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Exponential spectra are found to characterize variability of the Northern

Annular Mode (NAM) for periods less than 36 days. This corresponds to the

observed rounding of the autocorrelation function at lags of a few days. The

characteristic persistence timescales during winter and summer is found to

be ∼5 days for these high frequencies. Beyond periods of 36 days the char-

acteristic decorrelation timescale is ∼20 days during winter and ∼6 days in

summer. We conclude that the NAM cannot be described by autoregressive

models for high frequencies; the spectra are more consistent with low-order

chaos. We also propose that the NAM exhibits regime behaviour, however

the nature of this has yet to be identified.
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1. Introduction

Identification of distinct modes of climate variability and their characterisitic timescales

has been an active area of research. One particular example of this being the Northern

Annular Mode (NAM) and its regional counterpart, the North Atlantic Oscillation (NAO).

Previous studies of the NAO have recognised distinct behaviour over a range of timescales,

prompting some to conclude that no one process can likely account for all variability

[Stephenson et al., 2000; Keeley et al., 2009]. Previous studies link this variability to

preferred states of the tropospheric jet following breaking of upper-level Rossby waves

[Woollings et al., 2008, 2010; Hannachi , 2010], while others link increased persistence times

with the mean-latitude of the storm-tracks [Barnes et al., 2010; Barnes and Hartmann,

2010]; an effect also recognised for the Southern Annular Mode [Hartmann and Lo, 1998].

Gerber and Vallis [2007], using an idealised model, found that the intraseasonal timescale

of extratropical variability was not simply related to boundary layer friction or radiative

timescales. They describe a feedback of the eddy-forcing on the jet which is sensitive

to the longitudinal extent of the former: more pronounced localisation leads to reduced

sensitivity of timescale to imposed friction and heating. In describing the NAM, other

studies have recognised power-law characteristics for the low frequency spectra, providing

evidence for a stochastic description [Feldstein, 2000; Vallis et al., 2004; Gerber and Vallis ,

2005; Franzke and Woollings , 2011].

Hasselmann [1976] provided the standard description of such noise processes in terms

of a random walk (also called an AR1 process). In these processes the reddening of

the spectrum is provided by memory processes which integrate the high-frequency noise.
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These models can be generalised to higher order noise processes, including coloured noise

(e.g., ARMA processes). Clearly such models would provide better fits to the data, as

they have more fitting parameters, but generally lack physical justification. Consequently,

we adopt the AR1 process as the archetypal noise model.

Exponential power-spectra have been identified in a number of idealised nonlinear sys-

tems and are thought to characterise low-dimensional chaos [Sigeti and Horsthemke, 1987;

Sigeti , 1995b; Ohtomo et al., 1995]. It is argued that these characteristics can help to dif-

ferentiate deterministic low-order chaos from stochastic processes, whose power-spectra

display power-law dependence [Sigeti , 1995a]. Brandstater and Swinney [1987] in annu-

lus studies of Taylor-Couette flow, identified exponential spectra with intermittency: the

transition from quasi-periodic to weakly turbulent regimes. Other examples include: non-

periodic beating in heart rhythm studies [Babloyantz and Destexhe, 1988], the dynamics

of flame fronts [Elhamdi et al., 1993] and laboratory studies of plasmas [Pace et al., 2008].

The slope of exponential spectra are thought to be largely independent of dynamics; the

mathematical structure of associated timescales were explored in Frisch and Morf [1981].

Here we present evidence for an exponential form of the 1000 hPa NAM power-spectrum

corresponding to periods of less than 36 days and conclude that this provides support for

intermittent chaos controlling NAM behaviour for periods of several weeks, at least.

The paper briefly sets out describing the NAM timeseries used, before giving details of

the sampling and methods used to construct time-of-year autocorrelations. We then show

results of summer and winter NAM lag-autocorrelation and power-spectra, before finally
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providing a motivating example of the spectral characteristics of low-dimensional chaos,

using the Lorenz-63 system [Lorenz , 1963].

2. Data and Methods

Here we use NAM timeseries data for the period 1958–2001 as compiled for and

outlined in Baldwin and Dunkerton [2001], and extended through to July 2006

(http://www.nwra.com/resumes/baldwin/nam.php). In summary, this comprises the

principal component timeseries of the leading empirical orthogonal function (EOF) of de-

seasonalised zonal mean daily 1000 hPa geopotential height. The EOF is defined between

20◦N–90◦N, on 90-day smoothed timeseries between November-March. NAM anomalies

were calculated by projecting the original deseasonalised timeseries onto the EOF.

