, 
mg = 1 (giving a grid length A = 0.01309 or 6.5658) and At = T,/40, where T, = 4n/ Q 
is the rotation period of an undisturbed circular column. For presentation, time is scaled 
on T,, and z is scaled on f / N .  The visualization is the same as for Fig. 5. 

The flow remains approximately two-dimensional until t = 9, just after two like- 
signed columns have undergone a grazing collision. Figure 10 shows the evolution for a 
short period after this time. The two columns, seen at the front of the domain just left 
of centre, are the first to become strongly 3D. They first tilt and subsequently merge 
at the lower surface, as was found to occur for two columns in isolation (Dritschel and 
de la Torre Juirez 1996). A vortex of enlarged cross-section forms at the bottom of the 
domain while the remnants of the two columns helically intertwine above. 

Further, more widespread 3D development occurs shortly thereafter. Figure 11 shows 
the time period from t = 22 to 29. In the front-right corner, two opposite-signed vortices 
lean over and split off a briefly-coupled baroclinic dipole at the upper surface, one may 
see this also in Dritschel and de la Torre Juirez (1996). In the back-right corner, two pairs 
of like-signed columns merge at the top and shed their helically intertwining lower parts, 
again as in Dritschel and de la Torre Juarez (1996). In the back-middle part of the domain, 
a column is split in two by the surrounding straining field. Overall, there is a breakdown 
of the original 2D flow. 

As the evolution proceeds, the 2D character of the flow completely vanishes; after 
t = 30, no vortex extends from the top to the bottom of the domain, as illustrated in the 
evolution sequence shown in Fig. 12. The flow is then characterized by a set of vortex 
domes attached to the top and bottom boundaries, as predicted in Dritschel and de la Torre 
Juirez (1996). Not a single coherent PV structure exists in the centre of the domain. In 
time, some of the vortex domes widen by merging with other domes, but they do not 
deepen (this has recently been re-confirmed by a similar simulation run to t = 200). For 
deepening to occur, a surface vortex must trap and pool together previously disorganized 
PV floating around the domain interior. If this is not done fast enough, the disorganized 
PV, which is probably thinning at an exponential rate (like in 2DT, Dritschel 1993a), will 
mix too efficiently for trapping ever to occur. Trapping requires vertical alignment of 
PV (Polvani 1991; Viera 1995) (a process similar in essence to merging in 2D), and this 
may occur only between structures of comparable 4’.  A well-mixed patch will, however, 
appear to have a much smaller value of q’ than a coherent vortex dome on account of the 
inversion operator’s insensitivity to fine-scale PV, and hence the two structures may not 
align. Indeed, one may expect the well-mixed patch to behave more like a passive-tracer, 
than a self-organizing vortex. 

This single example demonstrates that QGT is richer than had been expected, There 
remains much to be understood. In particular, the breakdown of two-dimensionality re- 
quires tall vortex columns, but even if the columns are initially shallow (of height to width 
ratio s f / N ) ,  interactions between them inevitably produce smaller (narrower) vortices 
(Dritschel 1993b, 1995), and these will be prone to breakdown (Dritschel and de la Torre 
Ju6rez 1996). The larger vortices produced presumably remain columnar. In a simulation 
conducted using half of the domain height used above, however, all the vortices were again 
observed to breakdown into baroclinic vortex domes attached to the surfaces. A further 
simulation was conducted using a quarter of the the original domain height, and still a great 
deal of baroclinic activity developed, though this time the larger vortices remain vertically 
coherent (though baroclinically disturbed) up to at least 66 vortex-rotation periods, see 
Fig. 13. Clearly, two-dimensionality is not as robust as was previously thought. 

One may also askwhat happens when some of the present idealizations are abandoned, 
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Figure 10. The PV from t = 10 to 17 (in unit intervals) in a 20-layer CASL simulation of QG turbulence in a 
domain of scaled-height n / 2  (see the caption of Fig. 5 for the mode of visualization). The initial flow consists of 

columns of uniform PV upon which are superposed small 3D disturbances. 
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Figure 11. Same as Fig. 10 except r = 22 to 29 in the QG turbulence simulation. 
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Figure 12. Same as Fig. 10 except r = 47 to 54 in the QG turbulence simulation. 
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Figure 13. Initial and final times ( t  = 66.6) in a QG turbulence simulation conducted in a domain one quarter as 
deep as previously illustrated. 

i.e. #? # 0, bottom topography, surface temperature gradients (as a source for ‘baroclinic 
instability’, see Pierrehumbert and Swanson 1995), non-uniform N ,  an exponential density 
profile p ~ ( z )  o( exp(-z/H,), etc. All of these effects can be studied efficiently, more 
comprehensively, and in greater detail than ever before, using the CASL algorithm. 

