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Mountain wave breaking, and the resulting potential for the generation of turbulence
in the atmosphere, is investigated using numerical simulations of idealized, nearly
hydrostatic atmospheric flows with directional wind shear over an axisymmetric
isolated mountain. These simulations, which use the WRF-ARW model, differ in degree
of flow non-linearity and shear intensity, quantified through the dimensionless mountain
height and the Richardson number of the incoming flow, respectively. The aim is to
diagnose wave breaking occurrence based on large-scale flow variables.
The simulation results have been used to produce a regime diagram giving a description
of the wave breaking behavior in Richardson number–dimensionless mountain height
parameter space. By selecting flow overturning occurrence as a discriminating factor,
it was possible to split the regime diagram into sub-regions with and without wave
breaking.
When mountain waves break, the associated convective instability can lead to
turbulence generation (which is one of the known forms of Clear Air Turbulence,
or CAT). Thus, regions within the simulation domain where wave breaking and the
potential development of CAT are expected have been identified. The extent of these
regions increases with terrain elevation and background shear intensity. Analysis of
the model output, supported by theoretical arguments, suggest the existence of a link
between wave breaking and the relative orientations of the incoming wind vector and
the horizontal velocity perturbation vector. More specifically, in a wave breaking event,
due to the effect of critical levels, the background wind vector and the wave-number
vector of the dominant mountain waves are perpendicular. It is shown that, at least for
the wind profile employed in the present study, this corresponds to a situation where the
background wind vector and the velocity perturbation vector are also approximately
perpendicular.
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1. Introduction

The role of orographic gravity waves, or mountain waves, in
weather and climate studies is widely recognized. These waves are
generated when stably stratified air masses are lifted by flow over
orography. Under favourable atmospheric conditions (in terms of
atmospheric stability and wind speed profiles) and lower boundary
conditions (imposed by the terrain elevation), mountain waves
can break. Breaking waves affect the atmospheric circulation by
deposition of wave momentum into the mean flow (Lilly and
Kennedy 1973), which manifests itself as a drag force acting on
the atmosphere. Wave breaking also poses a serious hazard to
aviation through Clear-Air Turbulence (CAT) generation (Lilly
1978). This form of CAT can be quite severe and usually occurs
at altitudes relevant for general and commercial aviation (i.e.

within the troposphere and lower stratosphere) (Sharman et al.
2012b). However, presently, techniques to forecast CAT generated
by mountain wave breaking are still not sufficiently accurate
(Sharman et al. 2012a).
While the conditions for mountain wave breaking for a constant
or unidirectionally sheared background wind have been studied
in substantial detail, the more common case of wave breaking
occurring in winds that turn with height (i.e., with directional
shear) remains very incompletely understood.
Directional shear flows are ubiquitous in the atmosphere.
Throughout most of the mid-latitudes the low-level shear vector
turns anticyclonically with height (Lin 2007). Directional shear
is often linked to thermal advection through the thermal wind
relation. Indeed, in presence of a temperature gradient, a
geostrophically-balanced flow will align itself with the isotherms
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by turning clockwise with height in the case of warm advection,
and counter-clockwise with height in the case of cold advection
(Holton and Hakim 2012). Directional wind shear can also be
associated with long-period inertia-gravity waves (Mahalov et al.
2009).
In the simpler case of an unsheared flow over 2D orography,
wave breaking conditions are essentially controlled by the value
of the dimensionless mountain height N0H/U (where H is the
mountain height, N0 is the Brunt-Väisälä frequency and U is
the wind speed of the background flow). Linear theory breaks
down when N0H/U is large, but it can be used to obtain a rough
estimate of the critical dimensionless mountain height for which
the streamlines become vertical (i.e. flow overturning occurs), and
hence wave breaking is expected. This critical value is N0H/U =

1 for hydrostatic flow with the Boussinesq approximation over
a bell-shaped ridge, defining an absolute limit of applicability
of the linear solutions, since the velocity perturbation is then
no longer small, but has the same magnitude as the background
flow velocity. Long (1953) developed a non-linear theory for a
similar flow (featuring a linear equation but a nonlinear lower
boundary condition), which predicts this critical mountain height
to be instead N0H/U = 0.85 (Miles and Huppert 1969) for a
bell-shaped ridge. This value limits Long’s model validity, not
because of the magnitude of the flow perturbation (which could
be arbitrary large), but because wave breaking is expected beyond
this threshold, which violates the steady-state assumption.
Smith (1989) used linear theory to study stratified flow past a 3D
isolated mountain. For an unsheared and hydrostatic flow with the
Boussinesq approximation over a mountain of sufficiently high
amplitude, linear theory predicts two stagnation points (one on
the windward slope of the mountain and the other one above the
mountain top). Flow stagnation aloft is a precursor to overturning
of isentropic surfaces (which replace streamlines in 3D flow) and
therefore wave breaking. Smith formulated a condition for flow
stagnation in terms of a critical dimensionless mountain height,
above which the flow splits at the surface or overturns aloft.
For the unsheared cases he considered, this only depends on the
mountain height and on its horizontal aspect ratio (which controls
directional dispersion effects).
As we consider more realistic flow setups (no Boussinesq
approximation, and wind profiles with vertical shear, but still
approximately hydrostatic conditions), there are basically two
additional physical mechanisms that contribute to mountain wave
breaking apart from the orography amplitude: the decay of density
with height and vertical shear in the wind profile.
The effect of the decay of density with height is fairly
straightforward, relying on conservation of the momentum flux
as the wave propagates upward, whereby a decrease in density
corresponds to an increase in the amplitude of the wave velocity
perturbations. This mechanism is currently included in drag
parametrizations, based on the theory developed by McFarlane
(1987).
The effect of vertical wind shear in unidirectionally sheared flows
is also fairly easy to understand. When the background wind
decreases to zero, in what is usually termed a critical level, this
always causes, no matter how small the waves are at their source,
an indefinite increase in the wave amplitude as they approach the
critical level, which necessarily results in flow overturning (Nappo
2012). This mechanism, which is associated with a divergence
of the wave momentum flux, is also incorporated in current drag
parametrizations (e.g. Lott and Miller (1997)).
The much more complicated case of a wind with directional
shear over a 3D mountain was first addressed theoretically by
Broad (1995) and Shutts (1995). Whereas in unsheared flows the
surface amplitude of the wave excited by the mountain is the
sole responsible for fulfillment of the wave breaking condition,