A filter m is used to calculate the time-of-year lag-autocorrelation function ρ(τ ; t′),

where t′ is a particular time of year and τ is lag. The idealised filter is constructed

following the convolution of a Gaussian of unit area (g) with a repeating Dirac-delta

function (comb-filter); the latter being defined as,

X(t; t′) ≡
N−1∑

n=0

δ(t− t′ −Dn), 0 < t′ < D (1)

centred on t′, repeated every D = 365 days for N years. The Gaussian (g) is chosen with

a standard deviation σ of 50 days, to achieve an adequate sampling within summer and

winter, while maintaining a distinction between seasons. The filter is defined as,

m(t; t′) =

∫ ∞

−∞
g(u)X(t− u; t′) du

.
= g ∗X (2)
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where, for future expedience, we introduce the convolution operator by way of an asterisk

in the final term. Our measure for the time-of-year autocovariance R(τ ; t′) is found by

correlating the unfiltered and filtered NAM time series, z,

R(τ ; t′) =

∫ ∞

−∞
m(t; t′) z(t) z(t+ τ) dt

.
= mz % z (3)

Here we have defined the autocovariance operator using a star on the right of the equation.

Associated with R is a local measure of the power spectrum for the daily NAM (P ) which

follows from the Wiener-Khintchine Thereom [Wiener , 1930; Khintchine, 1934]. This

thereom states that the autocovariance function of a data series is equal to the inverse

Fourier transform of the series’ power spectrum. In the present context,

P (f ; t′) = F (R(τ ; t′))

= (M ∗ Z)Z∗

= (GXf ∗ Z)Z∗ (4)

where the upper-case parameters are the Fourier transforms of their lower-case equivalents,

and where F represents the Fourier transform. A degree of symmetry is found between the

masking function m and its Fourier transform M , i.e the Fourier transform of g (G) is itself

a Gaussian, while X is associated with a similar sifting function in the frequency domain

(Xf ), with a discrete spacing of 1 year−1. The masking function m and its transform M

are shown in figure 1.

The influence of the masking function on P can be inferred from (1) and (4). In the

limit as D → ∞, GXf → G. This is tantamount to sampling the original data about one
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region centred on t′. The convolution in (4) smooths power across a range of frequencies.

For a red spectrum, power is redistributed from low to high frequencies, resulting in

a broadened spectrum. This engenders a complimentary response in R, which can be

understood from the Fourier Reciprocity Principle:

∆R∆P = 1 (5)

which states that the characteristic timescale (autocorrelation-width) of the autocovari-

ance function, ∆R, is equal to the inverse of the equivalent band-width of the power-

spectrum, ∆P . Consequently, if sampling broadens the peak in P at low frequencies,

there must be a corresponding sharpening in the autocovariance function R at small lag.

This naturally explains results from previous studies showing reduced levels of autocorre-

lation in finite-length data [Trenberth, 1984].

For this study, we retrieve R for the 1000 hPa NAM by fitting a piecewise function to the

power-spectrum, P, before inverting using (4). Firstly, we are guided to fit a Lorentzian

to the low frequency part of P (ω < ωc), as this corresponds to exponential decay at large

lag in R, a characteristic of stochastic variability of an AR1 process, but is also linked

with high dimensional chaos. We then fit an exponential function to high wavenumbers

(ω ≥ ωc) as this characterises the presence of chaos in many low-dimensional systems.

Specifically we do a least squares fit of P to:

Pfit(ω; t
′) =

{
2Aα(α2 + ω2)−1 : ω < ωc

B exp(−βω/2) : ω ≥ ωc
(6)
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Here we identify A and B as the integrated power and α and β as characteristic frequency

scales, for the low and high frequency fits, respectively. The cross-over frequency ωc is

chosen to minimise any discontinuity between the two retrieved fits. The autocovariance

function is calculated from inverting (4), above. This supports our choice of minimising

the misfit of Pfit(ωc), as any significant discontinuity would introduce spurious numerical

features following the inversion of (4). The time-of-year fitted autocorrelation function

ρfit(τ ; t′) is defined as the ratio of the autocovariance function to its value at zero-lag,

ρfit(τ ; t
′) = Rfit(τ ; t

′)/Rfit(0; t
′) (7)

Finally we define a width measure for the two portions of Pfit using equivalent width as

described in Bracewell [1978], namely;

∆Pfit =

∫ ∞

−∞
Pfit(f ; t

′)dτ/Pfit(0; t
′) (8)

where we use values extrapolated over the entire frequency domain for each of the fits.

