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ABSTRACT

Separation of stratified flow over a two-dimensional hill is inhibited or facilitated by acceleration or
deceleration of the flow just outside the attached boundary layer. In this note, an expression is derived for
this acceleration or deceleration in terms of streamline curvature and stratification. The expression is valid
for linear as well as nonlinear deformation of the flow. For hills of vanishing aspect ratio a linear theory can
be derived and a full regime diagram for separation can be constructed. For hills of finite aspect ratio scaling
relationships can be derived that indicate the presence of a critical aspect ratio, proportional to the strati-
fication, above which separation will occur as well as a second critical aspect ratio above which separation
will always occur irrespective of stratification.

1. Introduction

A key aspect of stratified flow over hills that remains
only partially understood is the separation of the stably
stratified boundary layer. Numerical simulations (e.g.,
Mason 1987), laboratory experiments (e.g., Baines and
Hoinka 1985), and observations (e.g., Holden et al.
2000) of quasi-two-dimensional flow over elongated
hills reveal a range of separation regimes dependent on
the nondimensional parameters Nh/U and h/L (the as-
pect ratio), where N is the buoyancy frequency, h is the
height of the hill, U is the upstream velocity, and L is
the half-width of the hill. For low Nh/U and low h/L no
separation will occur. In the limit of weak stratification
(Nh/U � 1), the boundary layer separates on the lee of
a hill if the aspect ratio is high enough. However in the
limit of strong stratification (Nh/U � 1), downstream
separation is either delayed or completely suppressed
while blocked flow is observed on the windward side.
For large enough Nh/U attached strong downslope
flows are obtained, although postwave separation may
occur. For short hills (high aspect ratio) leeside sepa-
ration occurs.

In classical fluid dynamics, boundary layer separation

occurs when the nearly inviscid flow just outside the
viscous boundary layer undergoes a finite deceleration
through an adverse pressure gradient. This results in a
singularity in the attached boundary layer that can only
be removed if the flow separates (Goldstein 1948; Stew-
artson 1970). While turbulence or diabatic heating will
modify this behavior, the presence, or otherwise, of an
adverse pressure gradient remains a good indicator of
whether separation is liable to occur (e.g., Doyle and
Durran 2002).

There is an analogy between the effects of stratifica-
tion on flow over an orographic obstacle and the �
effect of differential rotation on horizontal flow (Long
1953). In the ocean, the � effect inhibits separation of
eastward flow (analogous to stable stratification) on the
lee of a vertical obstacle, with a separated region ap-
pearing upstream (Merkine 1980; Boyer and Davies
1982; Foster 1985; Page and Johnson 1990; Tansley and
Marshall 2001). Marshall and Tansley (2001) derived an
implicit formula to determine the conditions under
which a deceleration of the flow, and thus separation, is
liable to occur in the ocean. They found that a decel-
eration is related to three distinct processes: the � ef-
fect, changes in streamline curvature, and vortex
stretching. In particular, they found that the � effect
always accelerates western boundary currents, consis-
tent with the inhibition of separation on the eastern
side of obstacles.

The aim of this note is to derive the analogous im-
plicit formula applicable to stratified flow past a hill.
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This will enable us to determine the conditions under
which separation is liable to occur through deceleration
of the boundary layer (suitably generalized to account
for the effects of stratification). We further apply this
formula to linear waves over corrugated orography and
show that we can reproduce the separation properties,
as a function of Nh/U and the aspect ratio h/L of the
hill, observed in laboratory studies.

The note is organized as follows. In section 2, the
separation condition is derived. In section 3, the two
asymptotic regimes of hills of low aspect ratio and hills
of O(1) aspect ratio are analyzed. A brief concluding
discussion is given in section 4.

2. Separation condition

a. Model formulation

The inviscid two-dimensional Euler equations are
used to describe the laminar attached flow over a hill.
This confines our description to the so-called outer re-
gion of the planetary boundary layer (e.g., Belcher and
Wood 1996) where the Reynolds-stress gradients can
be ignored compared to the inertial terms. The outer
region is separated from the surface by an inner region
where the turbulence is close to local equilibrium. To a
good approximation, the thickness of this inner region
can be assumed constant if no separation occurs. The
lower boundary of our domain is the top of the inner
region. The upstream velocity profile in the outer re-
gion is assumed to be in equilibrium and therefore pre-
scribed as an upstream boundary condition. This up-
stream velocity profile may be thought of as the outer
part of the usual log-linear boundary layer profile. In
section 3 this profile is approximated with a constant
velocity to simplify the analysis. Such a constant profile
is also appropriate for typical experimental setups
where a ridge is towed into quiescent fluid.