5. EXTENSIONS TO AGEOSTROPHIC SYSTEMS 

The basic idea underpinning the CASL algorithm is to hold conservative (advected) 
fields in contour form to avoid excessive dissipation, as is common in sub-grid models. 
Such fields typically possess a shallow spectrum, decaying only gradually with diminishing 
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scale. This decay is generally not rapid enough to maintain an accurate grid or spectral 
representation of the field, particularly when at least a third of the spectral tail must be 
sacrificed to some form of damping and possibly de-aliasing as well (Legras and Dritschel 
1993; Macaskill and Bewick 1995). Even when such damping is not explicit (such as in 
the semi-Lagrangian scheme), implicit damping does occur and the small scales are not 
reliable (Gravel 1996). The advantage of the CASL algorithm is that scales are carried well 
below the grid-scale, providing in effect an explicit internal model for ‘eddy viscosity’, 
and thereby leaving grid-scale features relatively uncontaminated. 

In more complex atmospheric and oceanic models, there is more than the PV to worry 
about (and there are also non-conservative effects, see section 6). In general, the velocity 
field must be computed dynamically-it cannot be expressed as a functional of the PV. But 
these other fields normally have a much steeper spectrum than the PV, so it is appropriate 
to hold them in a spectral or grid representation. Hence, one can use the normal model 
machinery for such fields and the CASL algorithm for the PV. 

This idea is illustrated for the ‘shallow-water’ system, a frequently used model in 
atmosphere and ocean dynamics (see, e.g. Vallis 1996 and refs). The system describes the 
vertically averaged motion of a thin layer of fluid (thin compared to its horizontal varia- 
tions). The depth of the fluid is h(x, y, t )  and its evolution equation expresses conservation 
of mass: 

ah - + V * (hu) = 0 
at 

where u = (u, u )  is the vertically averaged horizontal velocity. Cartesian geometry is used 
here to simplify the presentation; spherical geometry is widely used in practice, as the 
system is perfectly valid in equatorial regions. The PV is given by 

q = -  r + f  
h 

where < = au/ax - au/ay is the relative vorticity and f ( y )  is the Coriolis parameter. The 
PV satisfies 

_ -  - 0. Dq 
Dt 

A third and final dynamical equation can be obtained by taking the divergence of the 
momentum equations. Denoting S = V . u, one may write 

as a 
a t  ax - = 2 J ( u ,  u )  - v . (US) + - ( fu - g I : : )  - - - :! ( f u + g $ ) .  ( 6 4  

Here J ( . ,  .) is the Jacobian operator and g’ denotes gravity in the atmospheric context or 
‘reduced gravity’, g A . p / p ,  in the oceanic context. 

The velocity field is obtained from all three dynamic fields as follows. First, from q 
and h, one calculates < = hq - f .  Then, after solving for @ and ( from 

V 2 @ = <  and V 2 e = 6 ,  (6d) 

we obtain u from 
a t  a@ a t  allr 

ax ay ay ax 
and u = - + - .  u = - - -  

In terrestrial applications, when the fluid motion is nearly ‘balanced’, it appears that 
both h and 6 remain smooth, and hence decay rapidly with wave number (like k-3 or 
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steeper, k being the magnitude of the wave number vector). Such a decay would permit 
one to evolve, -accurately, h and 6 in spectral space or on a grid using moderate resolution, 
unlike the PV, which would be evolved as outlined in this paper. It is expected that explicit 
dissipation will not be required to control the small-scale behaviour of h and 6, since 
balance means that this behaviour is controlled by q ,  and any unbalanced motions appear 
to have extremely weak amplitudes at high wave numbers. 

Unfortunately, the best justification for this argument-a picture of the divergence 
spectrum-has not been found in the literature. The best evidence for a steep divergence 
spectrum has been provided by Norton (1988), who performed numerous polar vortex 
simulations spanning a wide range of Froude numbers for small Rossby number, by Ford 
(1994), who performed simulations of PV strip instabilities in a channel, and by Polvani 
et al. (1994), who performed turbulence simulations in doubly-periodic geometry. The 
divergence fields from the small Rossby- and Froude-number experiments do suggest that 
6 is as smooth as h, at least below the scale of the Rossby radius of deformation, LR = m/ fo, where H is the mean depth. One can appeal also to theoretical arguments, based 
on small Rossby-number expansions (e.g. see Vallis, 1996). The leading-order balance 
equation for 6 reads 