and in unidirectional sheared flows critical levels affect the whole
wave spectrum at once at discrete heights, always leading to
wave breaking, in directional shear flows the situation is more
complicated. Turning of the background wind vector with height
creates a continuous distribution of critical levels in the vertical
where the wave energy is absorbed into the background flow,
which only affect one wave-number in the wave spectrum at a
time (i.e. at each level). This effect is currently not represented in
drag parametrizations. While wave breaking is thought to occur
also in this situation (Broad 1995), it is weaker and distributed
vertically. Since the background flow no longer needs to stagnate
at critical levels, but rather is perpendicular to the affected wave-
numbers, there are also indications that flow overturning may
occur at considerable horizontal distances from the mountain that
generates the waves (Shutts and Gadian 1999). Therefore, the
distribution of critical levels and of wave breaking with height is
very sensitive to the background wind profile.
In flow over a 3D mountain, with or without shear, the vertically
propagating mountain waves weaken aloft because of directional
dispersion associated with the spreading of the wave pattern
around the mountain (if the flow is substantially non-hydrostatic
additional dispersion effects arise). This decay with height, which
does not exist in flow over a 2D mountain, is counteracted by the
decrease of air density with height and other processes, including
critical levels, which cause the wave amplitude to increase. It
is the balance between all these processes that will determine
the occurrence of wave breaking or not. Furthermore, in flow
over 3D mountains, wave breaking is made less likely by flow
splitting around the mountain near the surface. If much of the flow
is diverted along the mountain flanks, the wave field aloft will
weaken and wave breaking may be limited or totally suppressed
(Miranda and James 1992). This is a process that occurs at high
N0H/U and is obviously absent in flow over 2D ridges.
Following previous studies (Shutts and Gadian (1999), Teixeira
et al. (2004)), the wind profile employed here assumes that both
the magnitude and the rate of rotation of the wind vector with
height are constant. Even though it is not particularly realistic,
this idealized wind profile can be considered a prototype of flows
with directional wind shear, enabling us to isolate the effect
of background shear on wave breaking and encapsulate it in a
single dimensionless parameter, the Richardson number, which
furthermore is constant. Teixeira et al. (2004) showed that the
curvature of the velocity profile associated with this type of wind
profile increases the surface drag. This may have implications for
wave breaking, since a larger amount of momentum flux is then
available to be transferred to the other flow components (mean
flow or turbulence).
The present study is motivated by the fact that even if the wave
breaking phenomenology and mechanisms have been fairly well
studied, it is still hard to predict when mountain waves will break
in directional shear flows. Results from linear theory on this
phenomenon are obviously questionable, since wave breaking is
an intrinsically non-linear process. So, 3D numerical simulations
provide almost the only viable method to understand and predict
mountain wave breaking in a systematic way.
In this paper, turbulence generation due to orographic gravity
wave breaking is indirectly studied using such an approach,
focusing particularly on the mechanisms by which CAT
may be triggered by directional wind shear. High-resolution
numerical simulations of idealized flows over a three-dimensional
axisymmetric isolated mountain are carried out using the Weather
Research and Forecasting model (WRF-ARW version 3.6). The
aim is to diagnose the conditions for mountain wave breaking in
terms of the orography elevation and wind profile shear, quantified
by the dimensionless mountain height and the Richardson number
of the background flow, respectively.
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In section 2 details about the simulations, model set-up and
diagnosis of wave breaking within the computational domain are
presented. In section 3, results for wave breaking in directional
shear flows are presented and discussed, and the section closes
with an interpretation of the behaviour of the wave velocity
perturbation observed in the simulations. In section 4 the main
conclusions of this study are summarized.

2. Methodology

2.1. Setup of numerical simulations

WRF (Skamarock et al. 2005) is a mesoscale, non-hydrostatic,
fully-compressible model whose validity in simulating mountain
waves has been tested in previous studies such as Doyle (2004)
and Hahn (2007). The model was initialized using the idealized
cases initialization code and the dynamical core only (with no
parametrizations) was used to run the simulations. The simulated
flow is adiabatic (no heat or moisture fluxes from the surface) and
frictionless (no Planetary Boundary Layer), and rotational effects
due to the Coriolis force are neglected. The initial conditions
were determined using a constant Brunt-Väisälä frequency N0 =

0.01 s−1, a surface potential temperature θ0 = 293 K, a surface
pressure p0 =1000 hPa and a westerly background wind U = 10
ms−1 (the magnitude of the wind velocity vector is the same also
for the directional wind shear simulations, where only the u and
v velocity components change with height). The computational
domain comprises 100 grid-points in both the x and y−directions,
with an isotropic grid spacing ∆x = ∆y = 2 km. The lateral
boundary conditions are open. The lower boundary condition is
imposed by assuming a three-dimensional bell-shaped mountain
with a circular horizontal cross-section, centred in the middle of
the computational domain, defined by:

h(x, y) =
H“

x2

a2 + y2

a2 + 1
”3/2

, (1)

where a is the mountain half-width and H is the maximum
mountain height. In order to simulate a nearly hydrostatic flow the
mountain half-width was kept fixed at 10 km in all the simulations,
which corresponds to N0a/U = 10.
The model grid comprises 200 eta levels (using a terrain-following
hydrostatic-pressure coordinate), with spacing near the ground
of 45 m and spacing at the top of the domain, 20 km above
ground level (a.g.l.), of 450 m. With such a high vertical resolution
the gravity waves generated by the mountain, having a vertical
wavelength of about 6 km, are everywhere very well resolved
(both at lower levels and at the top of the domain where the grid
is coarser). An absorbing sponge layer at the top of the domain
(above 15 km a.g.l.) was used to control wave reflection from the
upper boundary.
The model spin-up time was estimated as 6 hours by evaluating
the time evolution of the surface pressure drag. The drag attains a
steady state (with an approximately constant value) roughly after
that time.
A total of 35 simulations were run. Each simulation is 24-hours
long and the model was set up to produce outputs with an hourly
frequency. The simulations differ in degree of flow non-linearity
and directional wind shear intensity. For each model run the
initial conditions were modified by varying the non-dimensional
mountain height N0H/U , which determines the amplitude of
the orographic gravity waves at the source, and the Richardson
number of the background flow Riin, which determines the
strength of the directional wind shear.
The N0H/U parameter was gradually increased by varying
the mountain height H (keeping N0 and U constant) and the

Richardson number of the incoming flow Riin was decreased
successively by a factor of two. More specifically, the values
considered for these dimensionless parameters are: N0H/U =

0.1, 0.2, 0.5, 0.75, 1 and Riin = ∞, 16, 8, 4, 2, 1, 0.5 .
In general, the gradient Richardson number is defined by:

Ri =
N2„

∂u

∂z

«2

+

„
∂v

∂z

«2
, (2)

where N , u and v are the total Brunt-Väisälä frequency and wind
velocity components (including wave perturbations). Denoting the
background wind by U ≡ (u0, v0, 0) , in the case of flows with
no shear, v0 = 0 and u0 = U , which is constant with height, thus
Riin = ∞. In the case of flows with directional shear, the u0 and
v0 components are calculated at each model level based on Riin,
as follows:

u0 = U cos(βz), v0 = U sin(βz), (3)

where β = N0/(U
√

Riin). βz is the angle that the wind vector
makes with the Eastward direction (i.e. u0 and v0 are expressed in
polar coordinates), and β is the rate of wind turning with height.
By decreasing Riin the rate of turning increases, resulting in a
stronger directional wind shear.