Now consider two-dimensional, steady flow in the (x,
z) plane. The equations of motion are

u · �u �
px

�
� 0, �1�

u · �w �
pz

�
� g � 0, �2�

� · ��u� � 0, �3�

where u � (u, w) is the fluid velocity, p is pressure, � is
density, and g is the gravitational acceleration. The flow
is assumed to be ideal and adiabatic such that the ther-
modynamic equation can be written as

u · �� � 0, �4�

where

� � T�p0

p �R�Cp

�5�

is the potential temperature for some constant refer-
ence pressure p0; R and Cp are the gas constant and
specific heat capacity at constant pressure.

Cross-differentiating Eqs. (1) and (2) gives a vorticity
equation

� · ��u� � J�1
�

, p� � 0, �6�

where 	 � wx 
 uz is the vorticity and J(a, b) � axbz 

azbx is the Jacobian of a and b.1 Using the equation of
state, the thermodynamic equation and the ideal gas
law, p � �RT, the solenoidal term in the vorticity equa-
tion can be rewritten as

J�1
�

, p� �
J��, p�

��
� 


N2

g�u
u · �p,

with N2 � g�z /� the local buoyancy frequency. In the
above equation, u · �p may be evaluated using the
momentum equations to arrive at the following vortic-
ity equation:

� · ��u� �
N2

gu
u · ��u2 � w2

2
� gz� � 0. �7�

b. The separation condition

The onset or inhibition of separation is related to
presence or otherwise of deceleration of the flow par-
allel to and just outside the viscous boundary layer
(e.g., Landau and Lifschitz 1987). For incompressible
unstratified flows without external body forces this is
equivalent to a condition on the streamwise pressure
gradient, as a result of Bernoulli’s theorem. However,
for the more general stratified case considered here this
equivalence is lost, and one has to consider the actual
deceleration or acceleration of the flow just outside the
inner boundary layer.

Following the approach of Marshall and Tansley
(2001), Eq. (7) is integrated over the area, ABCD,
sketched in Fig. 1. The area is bounded by two stream-
lines, one at the outer edge of the inner boundary layer
that envelopes the orography (AB) and the other some-

1 Note that 	 as defined here is the negative of the y component
of the three-dimensional vorticity, in order to emphasize the anal-
ogy with the �-plane problem.
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where in the outer region (DC), and by two contours
normal to streamlines (AD and BC).

In evaluating the integral natural coordinates (s, n)
are adopted, where s is the unit vector tangent to the
streamlines and n is the unit vector normal to stream-
lines [by convention n points to the left of s; see Dutton
(1995) for further details]. In this natural coordinate
system the velocity is �s, with �2 � u2 � w2, and the
vorticity is given as

� �
�

R

 �n,

where R is the radius of curvature of the streamlines
(with positive values denoting deflection to the left).

After making use of Gauss’ theorem, the integrated
vorticity budget can be written as

��2

2�A

B


 ��2

2�D

C

� 
���2

R
dn�

AD

BC


 ��
ABCD

B*� dA,

�8�

with [ f ]P
Q  fP 
 fQ and

B*� �
N2

gu

�

�s ��2

2
� gz��. �9�

According to Eq. (8) the difference in acceleration be-
tween AB and DC depends on two processes: a stream-
line curvature effect and a buoyancy effect. The former
results from transfer between shear vorticity and cur-
vature vorticity and may be viewed as a kinematic ef-
fect dependent on the geometry of the streamlines. The
term involving B* is proportional to the buoyancy fre-
quency, so is only present in stratified fluids.