Using (5), we can then calculate an autocorrelation timescale for low and high frequency

portions of the spectra. We find that the autocorrelation timescales retrieved for low and

high frequencies are (1 − α)−1 and βπ/4, respectively. Uncertainity estimates (standard

deviations) are calculated by varying ωc within the range 5 < ωc < 15 for winter and

20 < ωc < 40 for summer.

3. Results

Figure 2 shows power spectra of the filtered summer and winter NAM time series on

a semi-log scale. The winter period is centred on January 15 while the summer period
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is centred on July 15. The results show little sensitivity to the precise specification of

dates around mid-summer and mid-winter. Both spectra show broadband structure and

enhanced power at low frequencies, with the wintertime NAM spectra exhibiting greater

variance across all frequencies. The summertime spectrum exhibits a linear decrease

in log-power at high frequencies (ω > ωc = 30 × 2π year−1), as shown on the semi-

log scale, and is well described by an exponential whose corresponding autocorrelation

width ∆ρ is (4.66 ± 0.04) days. At frequencies lower than ωc, even though the spectral

shape is Lorenzian, the retrieved timescale is (5.94 ± 0.05) days. The wintertime NAM

spectra exhibits distinct structure at high and low frequencies. Frequencies greater than

ω = 10×2π yr−1, equivalent to a period of 36 days, show a similar exponential relationship

to those in summer, with a decay constant of (4.63 ± 0.04) days. At lower frequencies,

the slope of the spectrum is steeper indicating a time scale of (20.64± 1.32) days.

Also shown in figure 2 are AR1 fits to the summer and winter spectra, computed over all

frequencies. It is seen that although the fit is good over low frequencies during winter and

low-mid frequencies during summer, it is generally poor elsewhere. At high frequencies

the AR1 fit shallows, which is characteristic of power-law spectra, in stark contrast to the

observed spectra and the exponential fits.

The summer and winter observed (ρ) and fitted (ρfit) NAM autocorrelations are shown

in figure 3. The observed ρ for summer and winter shows a rounding off at lags less than

than 2 days, and is consistent with day-to-day persistence, while the steeper slope at longer

lag-times is associated with the breakdown of this persistence due to broadband natural

variability. A noticeable reduction in the slope of the winter autocorrelation function is
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seen beyond 6 days. This is directly linked with the piecewise structure found in the winter

NAM spectra. This has been associated with a “shouldering” feature in previous studies,

most noticeable near 20 days [Ambaum and Hoskins, 2002; Norton, 2003]. A similar

feature is seen during summer at 20 days, although unlike winter, it is accompanied by a

continued rapid decrease in the background.

4. Discussion and Conclusion

Power-law relationships describing the low frequency NAM variability can be found

throughout the literature, though it is not apparent why such a description should be

applicable at high frequencies. Arguments against this are outlined in Sigeti and Hors-

themke [1987]. They reason that time series of deterministic systems can be differentiated

to arbitrary order, unlike time series from stochastic processes. They state that the power-

spectra of stochastic processes can only be described by a finite order power-law of the

type ω−2n (n ∈ I+) and so cannot decay at high frequency as fast as exponentially dis-

tributed spectra. The existence of an exponential relationship describing the summertime

NAM and timescales shorter than ∼36 days during wintertime, suggests characteristics

beyond simple power-law descriptions of underlying stochastic variability. Sigeti [1995b]

show that the slope of an exponential spectrum (in our case ∼ 5 days−1) is proportional

to the sum of the positive Lyapunov exponents (a defining characteristic of chaos), and

thus related to the short term error growth of a dynamical system.

To explore the origins of the exponential characteristics of high-frequency NAM variabil-

ity we examine the autocorrelation and spectral characteristics of the Lorenz-63 system

– the classic example of a simple system exhibiting chaos [Lorenz , 1963]. We define the
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following:

ẋ = σy − σx

ẏ = x(R− z)− y

ż = xy − bz (9)

The values for the parameters are taken from Lorenz [1963], that is: σ = 10.0, R = 28.0

and b = 8/3. The equations were solved using a fourth-order Runga-Kutta scheme for

2000 model time units, sampled once every 0.1 time units.

Figure 4 shows a portion of the x-component time series, together with the autocorrela-

tion function, ρLz and power-spectra, PLz. The time series shows two types of vacillation

behaviour around individual and between two fixed-points in phase-space. The power-

spectrum PLz shows the signature of the former, with a peak occuring around 200-250

cycles. The expression of the latter is shown as enhanced power at low frequency (< 50 cy-

cles). The other conspicuous feature within the spectra is the broadband exponential slope

seen at frequencies > 50 cycles. The autocorrelation function ρLz shows a weak drop in

value < 2 time units, followed by a steep drop in value until 5 time units before, falling off

more slowly at greater lags. The presence of the vacillations around the individual fixed

points shows up as an oscillation in ρLz with a period of 7 time units.