2.2. Calculation of Rimin near the mountain

The Richardson number provides information about the flow
stability, quantifying the ratio between buoyancy forces and
shearing forces. This study relies on the idea that for the
simple atmospheric flows presented in the previous section, wave
propagation and (when the required conditions are satisfied) the
resulting wave breaking are the only reasons for the modulation
of Ri. The critical condition for wave breaking implies vertical
streamlines: in this situation, flow overturning occurs and the
local Richardson number becomes zero and then negative (when
the potential temperature gradient becomes negative). In order to
identify where and when wave breaking occurs in the simulation
domain, the Richardson number of the output flow Riout(x, y, z)

is calculated for each simulation at all grid points. This Ri

corresponds to the quasi-steady mountain wave configuration
achieved after the drag stabilizes. This 3D Ri field is then
analysed looking for minimum values Rimin. When these values
are negative (or lower than than 0.25), turbulence generation by
wave breaking (or by shear instability) is assumed to occur in the
simulation domain – although turbulence itself obviously cannot
be explicitly modelled at 2 km horizontal resolution.
The Rimin values calculated in the Results section below are
those falling within a ‘region of interest’ delimited by upper, lower
and lateral bounds chosen taking into account physical relevance
and resource availability considerations.
The upper limit of this region is simply dictated by the height of
the sponge layer employed in the simulations, which is 15 km.
A few levels just below the sponge have been neglected to avoid
numerical effects due to the proximity of the sponge. The upper
limit is, therefore, z ≈ 14km.
The lower limit is chosen to avoid unrealistic atmosphere-ground
interactions that may develop in frictionless simulations. Such
interactions are neglected by excluding in the analysis of the
Riout field the first levels above the ground that, in reality,
would be located within the Planetary Boundary Layer (PBL).
In order to assess which maximum height the PBL can reach
in the atmospheric conditions considered in the frictionless
simulations, simulations with the same setup but including a PBL
parametrization (YSU-PBL scheme) were run. The maximum
PBL height reached, evaluated at the last hour of simulation (when
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(a)

(b)

Figure 1. Sketch of the computational domain showing the location of the Rimin

values (crosses) for the two simulations with Riin = ∞ (a) and Rimin =8 (b),
according to Tables 1 and 2. The circle represents the mountain. In (b) the arrow
denotes the background wind direction at the level where wave breaking is detected,
and the region within the square represents the ‘region of interest’ defined in section
2.2. Both sketches refer to the N0H/U = 1 simulation only.

the PBL is fully developed), was approximately 1 km. The effect
of the PBL on the Richardson number was clearly recognizable
by the presence of a continuous layer of low Ri which extended
up to the first km of the atmosphere (not shown). A PBL height of
1 km is reasonable considering that the simulated atmosphere is
stable even in the lower levels and no surface heat fluxes exist so
no thermally-driven turbulence can contribute to the PBL growth.
For all the simulations run, with and without wind shear, 1 km is
the lowest height used for determining Rimin. Any process that
occurs below this level would be changed by the presence of the
PBL.
Finally, a square region surrounding the mountain, corresponding
to 50 km to the east, west, north and south from the centre
of the mountain, has been chosen as lateral limit. These lateral
boundaries are applied only for the wind shear simulations. Using
linear theory, Shutts (1998) demonstrated the existence of a so-
called ‘asymptotic wake’ trailing away from the mountain in
directional shear flows. This flow structure is due to the presence
of a component of the wind parallel to the wave phase lines,
which causes the wave energy to be advected indefinitely away
from the mountain. In numerical simulations, this translates into
a wave field that extends out of the computational domain. As
a consequence, wave breaking events can often be detected at the
edge of the domain. Trying to contain the entire wave field into the
simulation domain would require increasing considerably its size
and the associated computational costs. Even so, the robustness
of the results would not be guaranteed because this asymptotic
wake seems to be able to extend indefinitely. Thus, the analysis of
results will focus on the region surrounding the mountain where
the phenomena taking place (including wave breaking) could be,
in realistic conditions with complex orography, clearly attributed
to the presence of the mountain under consideration (and not, for
example, to other nearby mountains).

Table 1. The Rimin values found for the simulation with Riin =∞. I,
J and K are the coordinates of the model grid-points where the minimum
Richardson number values occur (along the x, y and z directions respectively).
The corresponding altitude in meters is also shown. Note that I=50, J=50
corresponds to the middle of the domain (directly over the mountain).

H (m) N0H/U K Altitude (m) J I Ri min

100 0.1 41 2041 49 52 344.80
200 0.2 31 1577 50 53 83.04
500 0.5 24 1357 50 54 10.30
750 0.75 24 1444 50 54 3.50
1000 1 24 1650 50 54 1.40

Table 2. As Table 1 but for the simulation with Riin =8.

H (m) N0H/U K Altitude (m) J I Ri min

100 0.1 97 5358 75 38 4.65
200 0.2 98 5429 75 38 3.00
500 0.5 101 5642 75 36 0.94
750 0.75 106 6014 75 32 0.20
1000 1 111 6391 70 32 -1523.17

3. Results and discussion

Within the “region of interest” defined in the previous section,
Rimin values were determined for the 35 numerical simulations
carried out. Table 1 and Table 2 contain the results obtained for
Riin = ∞ and Riin = 8, respectively. For each simulation the
N0H/U values used in input are specified, and the Rimin position
on the horizontal and vertical grid in the output flow are shown.
These results are presented using tables given the importance
attached to the exact numerical value of Rimin, on which some
interesting considerations can be made. However, a complete
overview of the results obtained in all the simulations will be
provided below using a more comprehensive regime diagram.