For hills higher than, say, 100 m and velocities of the
order of 10 m s
1 the variations in gz dominate the
variations in �2/2 in B*. So in this limit

B*� �
N2

u

�z

�s
� �

N2w

u
. �10�

This is analogous to the advection of planetary vorticity
in the oceanic vorticity budget (Marshall and Tansley
2001). The analogy between steady stratified flow over
a hill and steady horizontal flow with varying Coriolis
parameter was pointed out by Long (1953). Here, the
analog of �, the gradient of the Coriolis parameter, is
N2/u. Indeed, a stationary gravity wave in a uniform
background flow U has total wavenumber K � N/U,
which may be written as (� /U)1/2, the total wavenum-
ber of a stationary Rossby wave on a � plane.

The term involving B* in the separation condition,
Eq. (8), has a straightforward physical interpretation,
illustrated schematically in Fig. 2. Upstream of the hill,
the potential temperature surfaces are inclined upward
in the downstream direction so that the baroclinic pro-
duction term is a source of negative vorticity [according
to Eq. (10) the sign of B*� is the same as that of w,
assuming u � 0]. This source will decelerate the flow
close to the surface relative to the flow aloft. The re-
verse is true when the potential temperature surfaces
are inclined downward.

c. Inclusion of mechanical and buoyancy forcing

For completeness, the vorticity budget in the pres-
ence of a mechanical forcing, F � (F, G), and heating,
H, is

� · ��u� �
N2

gu
u · ��u2 � w2

2
� gz� � 


Hpz

�u�
� Gx


 Fz �
N2u · F

gu
. �11�

The effect of heating in this equation is twofold: first, it
is represented in the changed locations of the steady

FIG. 1. Schematic of the integration area (shaded) used in the
derivation of the vorticity budget in natural coordinates [Eq. (8)].
Curves AB and DC are streamlines; curves BC and AD are per-
pendicular to streamlines. Streamline AB lies just outside the
inner boundary layer.

FIG. 2. Schematic illustrating the role of baroclinic production
of vorticity (	̇) on decelerating the flow on the approach to the hill
and accelerating the flow in the lee of the hill (relative to the flow
aloft).
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streamlines. Second, the term with H in the numerator
compensates for the fact that streamlines and lines of
constant potential temperature are no longer coinci-
dent. The two combine to give the tilt of the potential
temperature surfaces relative to the pressure surfaces.
In general, positive heating will rotate lines of constant
potential temperature compared to the streamlines in a
clockwise fashion that leads to a positive tendency in
the vorticity budget. In the upslope region this then
reduces the deceleration along the boundary layer; in
the downslope region it enhances the acceleration. On
both sides diabatic heating inhibits separation. The ef-
fect of mechanical friction is opposite: it is safe to as-
sume that u · F � 0 in which case the flow is decelerated
everywhere. The consequent facilitation of separation
was, for example, found in numerical experiments of
Doyle and Durran (2002).

3. Asymptotic regimes

a. Hills of small aspect ratio

It is illuminating to consider the linearized version of
the separation formula, Eq. (8), in which the basic-state
velocity U is assumed independent of height. Assume
that the hill has a very low aspect ratio h/L, with h the
maximum height of the hill and L the half-width.
Perturbation velocities (u�, w�) will then be of order
O(h/L) compared to the basic-state velocity U.

The three terms in the separation formula can then
be linearized as follows. First,

��2

2�A

B


 ��2

2�D

C

� U��u��A
B 
 �u��D

C � � O�u�2, w�2�.

Now introduce the field z�(x, z) describing the vertical
departure of the streamlines from their unperturbed
upstream equilibrium position. In the linear approxi-
mation the curvature R of the streamlines is related to
z� as 1/R � z�xx. This then leads to the following linear-
ization for the second term in the separation formula:

���2

R
dn�

AD

BC

� U2��z�xx dz�
AD

BC

� O�u�2, w�2�,

where in the linear approximation, dn � dz and (u�,
w�)/U � O(z�x). Finally,

��
ABCD

B*� dA � ��
ABCD

�N2

g
Uu�x � N2z�x� dx dz

� O�u�2, w�2�.