The bracketed term on the right hand side, to leading order in Rossby number, is just 
-a</at,  and so assuming the spectrum of a</& is similar to that of 4 at small scales, 
i.e. like k-' or steeper, then the spectrum of 6 at scales smaller than L R  should be at least 
as steep as k P 3 .  It is not expected that higher-order corrections in balance give rise to a 
shallower spectrum, since the basic controlling operator (V2 - 1/Li) remains the same 
at each level of iteration (assuming such an iteration converges, of course). As for the 
unbalanced motion, there should be extremely little amplitude at high wave numbers, since 
the basic (nearly balanced) vortical motion-the potential source of free gravity waves- 
predominantly excites low frequencies, Q 5 fo, whereas free gravity waves, particularly 
the small-scale ones, have very much greater frequencies, w % ,/- (where k 
is total wave number, as above). This suggests that the projection on small-scale, high- 
frequency gravity waves will be exponentially weak. 

Whether or not numerical noise spoils this picture for 6 is not known. It may be 
essential to use particularly accurate numerical methods, for example a semi-implicit semi- 
Lagrangian scheme (Staniforth and Cote 1991, Gravel 1996), which suppresses, as much 
as possible, high-frequency noise. The PV, q, would be evolved using the CASL algorithm; 
that is, q would be converted from a contour to a grid representation (and then perhaps 
to a spectral one) for use in obtaining the velocity field from Eqs. (6d) and (6e), then this 
velocity field would be used to advect the PV contours as in Contour Advection. 

6. CONCLUSIONS 

A new numerical algorithm has been presented which may prove useful for atmos- 
pheric and oceanic modelling. The algorithm essentially blends the Eulerian and La- 
grangian representations in order to describe the dynamics of conservative, advected fields 
more accurately. Such fields often exhibit much fine-scale structure and are characterized 
by a shallow spectrum at large wave numbers. It is argued that such fields are better handled 
in a Lagrangian representation, as a series of contours lying in two-dimensional layers or 
surfaces. This representation is generally much less dissipative, principally because the 
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field is retained to scales well below the computational grid-scale. This sub grid-scale field 
does not contribute significantly to the velocity field, but it is advected by it. Dissipation 
does not occur at the grid-scale, but well below it. 

The algorithm has been described in detail for quasi-geostrophic flow, tested against 
contour surgery (which can be used in this case), and illustrated in the simulation of 
quasi-geostrophic turbulence. That progress has been made can be judged from the gain 
in efficiency the new algorithm has brought about: the test simulation in section 3(c) 
required five hours on a Fujistu VPX-240 vector processor; it would have required nearly 
four years for the contour-surgery algorithm; a pseudo-spectral simulation of equivalent 
accuracy (Yao et al. 1995) would probably require even greater resources. 

The extension of the algorithm to ageostrophic systems appears feasible, and the pro- 
totypical case of the shallow-water system has been outlined. The basic principle is to hold 
fields having a steep spectral decay-fields which possess little fine-scale structure-in the 
(conventional) Eulerian representation, and to hold the PV and other conservative tracer 
fields having a shallow spectral decay in the Lagrangian representation. It is anticipated 
that it will no longer be necessary to employ hyperviscosity or any other ad hoc eddy 
viscosity, since the fields whose fine-scale structure needs to be controlled are dissipated 
ultimately by surgery, well below the grid-scale, and since the fields with a steep spectral 
decay produce an insignificant cascade to small scales. 

One remaining hurdle is the incorporation of weakly-nonconservative effects. The 
PV is not exactly conserved in the atmosphere and the oceans. In particular, diabatic 
forcing, from the heating and cooling of chemical tracers (McIntyre 1995), dilutes and 
concentrates atmospheric PV (Haynes and McIntyre 1987). While the use of an associated 
grid in the new algorithm permits one to obtain the detailed spatial structure of the forcing, 
one cannot directly apply this to the contours representing the PV. Where a gradient of 
PV is well-defined, such forcing can be implemented simply by displacing contours. A 
piecewise-constant PV distribution is not suitable, and some sort of filtering or smearing is 
necessary to give a sensible gradient. But, then there is an additional difficulty near where 
the PV gradient vanishes, for there it may be necessary to create new contours. 

Many of these difficulties may be overcome by splitting the PV into a conservative 
Lagrangian part and a non-conservative Eulerian part, evolving them using CASL and con- 
ventional methods, respectively, and recombining them only when the non-conservative 
part begins to lose significant enstrophy. The recombination would take place on the inver- 
sion grid, to which the fine-scale conservative part would be brought through successive 
averagings. New PV contours would be found by contouring this combined field. Though 
sub grid-scale PV structure would be smeared out in this procedure, its contribution to 
inversion would remain largely unaltered, as the results of section 3(a) have demonstrated. 
The advantage that this method would have over conventional methods would be a sharp 
reduction in unwanted numerical dissipation. 
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