3.1. Simulations without wind shear

Analysis of the 3D Riout field for the no-shear case showed, as
expected, that the vertical wave propagation modulates the total
Richardson number of the flow, decreasing its value by increasing
the wind shear and modifying the stability in some regions. All
the minimum values are located directly above the mountain or
slightly downstream, as shown by the sketch in Figure 1(a). This
result is expected: mountain waves transport energy vertically.
When the wave perturbations are in hydrostatic balance, this
energy transport is upward directly above the mountain.
For small-amplitude mountains (H = 100 m, H = 200 m ), while
being perturbed by the wave, the Richardson number values are
very high. For larger mountain heights (H = 500 m, H = 750
m, H = 1 km) the flow becomes more nonlinear and the Ri

values decrease down to a minimum of 1.4 (see Table 1) for
a 1 km mountain. However, for all the simulations performed,
negative values of Ri were not observed, emphasizing that in
the simple case of a constant background wind and stratification
over a circular 3D mountain wave breaking does not occur for
N0H/U ≤ 1. Indeed, linear theory (Smith 1989) does not predict
wave breaking for a circular mountain until N0H/U > 1, and
this is corroborated by the numerical simulations of Miranda
and James (1992), which also indicate that for not much higher
values of N0H/U , the vertically propagating waves weaken due
to flow splitting. Therefore, the present results are consistent
with both previous numerical simulations and linear theory,
although the latter was formulated by Smith using the Boussinesq
approximation, and using linear solutions to study an intrinsically
non-linear phenomenon such as wave breaking is questionable.

As previous studies suggest (Smolarkiewicz and Rotunno 1989;
Miranda and James 1992; Bauer et al. 2000) it is most likely that

c© 2013 Royal Meteorological Society Prepared using qjrms4.cls



Turbulence generation by mountain wave breaking 5

(a)

(b)

Figure 2. Flow structure for two successive model outputs in the no-shear
simulation using a mountain height H = 1.5 km: 20th (a) and 21st (b) hours
of simulation. The solid lines are isentropic surfaces (with a spacing of 1K), the
background contour field denotes the u velocity (in m s−1).

a 3D flow enters a wave-breaking regime for 1 < N0H/U < 2.
Thus, in order to induce wave breaking, additional simulations
using mountain heights of 1.25 km and 1.5 km (i.e. N0H/U =

1.25 and 1.5, respectively) were run. Figure 2 shows vertical
cross sections (passing through the centre of the computational
domain) of the potential temperature (black solid lines) and u

velocity (filled contours) for the 20th (Figure 2(a)) and 21st
(Figure 2(b)) hours of the simulation using a mountain height
H of 1.5 km. In Figure 2(a) the steepness of isentropic surfaces
(which coincide with streamlines) is critical, i.e. the streamlines
are vertical at a height of about 2km, just downstream of
the mountain, and in Figure 2(b) the presence of overturned
streamlines implies local static instability. In this situation, waves
break and subsequently the flow becomes statically stable again.
Any turbulence generation thus tends to be intermittent.
A similar flow configuration is found for the simulation performed
using H =1.25 km, confirming that for N0H/U values larger than
1 wave breaking may be observed in unsheared flow, as originally
found by Miranda and James (1992). This is reassuring about the
numerical setup of the present simulations.

3.2. Wind shear simulations

Adding a directional wind shear to the background flow reduces
the stability of the flow by decreasing the value of Riin by an
amount that, if large enough, can lead alone to generation of
turbulence. Riin < 0.25 would allow spontaneous generation of
turbulence throughout the domain that would mask the turbulence
due to wave breaking. Because of that, and also because such low
values of Riin are very rare in the real atmosphere, the smallest
value of Riin considered is 0.5, which is still above the critical
threshold value of 0.25 for which dynamic instability is expected.

The largest value of Riin, on the other hand, was chosen so that
the corresponding wind shear, even if weak, is still able to affect
the waves appreciably.
When mountain waves are generated, the shear due to the waves
is added to the shear of the background flow and the resulting
Richardson number is lower (although N is also modified). Thus,
in shear flows, mountain wave propagation triggers turbulence
earlier than in no-shear flows (as will be seen in more detail
next). However, due to the nonlinear response of the waves to the
background flow and the effect of critical levels, these processes
are far from being simply additive.
A complete overview of the numerical simulation results is
provided by the regime diagram shown in Figure 3. The model
outputs of the last 7 hours of the simulations were analysed,
looking for Rimin. In those simulations where wave breaking
does not occur (Riout always positive) the hourly values of
Rimin are nearly constant and may vary, between an hour
and the next, by only a few percent. When wave breaking is
observed, in contrast, the Rimin values oscillate in time due to
the intermittency of this process, but remain negative. In Figure 3,
all the Rimin values refer to the last hour of simulation. The four
categories used to build the regime diagram have been chosen in
accordance with the background literature, from which it is known
that the wave-turbulence process may begin with a dynamical
instability, which leads to convective instability and then to
turbulence (Nappo 2012). The four categories are: Rimin < 0

indicating convective instability due to wave breaking events, 0 <

Rimin ≤ 0.25 indicating dynamic instability (potentially an index
of turbulence), 0.25 < Rimin ≤ 1 indicating a flow having kinetic
energy available for turbulent mixing and Rimin > 1 indicating
non-turbulent flow where no wave breaking events occur.
Whilst it is straightforward to assign a meaning to those Rimin

values that are negative or large and positive, it is less obvious how
to interpret the values of Ri that are small but still positive. As is
well known, a Richardson number smaller than 0.25 is a necessary
but not sufficient condition for dynamical instability (Miles 1961).
Hence, the choice of a critical Richardson number for turbulence
generation is controversial, and the effective threshold value of
Ri can be somewhat larger than 0.25. In fact, in atmospheric
flows where the background velocity vector varies with height the
energy condition for the instability threshold is less stringent than
Ri < 0.25 (Hines 1971; Turner 1973). Further, in case of finite
perturbations (as the ones generated by finite amplitude gravity
waves) the available kinetic energy contained in a flow with Ri <

1 is in principle sufficient for turbulence generation (Businger
1969). As mentioned before, in the simulations presented here,
no turbulent mixing is allowed. Therefore, categories 2 and 3 in
the regime diagram have been chosen to highlight the flows that,
potentially, can evolve into turbulence.
It is also worth mentioning that flows in the regime diagram

having Ri < 0.25 can be relevant for the problem of mountain
wave reflection and resonant drag enhancement. Indeed, when
waves propagate from layers with larger Ri to layers with Ri ≤
0.25, in the presence of critical levels, linear theory shows that
the wave solution changes its nature and perfect wave reflection
or over-reflection may occur (Lindzen and Tung 1976). If the
reflected downwards-travelling waves interfere constructively
with the incoming upward-travelling waves, the wave amplitude,
and hence the drag, may be amplified by a large factor (Lin 2007).
Analysing the regime diagram in Figure 3, we can see that
whereas in the no-shear case (Riin = ∞) wave breaking does
not occur (Rimin > 1 always), in the shear flows considered here
wave breaking is always found for a non-dimensional mountain
height N0H/U = 1, no matter what Riin is used. For N0H/U =

0.75 wave breaking is detected when Riin ≤ 4, but a very
small value of Ri lower than 0.25 occurs already for Riin = 8.
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Figure 3. Regime diagram describing the nature of the flow using four categories
based on the Rimin values. Along the lower horizontal axis a logarithmic scale is
used to represent the Riin values, however for readability the original Riin values
are shown on the upper horizontal axis.