The ratio of the two contributing terms, using u�/U �
O(z�x) equals U2/gLu, with Lu � u�/u�x � L. A similar
scaling as in Eq. (10) can be used to deduce that this is
generally a small number and the first contribution can
therefore be ignored. With these approximations and
using Green’s integration theorem

��
ABCD

B*� dA � ��
ABCD

N2z�x dx dz

� �
ABCD

N2z� dz

� ��N2z� dz�
AD

BC

,

where it is assumed that N 2 is constant over area
ABCD. Now collecting all terms we arrive at

�u�

U�
A

B


 �u�

U�
D

C

� 
���z�xx �
N2

U2 z��dz �
AD

BC

.

�12�

The limit for an infinitesimally shallow integration do-
main, [(zC 
 zB) � (zD 
 zA) → 0] gives a formula for
the vertical gradient of u�. Assuming all fields are con-
tinuous, we find for this limit,

� 1
U

�u�

�z �
A

B

� �z�xx �
N2

U2 z��
A

B

, �13�

where the fields are to be evaluated on the streamline
on which A and B lie.

Now consider a prescribed corrugated topography
with a single horizontal wavenumber k � �/2L and
amplitude h/2, that is, z�(x, 0) � (h/2) cos(kx)—see Fig.
3. Linear gravity waves on a constant background ve-
locity satisfy

k2 � m2 � �N�U�2

(e.g., Baines 1995). Here, m is the vertical wavenumber,
which is imaginary when k � N/U. For this corrugated
topography Eq. (12) can be rewritten as

�u�

U�A

B


 �u�

U�D

C

� 
��m2z� dz�
AD

BC

, �14�

and Eq. (13) can be rewritten as

� 1
U

�u�

�z �A

B

� �m2z��A
B. �15�
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We need to distinguish the cases where m2 � 0 (eva-
nescent solutions) and where m2 � 0 (wavelike solu-
tions).

1) EVANESCENT SOLUTIONS (m2 � 0)

In this case we choose streamline DC infinitely far
above the hill so that velocity changes along DC vanish
(Fig. 3a). The z� field satisfies

z��x, z� � z��x, 0� exp�
	z�; 	2 � 
m2; 	 
 0.

Substituting in Eq. (14) then gives

�u�

U�A

B

� 	�z��xB, 0� 
 z��xA, 0��.

So as long as the slope of the topography is negative
[z�(xB, 0) � z�(xA, 0)] the flow will decelerate. The
minimum velocity is therefore reached in the trough of
the hills. Substituting the prescribed topography above,
the maximum achievable deceleration between the top
of the hill and the bottom is

�u�

U�A

B

� 
���h

2L�2


 �Nh

U �2�1�2

. �16�

If this deceleration is large, say of O(1), separation will
occur. Because this deceleration is realized on the lee-
side of the hill, this is where the separation will occur.

2) WAVELIKE SOLUTIONS (m2 � 0)

As in this case all fields are periodic functions of x
and z, we can integrate Eq. (15) along a streamline to
find2

�u���z � m2Uz�.

Because both u� and z� are periodic with the same
wavenumbers, u� is a maximum where z� � 0, and vice
versa. So the net acceleration between two points on
the same streamline equidistant from an inflection
point of z� (i.e., where z� � 0) will vanish. In the choice
of integration domain sketched in Fig. 3b, the net ac-
celeration along DC vanishes. The acceleration along
AB therefore is

�u�

U�A

B

� 
��m2z� dz�
AD

BC

� 
hm2�
0

��2m

sin�mz�dz

� 
hm� 
��Nh

U �2


 ��h

2L�2�1�2

. �17�

Again, separation will occur if this deceleration is suf-
ficiently large, of O(1). The deceleration now occurs in
the trough behind the hill. The flow has decelerated
most 3/4 of a wavelength downstream of the peak, so
the separation is most likely to occur there first and
may therefore be thought of as postwave separation.
Because of the periodicity of the hills, this postwave
separation is equivalent to a blocked upstream region
ahead of the hill. Note that the separation immediately
behind the peak of the hill is suppressed because the
flow accelerates over the peak.