Our analysis demonstrates that the wintertime NAM at low frequencies (1/f > 36 days)

has more power than what would be expected from an extrapolation of the high-frequency

exponential spectrum evident at high frequencies. These characteristics are also evident

in the Lorenz-63 system and are in this case linked with the existence of fixed (saddle)

points and a strange-attractor in phase space. Evidence of such dense points for the NAM

D R A F T June 24, 2011, 2:44pm D R A F T



X - 12 SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA

is debated and it is fair to say that there is currently no consensus on their existence or

absence.

The excess variance at low frequencies can be interpreted as a definition of regimes in

the time domain. In this definition, a regime is simply a longer than expected period

(compared to some homogeneous in frequency null-hypothesis - e.g., a low order chaotic

model) where the NAM persists around some value. This need not correspond to a fixed

point of some lower order chaotic system, and so the “regimes” would not correspond to

fixed patterns in real space or state space (or values, in the case of the NAM).

The presence of exponential spectra for high frequencies suggests that deterministic

chaos dominates the high-frequency (1/f < 36 days) NAM variability. This suggests one

should exercise caution before interpreting the dynamics of the NAM as being stochastic

in origin. Although such concepts can be useful in parameterising the long-range effects of

chaotic variability, they can be misleading in diagnosing mechanisms for short-term and

seasonal predictability.

Acknowledgments. We thank M. Baldwin for providing the NCEP derived NAM data

for this project and also the thoughtful and constructive comments from two anonymous

reviewers.

References

Ambaum, M., and B. Hoskins, The NAO troposphere-stratosphere connection, J. Clim.,

15 (14), 1969–1978, 2002.

D R A F T June 24, 2011, 2:44pm D R A F T



SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA X - 13

Babloyantz, A., and A. Destexhe, Is the normal heart a periodic oscillator, Biological

Cybernetics, 58 (3), 203–211, 1988.

Baldwin, M., and T. Dunkerton, Stratospheric harbingers of anomalous weather regimes,

Science, 294 (5542), 581–584, 2001.

Barnes, E. A., and D. L. Hartmann, Testing a theory for the effect of latitude on the

persistence of eddy-driven jets using CMIP3 simulations, Geophys. Res. Lett., 37, doi:

10.1029/2010GL044144, 2010.

Barnes, E. A., D. L. Hartmann, D. M. W. Frierson, and J. Kidston, Effect of latitude on

the persistence of eddy-driven jets, Geophys. Res. Lett., 37, doi:10.1029/2010GL043199,

2010.

Bracewell, R., The Fourier Transfor and its Applications, McGraw-Hill, 1978.

Brandstater, A., and H. Swinney, Strange attractors in weakly turbulent couette-taylor

flow, Physical Review A, 35 (5), 2207–2220, 1987.

Elhamdi, M., M. Gorman, and K. Robbins, Deterministic chaos in laminar premixed

flames - experimental classification of chaotic dynamics, Combustion Science and Tech-

nology, 94 (1-6), 87–101, 1993.

Feldstein, S., The timescale, power spectra, and climate noise properties of teleconnection

patterns, J. Clim., 13 (24), 4430–4440, 2000.

Franzke, C., and T. Woollings, On the Persistence and Predictability Properties of

North Atlantic Climate Variability, JOURNAL OF CLIMATE, 24 (2), 466–472, doi:

10.1175/2010JCLI3739.1, 2011.

D R A F T June 24, 2011, 2:44pm D R A F T



X - 14 SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA

Frisch, U., and R. Morf, Intermittency in non-linear dynamics and singularities at complex

times, Physical Review A, 23 (5), 2673–2705, 1981.

Gerber, E., and G. Vallis, A Stochastic model for the spatial structure of annular patterns

of variability and the North Atlantic Oscillation, J. Clim., 18 (12), 2102–2118, 2005.

Gerber, E. P., and G. K. Vallis, Eddy-zonal flow interactions and the persistence of the

zonal index, J. Atmos. Sci., 64 (9), 3296–3311, doi:10.1175/JAS4006.1, 2007.

Hannachi, A., On the Origin of Planetary-Scale Extratropical Winter Circulation Regimes,

J. Atmos. Sci., 67 (5), 1382–1401, doi:10.1175/2009JAS3296.1, 2010.

Hartmann, D., and F. Lo, Wave-driven zonal flow vacillation in the Southern Hemisphere,

JOURNAL OF THE ATMOSPHERIC SCIENCES, 55 (8), 1303–1315, 1998.