For N0H/U = 0.50 wave breaking is present when Riin ≤ 2,
although Rimin is never larger than 1 for any wind shear intensity
considered. It is only when assuming very small mountain heights
(N0H/U = 0.1 and N0H/U = 0.2) that wave breaking is absent.
However, when using a strong background wind shear (low Riin),
the Rimin values obtained are small (lower than 1 or 0.25). This
is, of course, consistent with the fact that Rimin < Rin

The regime diagram therefore shows that either considering
a fixed wind shear intensity of the background flow and
increasing the mountain height or using a fixed N0H/U and
increasing the wind shear intensity makes the flow more likely to
overturn, ultimately leading to wave breaking. By selecting flow
overturning (Rimin < 0) as a discriminating factor, it is possible
to split the regime diagram in two sub-regions representing a non-
wave-breaking flow regime and a wave-breaking regime. Regimes
where the flow behaviour is less clear-cut are accounted for by
the relatively narrow regions with 0 < Rimin < 0.25 or 0.25 <

Rimin < 1.
It should be noticed that if the vertical axis in Figure 3 was
extended up to higher values of N0H/U the wave breaking
regime would continue, including now also the no-shear case
(results not shown), as discussed in the previous section. This
was confirmed in a few examples, but simulations using mountain
heights of 1.25 km and 1.5 km and finite Riin were not carried out
systematically because it is clear beforehand that they would also
produce wave breaking. Even larger mountain heights (N0H/U >

1.5) were not considered because the flow would enter a flow-
splitting regime (Lin 2007) where wave generation aloft would
be strongly attenuated or almost totally suppressed (Miranda and
James 1992).

3.2.1. Non-wave breaking regime

In the absence of wave breaking, mountain waves are almost
perfectly steady and the perturbation pattern associated with their
propagation is stationary in time. Therefore, for those flows falling
into the non-wave breaking regime in Figure 3, Rimin occurs at
the points where the flow gets closest to instability. The stationary
character of the solution enables one to analyse how it varies as
function of the input conditions. Figure 4 shows how the Rimin

values vary as a function of Riin for a same N0H/U value in
the flows with shear. The one-to-one line represents the response
that the flow would have in a perfectly linear regime, where waves

Figure 4. Rimin for flows in the non-wave breaking regime (according to Figure
3) versus Riin for different N0H/U values. On both the horizontal and vertical
axes a base-2 logarithmic scale is used.

are generated by an infinitesimal mountain and their perturbation
on the background flow is itself infinitesimal (Riout = Riin). As
we start to consider finite mountain heights, the simulation results
show that an increase in N0H/U corresponds to a decrease of
Rimin in flows with th same background wind shear (i.e. same
Riin). A base-2 logarithmic scale is used on both the horizontal
and vertical axes to highlight the values of Riin used, and also the
fact that, when N0H/U = 0.1, the variation of Rimin with Riin
suggests the existence of a power law behaviour (more exactly
a linear relationship). However, the N0H/U = 0.1 curve is the
only one that behaves in this way. For higher values of N0H/U ,
the relationship between Rimin and Riin is more complicated
and the small number of data points in the cases NH/U = 0.5

and NH/U = 0.75 does not allow many conclusions to be drawn
about the Rimin-Riin relationship. This small number of points
is due to the fact that, in these cases, the majority of the points
correspond to wave breaking.
A final comment on the non-wave breaking regime concerns

the flow category 2 (represented by triangles) that seems to be
under-represented in the regime diagram of Figure 3. Only two of
the considered background flow conditions (N0H/U = 0.75 with
Riin = 8, and N0H/U = 0.2 with Riin = 0.5) lead the flow to
have a quasi-stationary configuration with 0 < Ri < 0.25. This is
partly explained by the fact that the values of N0H/U and Riin

Figure 5. Variation of the wind direction with height for the simulation with
N0H/U = 1 and Riin = 8. The profile corresponds to the point where the minimum
Richardson number occurs (according to Table 2).
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Turbulence generation by mountain wave breaking 7

have a relatively sparse sampling in the regime diagram. Taking
into account more Riin values in the interval [0.5, 16] would
probably increase the number of points falling into this category.
However, this region in the flow regime is definetely always
narrow. This is consistent with a previous study by Laprise and
Peltier (1989), where it was shown (for a case without shear) that
when the flow transitions from a situation without wave breaking
to a situation with flow overturning, the Richardson number
changes from being positive and larger than 0.5 to (suddenly)
becoming large and negative, without taking (steady) values in
the interval [0, 0.5] (see their Figure 10). Therefore, a steady state
mountain wave field having 0 < Ri < 0.25 may be difficult to
attain, perhaps because of the onset of dynamical instability.

3.2.2. Wave breaking regime

The mechanism leading to wave breaking in shear flows is
fundamentally different from the one acting in the no-shear case
where the amplitude of the mountain is the sole responsible for
the fulfillment of the wave breaking condition. For a no-shear
flow no environmental critical levels exist, but a self-induced
critical level is created where the background flow velocity U
plus the wave velocity perturbation (u′, v′) add up to zero, leading
to vertical streamlines (Clark and Peltier 1984). For directional
shear flows, environmental critical levels are defined as the
heights where the horizontal wave number vector κH ≡ (k, l, 0)

is perpendicular to the background wind vector U ≡ (u0, v0, 0).
When this happens (U · κH = 0), the vertical wave number
m defined (adopting a zeroth-order Wentzel-Kramers-Brillouin

(WKB) approximation) as m =
N0(k

2+l2)1/2

u0k+v0l approaches infinity
and the vertical wavelength λz = 2π/m zero. As a wave packet
approaches a critical level it experiences a fast oscillation (m →
∞) for which the vertical velocity becomes small compared to the
horizontal velocity perturbation (Shutts 1998). In these conditions
the amplitude of the disturbance increases and the waves break.
Figure 5 helps to visualize what happens when a wave packet
approaches a critical level. It shows the reason why the Rimin

found for N0H/U = 1 and Riin = 8 (see Table 2) is so markedly
negative. Although a wave packet comprises a range of wave-
numbers, the most active (and therefore most easily discernible)
critical levels affect the wave-numbers that dominate the wave
energy spectrum. The plot shows the variation of the wind
direction (in degrees) with height. When the wave packet is
approaching the critical level, the wave amplitude increases and
the background flow (solid line) is strongly modified by the wave
perturbation (dashed line). At ∼ 6391 m, the Richardson number
approaches a highly negative value (Rimin = −1523.17) because
the wind shear is made locally zero by the wave perturbation. The
negative sign, on the other hand, is due to flow overturning (i.e.
∂θ/∂z < 0). Clearly, this value is as indicative of static instability
as any other negative value, since only Rimin < 0 matters for that
purpose.
The aim of this work is not only to diagnose wave breaking
occurrence for given background flow conditions, but also to
identify regions within the simulation domain where wave
breaking and potential development of turbulence are expected.
The sketch in Figure 1(b) shows the area where the Rimin values
occur for the simulations with Riin = 8 (based on Table 2); the
arrow is the wind direction at the level where wave breaking
occurs for the 1 km mountain case. Wave breaking is observed
at a height of about 6.4 km where the wind is from the south-east
which implies, from the definition of critical level in directional
shear flows, that the direction of the (dominant) wave-number
vectors at that level is north-east (or south-west). The Rimin

values are found near the edge of the square ‘region of interest’,
due to the presence of the asymptotic wake described in Section

2.
The location and values of Rimin allow us to delimit smaller
regions in the vicinity of the mountain where more detailed
attention should be focused. Rimin by itself is a poor indicator
of what is going on within the whole simulation domain: wave
breaking may be occurring simultaneously in different regions.
Additionally, the temporal and spatial evolution of the flow after
a wave breaking event is of particular interest. Figure 6 shows 3D
plots where all the grid points for which Ri < 0.25 are shown.
The plots pertain to wind shear simulations run using a mountain
height of 1 km for which, according to the regime diagram in
Figure 3, wave breaking always occurs. These plots can be seen as
instantaneous snapshots of the flow structure at the 18th hour of
simulation. The different background wind profiles for each Riin
considered are also shown.
In order to interpret the Ri < 0.25 fields shown in Figure 6 in
more detail, the temporal variability of Ri in a wave breaking
event was analysed. For this purpose, an additional simulation
using Riin = 0.5 and a higher model output rate (i.e. 6 model
outputs per hour instead of 1) was carried out. Figure 7 shows
the Ri time-series in the 6 grid-points adjacent to the one where
Rimin is located at the 18th hour of the simulation, which has grid
coordinates I = 61, J = 45 and K = 61. The time-series begins
at the 7th hour of simulation (the first 6 hours have been excluded
because they correspond to the model spin-up time), and data are
plotted every 10 minutes.
The purpose of Figure 7 is to point out that for each grid-point,
after the first wave breaking event (the first time Ri drops below
0), Ri keeps oscillating between negative and positive values. In
particular, Ri seems to be between 0 and 0.25 both before and after
wave breaking periods. The flow regions enclosed by the shaded
surfaces in the 3D plots of Figure 6 therefore represent locations
where waves are at different stages of their intermittent breaking
process, including waves which are breaking (Ri < 0), about to
break, or have already broken (0 < Ri < 0.25). When mountain
waves break the associated convective instability can lead to
turbulence generation (known as Clear Air Turbulence or CAT),
thus, plots in Figure 6 can been thought of as continuous regions
of (potential) occurrence of mountain wave-induced CAT. The
extent of these regions is variable, increasing with the background
shear intensity. While for simulations using Riin = 16 localized
surfaces are visible occupying a very small portion of the ‘region
of interest’, the flow topology for Riin = 0.5 is much more
complex. This happens because when the shear due to waves is
added to an already strong background wind shear, Ri values
lower than 0.25 occur simultaneously in many vertical levels
and almost everywhere along the horizontal plane. An important
aspect is that, for stronger background shear, Ri < 0.25 regions,
and the Rimin values embedded in them, occur at lower levels.
This means that, the stronger the directional shear is, the faster
(or, more exactly, the lower down) the wave energy is dissipated,
preventing wave breaking at higher levels.
The definition of critical level (U · κH = 0) implies that, in
directional shear flows where the wind turns with height
continuously, all levels are critical levels. Unlike mountain waves
generated by a sinusoidal terrain corrugation, orographic gravity
waves excited by an isolated mountain do not have a single
forcing wave-number, but rather a full spectrum of waves, with
a range of wave-numbers pointing in all directions (Nappo 2012).
When the wind turns with height there will always be a wave-
number vector perpendicular to the wind direction at that level.
However, in a wave breaking event we can assume that only the
most energetic wave-numbers (associated with the largest wave
amplitudes) are able to dominate the behaviour of the entire
wave packet and cause wave breaking. The other less energetic
wave-numbers can still change the background flow but they will
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(a) (b)

(c) (d)

(e) (f)

Figure 6. 3D plots showing every point in the computational domain where Riout < 0.25. The plots refer to the 18th hour of simulations and assume a N0H/U = 1 and
different wind shear intensities: Riin=16 (a), Riin=8 (b), Riin=4 (c), Riin=2 (d), Riin=1 (e), Riin=0.5 (f). The profile of vectors on the left-hand side of each plot
shows the direction of the background wind as a function of height. The helical shape of the wind profile corresponds to a wind that rotates anticlockwise as z increases.
At the ground the wind is always westerly, in accordance with (3).

not contribute as importantly to wave breaking (as shown by
Figure 5). Therefore, perhaps every point where wave breaking is
detected within the computational domain can be seen as a point
where the background wind velocity vector is perpendicular to a
dominant horizontal wave-number vector.
Because of the helical wind profile employed in the simulations,
in weaker shear flows (such as that with Riin = 16) the wind
vector and the (most energetic) horizontal wave-number vectors
attain perpendicularity at higher levels, making wave breaking
take place at high altitudes. In stronger shear flows (such as those
with Riin = 1 or 0.5), the same wind angle occurs at lower levels.
Thus, fulfillment of the condition U · κH = 0 is more probable
for a major part of the wave spectrum in the lower atmosphere.
For example, using Riin = 16 the wind changes from westerly
at the ground to easterly at the bottom of the sponge layer (14
km). Using a stronger wind shear, for example Riin = 1, the

same change in wind direction occurs over the lowest 3 km of
the atmosphere. Since the wave energy is likely to be dissipated
by wave breaking at the lowest critical levels, at higher altitudes
nearly all the wave energy has already been dissipated.