Hasselmann, K., Stochastic climate models part i. theory, Tellus, 28 (6), 473–485, doi:

10.1111/j.2153-3490.1976.tb00696.x, 1976.

Keeley, S. P. E., R. T. Sutton, and L. C. Shaffrey, Does the North Atlantic Oscillation

show unusual persistence on intraseasonal timescales?, GEOPHYSICAL RESEARCH

LETTERS, 36, doi:10.1029/2009GL040367, 2009.

Khintchine, A., Korrelationtheorie der stationären prozesse, Math. Ann., 109, 604–615,

1934.

Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sci., 20 (2), 130–141, 1963.

Norton, W., Sensitivity of northern hemisphere surface climate to simulation of the strato-

spheric polar vortex, Geophys. Res. Lett., 30 (12), doi:10.1029/2003GL016958, 2003.

Ohtomo, N., K. Tokiwano, Y. Tanaka, A. Sumi, S. Terachi, and H. Konno, Exponential

characteristics of power spectral densities caused by chaotic phenomena, Journal of the

D R A F T June 24, 2011, 2:44pm D R A F T



SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA X - 15

Physical Society of Japan, 64 (4), 1104–1113, 1995.

Pace, D. C., M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, Exponential

frequency spectrum in magnetized plasmas, Physical Review Letters, 101 (8), doi:

10.1103/PhysRevLett.101.085001, 2008.

Sigeti, D., Survival of deterministic dynamics in the presence of noise and the exponential

decay of power spectra at high-frequency, Physical Review E, 52 (3, Part A), 2443–2457,

1995a.

Sigeti, D., Exponential decay of power spectra at high-frequency and positive lyapunov

exponents, Physica D, 82 (1-2), 136–153, 1995b.

Sigeti, D., and W. Horsthemke, High-frequency power spectra for systems subject to noise,

Physical Review A, 35 (5), 2276–2282, 1987.

Stephenson, D., V. Pavan, and R. Bojariu, Is the North Atlantic Oscillation a random

walk?, Int. J. Climatol., 20 (1), 1–18, 2000.

Trenberth, K. E., Some effects of finite-sample size and persistence on meteorological

statistics .1. autocorrelations, Mon. Wea. Rev., 112 (12), 2359–2368, 1984.

Vallis, G., E. Gerber, P. Kushner, and B. Cash, A mechanism and simple dynamical model

of the North Atlantic Oscillation and annular modes, J. Atmos. Sci., 61 (3), 264–280,

2004.

Wiener, N., Generalised harmonic analysis, Acta Math., 55, 117–258, 1930.

Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, A new Rossby wave-breaking

interpretation of the North Atlantic Oscillation, J. Atmos. Sci., 65 (2), 609–626, doi:

10.1175/2007JAS2347.1, 2008.

D R A F T June 24, 2011, 2:44pm D R A F T



X - 16 SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA

Woollings, T., A. Hannachi, B. Hoskins, and A. Turner, A Regime View of the North

Atlantic Oscillation and Its Response to Anthropogenic Forcing, J. Clim., 23 (6), 1291–

1307, doi:10.1175/2009JCLI3087.1, 2010.

D R A F T June 24, 2011, 2:44pm D R A F T



SCOTT M. OSPREY: NAM EXPONENTIAL SPECTRA X - 17

Figure 1. The filter (top) used to sift NCEP NAM time series for the calculation of time-

of-year autocorrelation and its corresponding Fourier transform (bottom). See (2) and text for

details.

Figure 2. Representative NCEP Power spectra for summer (red) and winter (blue). Lorentzian

fits are made at low frequencies (0 < ω < ωc) for both summer (ωc = 30 × 2π yr−1) and winter

(ωc = 10 × 2π yr−1). Exponential fits are made for ω > ωc. Also shown are lorentzian fits

extending over all frequencies, characteristic of AR1 processes (thick lines). For clarity a spectral

smoothing is made using a spectral window of width 1× 2π yr−1.

Figure 3. Representative NCEP autocorrelations for summer (red) and winter (blue). Ob-

served values (dashed) are compared with the retrieved estimates of ρfit (thick) following inversion

of Pfit using (4).

Figure 4. A numerical integration of the Lorenz-63 system showing (from top): timeseries,

power-spectra and autocorrelation function. The time unit scale has been adjusted for comparison

with previous results. Units are otherwise arbitrary.
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