3.3. A possible wave breaking diagnostic

Although there is no easy way to visualize the dominant wave-
number vectors (a spectrum of the mountain waves would have
to be computed), a joint analysis of the flow structure shown in
Figure 6 and the background wind vector profile seems to suggest
the existence of a link between the orientation of the wave-number
vector (k,l) and the horizontal velocity perturbation vector (u′,
v′). In particular, when the background wind vector and the wave-
number vector are perpendicular, the background wind vector and
the velocity perturbation vector also tend to be perpendicular. This
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Figure 7. Time-series of the Richardson number evaluated at six grid-points
adjacent to the one where, according to the Riout field, wave breaking occurs
in the simulation with N0H/U = 1 and Riin = 0.5. For each point the model
coordinates I, J (corresponding to distances along x and y−direction respectively)
are shown. The vertical coordinate is K=61 (z ≈ 3100m) and it is the same for all
the considered points.

occurs both in weak and in strong shear flows.
In Figure 8(a) and 8(c) two horizontal cross-sections of the wind
field for the simulations with Riin = 16 and Riin = 1 at the 18th
hour of simulation are shown. The cross-sections are taken at the
model levels where, according to the analysis carried out in Figure
6, wave breaking (Riout < 0) occurs. The regions where Ri 6
0.25 are shown by using Riout contour lines that are solid when
Riout = 0.25 and dashed when Riout < 0 . The magnitude of the
velocity perturbation vector (u′,v′) is shown by the background
contours. The black vectors are the background wind and the red
thick vectors are the wave velocity perturbation (calculated by
subtracting the background wind from the total flow).

In Figure 8(a) the branch of maximum horizontal velocity
perturbation elongated to the north-west, where the background
wind vector and the velocity perturbation vectors become nearly
perpendicular, coincides partially with the shape of the lowest
surface displayed in Figure 6(a) (corresponding to the Ri contours
in the cross-section). In fact, both surfaces in Figure 6(a) extend
vertically, therefore corresponding to several model levels. The
map in Figure 8(a) (at z ≈ 7 km) shows only some of the points
belonging to the lowest surface. Except for the aforementioned
elongated region, it is clear that elsewhere in the computational
domain the wave velocity perturbation is very small and does
not modify the background flow appreciably (whose vectors then
coincide with those of the total flow). The same behaviour is
observed for the strong wind shear case (Figure 8(c)), where
departing from the middle of the computational domain towards
the north-west, a region where the wave velocity perturbation
becomes large and almost perpendicular to the background wind
is visible. This region coincides with the lowest surface displayed
in Figure 6(e), at a height of about 2 km.
Both in Figure 8(a) and 8(c), other regions where (u0, v0) and
(u′,v′) are almost perpendicular and the wave perturbation is
large can be detected. These regions are located outside the Ri =

0.25 contour, but still within the elongated region in Figure 8(a)
corresponding to the maximum velocity perturbation, and at the
south-east edge of the computational domain in Figure 8(c). Since
in these regions Riout > 0.25, this may mean that while being
able to perturb the background flow, the wave amplitude is not
large enough to induce wave breaking.
The effective angle that the velocity perturbation vectors form
with the background wind vector is shown in Figure 8(b) and
8(d). The dashed contour lines are a selected range of contour
levels with values around 90 degrees. As observed in Figure 8(a)
and 8(c), where the velocity perturbation is large and Ri 6 0.25

the angle between the two vectors tends to be a right angle,
but it can vary between 80 and 130 degrees. Other areas within
the computational domain where the two vectors make an angle
between 80 and 130 degrees can be detected, but in these areas the
wave perturbation is very small, hence it would be questionable to
attach any significance to them.
These preliminary findings, inspired by a simple visual inspection
of the Ri and wind velocity vector fields, contribute to improve
our understanding of the flow structure displayed in Figure 6.
They suggest a link between the orientation of the velocity
perturbation vector and the background wind vector, which is
confirmed by a mathematical argument based on linear theory,
presented next.
For hydrostatic, adiabatic, 3D, frictionless flows without rotation,
the Taylor-Goldstein equation takes the form (Nappo 2012):

d2 bw
dz2

+

»
(k2 + l2)N2

(ku0 + lv0)2
+

ku′′0 + lv′′0
ku0 + lv0

– bw = 0, (4)

where bw is the Fourier transform of the vertical velocity, and the
primes denote differentiation with respect to z.
The Fourier transforms of the horizontal velocity perturbations are
(Nappo 2012):

bu(k, l, z) =
ik

k2 + l2

»
l bw(lu′0 − kv′0)
k(ku0 + lv0)

+
d bw
dz

–
, (5)

bv(k, l, z) =
−il

k2 + l2

»
k bw(lu′0 − kv′0)
l(ku0 + lv0)

− d bw
dz

–
. (6)

Note that the second terms within the brackets in (5)-(6)
correspond to a vector that is parallel to the horizontal wave-
number vector (k, l), whereas the first terms correspond to a vector
that is perpendicular to (k, l). In shear flows, the solution to (4)
may be expressed as:

bw = bw(z = 0)ei
R

m(z)dz . (7)

Substituting (7) into (5)-(6) and adopting a zeroth-order WKB
approximation, (5) and (6) become:

bu(k, l, z) =
ik bw

k2 + l2

"
l(lu′0 − kv′0)
k(ku0 + lv0)

− i
N0(k

2 + l2)1/2

ku0 + lv0

#
, (8)

bv(k, l, z) =
−il bw

k2 + l2

"
k(lu′0 − kv′0)
l(ku0 + lv0)

+ i
N0(k

2 + l2)1/2

ku0 + lv0

#
, (9)

where m = N0(k
2 + l2)1/2/(ku0 + lv0) is the same expression

for m as in the constant wind case, but where u0 and v0

vary with height because of the directional shear. The WKB
approximation assumes that the background flow changes slowly
with z compared to the vertical wavelength of the waves. A slowly
varying medium implies a slowly varying vertical wave-number,
which allows us to approximate m as described above. Contrary
to what one may expect, the WKB approximation is still valid in
flows with a fairly low Richardson number, as shown by Teixeira
et al. (2004), although Teixeira et al. (2004) used a 2nd-order
WKB approximation instead.
At a critical level ku0 + lv0 = 0, which suggests that both the
terms within the brackets in (8)-(9) would diverge to infinity.
However, the helical wind profile described by (3) implies that

u′0 = −U sin(βz)β = −βv0 , v′0 = U cos(βz)β = βu0, (10)

and substituting lu′0 − kv′0 = −β(ku0 + lv0) into the numerators
of the first terms on the right-hand side of (8) and (9), the
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(a) (b)

(c) (d)

Figure 8. Horizontal cross-sections of the wind field for the simulations with Riin = 16 ((a) and (b)), Riin =1 ((c) and (d)) at the 18th hour of simulation. The cross-
sections are taken at an altitude of about 7 km ((a) and (b)) and 2 km ((c) and (d)). On the background, the magnitude of the velocity perturbation vector (u′,v′) is shown.
The thick contour lines denote values of Ri. In (a) and (c) the black vectors are the background wind and the red thick vectors are the velocity perturbation. In (b) and (d)
the dashed contour lines represent the angle between the background wind vector and the velocity perturbation vector.

equations for bu and bv become:

bu(k, l, z) =
−ilβ bw
k2 + l2

+
k bw

k2 + l2
N0(k

2 + l2)1/2

ku0 + lv0
, (11)

bv(k, l, z) =
ikβ bw

k2 + l2
+

l bw
k2 + l2

N0(k
2 + l2)1/2

ku0 + lv0
. (12)

This shows that, at a critical level (ku0 + lv0 = 0) the
second terms are the only ones that diverge, and therefore
are overwhelmingly dominant at critical levels. Under these
conditions, the (bu, bv) vector is parallel to the wave-number vector
(k, l). Although bu and bv are the Fourier transforms of the physical
u′ and v′ perturbation velocities, and thus contribute to u′ and v′

from a range of wave-numbers, their contribution is dominant at
critical levels, where (k, l) · (u0, v0) = 0, because of this divergent
behaviour. Hence the condition that (bu , bv) and (k, l) are parallel at
critical levels can be translated in physical space into a condition
stating that (u′, v′) and (u0, v0) are perpendicular, which explains
what can be observed in Figure 8.
However, as shown in Figure 8(b) and 8(d), the angle between the
two vectors varies in a range from 80 to 130 degrees. A reason
for this behaviour may be that, even if weaker, the other wave-
numbers can still play a role in determining the orientation of the
velocity perturbation vector, especially if the energy of the waves
at the wave-numbers meeting a critical level is not significantly
larger than the energy associated with other wave-numbers.

4. Summary and conclusions

In this paper orographic gravity wave breaking in flows with
directional wind shear has been investigated. A set of numerical
simulations were performed to study wave breaking using
orography and wind profiles with a common idealized form,
but varying terrain elevations and shear intensities, respectively.
The numerical simulation results were summarized in a regime
diagram classifying the flow behaviour, shown in Figure 3. In no-
shear flows, wave breaking was observed only for dimensionless
mountain heights N0H/U > 1, as found by previous authors.
In directional shear flows, for the values of Riin considered here,
wave breaking always occurs when N0H/U = 1. However, for
gradually stronger directional shears (lower Riin) the critical
N0H/U for wave breaking decreases down to 0.5. Therefore,
in presence of directional shear, wave breaking can occur over
lower mountains that in the constant-wind case, a result that is not
wholly unexpected.
When mountain waves break, the associated convective instability
can lead to turbulence generation (which is one of the existing
forms of CAT). In this paper, the flow topology during wave
breaking events was studied in order to identify regions within
the computational domain where potential CAT generation is
expectable. These regions are shown in Figure 6, corresponding
to all the points in the ‘region of interest’ embedded in the
computational domain where the Richardson number of the output
flow Riout is lower than 0.25. As the analysis of the temporal
variability of Ri revealed, they can represent waves at different
stages of their intermittent breaking process, namely: waves which
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are breaking, about to break, or that have already broken. The flow
topology inferred from Figure 6 can be summarized as follows:

• in contrast with no-shear flows where wave breaking occurs
essentially over the mountain, for the helical wind profiles
with directional shear adopted in this study, the flow
overturning regions are more three-dimensional and spread
along the 3 spatial directions;

• increasing the strength of the directional shear (i.e.,
reducing the value of Riin) leads to more numerous
wave breaking events and to wider regions of (potential)
turbulence generation;

• for stronger shear flows, wave breaking occurs at lower
levels, and all the wave energy is dissipated within the
first few kms above the ground because of the fast rate of
turning of the background wind with height. However, this
does not imply that a stronger directional shear produces
less dangerous CAT. Indeed, in real atmospheric conditions
the wind can begin to turn with height at any altitude. By
changing the altitude at which the wind starts to turn, we
can reasonably expect that the region of instability found
near the ground in the simulations presented here will be
translated upwards accordingly. However, in that case an
additional physical parameter is added to the problem: the
height where the wind begins to turn. This is a possible
topic for future research.

The velocity field in a wave breaking event has also been
analysed. By examining the dynamics of the horizontal velocity
perturbations associated with the waves in Fourier space, it
was found that the Fourier transform of the horizontal velocity
perturbation vector and the wave number vector are aligned at
critical levels. When transposed to physical space, this explains
the perpendicularity between the wave velocity perturbation
vector and the background wind vector detected in the flow cross-
sections presented in Figure 8. This finding can have implications
for CAT forecast in directional shear flows. Indeed, looking at
the orientation of the (u′, v′) vector is much easier than detecting
where the most energetic wave components have critical levels,
which entails the calculation of spectra. A criterion for diagnosing
where wave breaking occurs based on the perpendicularity
between the wave velocity perturbation vector (u′, v′) and the
background flow vector (u0, v0) could probably be developed.
However, further tests are necessary to confirm the generality
of this constraint. In particular, the appropriateness of such a
method to predict wave breaking must be tested using wind
profiles different from the one employed here, as the interpretation
presented in Section 3.3 relies crucially on the form of the wind
profile (3).
It is worth mentioning that developing methods to diagnose wave
breaking without relying on the use of the Richardson number is
a major goal for mountain wave CAT forecasting. While in the
idealized simulations presented in this paper wave propagation
is the only reason for the modulation of Ri, in real conditions
Ri is a very noisy variable, influenced by small-scale flow
structures, displaying a large vertical-scale dependence. Even a
flow with Ri > 1 can be turbulent if this parameter is estimated at
sufficiently coarse resolution. In this respect, the regime diagram
of Figure 3 provides a way of predicting wave breaking based
only on large-scale variables using the mountain height and
background wind profile, thus avoiding any dependence on the
the wave field itself.
The results presented in this paper constitute a starting point for
testing the applicability of these (idealized) simulation results
to real flows. Future steps would be to carry out numerical
simulations with more realistic conditions (e.g., including a
boundary layer, non-hydrostatic effects, more complicated types

of wind and stability profiles, etc.). It would also be interesting
to test the predictions and methods developed here in cases with
realistic orography and atmospheric profiles, in order to develop
more specific diagnostics for CAT forecast.
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