Figure 4 is the linear phase diagram showing the
maximum reduction in u�/U as a function of h/L and
Nh/U. The axes are chosen to correspond to the experi-
mentally obtained phase diagram Fig. 5 of Baines
(1995). It is assumed that separation occurs when the
maximum deceleration becomes comparable to the ba-
sic-state velocity. The isoline in the linear phase dia-
gram corresponds therefore to maximum reductions in
u�/U of O(1), above which separation is supposed to
occur. Note that at these lines the linear approximation
breaks down. Similarly, the linear phase diagram is
strictly only valid where h/L � 1, that is, the lower part
of Fig. 4. Notwithstanding these caveats, the linear

2 One of the reviewers pointed out that this relationship can
also be derived from the kinetic relation for linear flow: w� � Uz�x.
Since the flow is nondivergent u� � 
Uz�z, and thus u�z � Uz�zz,
which yields the present result after assuming wavelike perturba-
tions with vertical wavenumber m.

FIG. 3. Integration areas (shaded) used in the linearized Eqs.
(14) and (15) for (a) evanescent solutions and for (b) wavelike
solutions. The boundaries AD and BC are vertical in the linear
limit. Also shown are the phase lines (dashed).
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theory predicts the experimentally obtained phase
boundaries of Fig. 5 remarkably well.

For both the evanescent and wavelike regimes, it
turns out that imbalance between the curvature and the
stratification contributions to the vorticity budget leads
to appreciable decelerations and separation somewhere
at the surface. In general, separation is governed by a
combination of hill aspect ratio h/L and stratification
Nh/U. However, for low Nh/U, leeside separation will
occur when h/L exceeds a critical value. For low h/L
postwave separation will occur when Nh/U exceeds a
critical value.

b. Hills of O(1) aspect ratio

Next consider the case of very strong curvature,
where the slope of the attached streamlines is of order
unity and perturbation velocities are of the same order
of magnitude as the inflow velocity. The geometry of
the streamlines will in general be too complicated to
evaluate Eq. (8). However, assuming that there is only
one length scale for the attached flow, namely the ra-
dius of curvature r of the orographic feature, this may
be used to find scalings for the terms in the separation
formula.

Assume again that in Eq. (8), the term B*� is domi-

nated by N 2w/u. Assuming that in this regime the
slopes will be of order unity, this term scales as N2. As
the radius of curvature is the only length scale for the
attached flow, the geometric area scales as r2. Likewise,
the streamwise change in the term �2/R scales with U2/r
and the integration interval scales with r. As before, if
these two terms are strongly imbalanced, separation
will occur. If the curvature term dominates the stratifi-
cation term, leeside separation will occur. Using the
above scalings this corresponds to

r  U�N � �U�B*�1�2,

which is analogous to the condition found in Marshall
and Tansley (2001).

It is used here that in Eq. (9) the second contribution
to B*� dominates. The ratio of the first to the second
contribution to B*� scales as U2/gr, which for very small
radii of curvature (r � U2/g) can be large. A similar
calculation as above then shows that for such cases lee-
side separation will occur when r � g/N2. But for typical
atmospheric parameters this inequality is always satis-
fied, because r is assumed to be smaller than U2/g. It
must be concluded that for very small curvatures, such
that r � U2/g, separation will always occur, independent
of the stratification.

FIG. 4. Phase diagram for the linear case as a function of parameters h/L and Nh/U. The shaded part of the
diagram corresponds to the evanescent regime, the rest of the diagram to the wavelike regime. The two phase lines
correspond to horizontal velocity changes with a magnitude equal to the basic-state velocity.
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4. Concluding remarks

Separation of stratified flow over a two-dimensional
hill is inhibited or facilitated by acceleration or decel-
eration of the flow just outside the attached boundary
layer. In this note, a vorticity budget in natural coordi-
nates has been derived and used to find an expression,
Eq. (8), for this acceleration or deceleration in terms of
streamline curvature and stratification. This formula is
used to derive a full regime diagram (Fig. 4) in the case
of linear perturbations valid for vanishing hill aspect
ratio. In the case of O(1) hill aspect ratio scaling argu-
ments can be used to evaluate the terms in the formula.
It is found that separation occurs when a critical aspect
ratio is exceeded and for very high aspect ratios sepa-
ration is expected to occur irrespective of the strength
of the stratification. Additionally, diabatic and fric-
tional effects have been considered in the present
framework, indicating that diabatic heating inhibits
separation everywhere whereas friction facilitates sepa-
ration.

Figure 5, reproduced from Baines (1995), summa-
rizes flow regimes as a function of Nh/U and aspect
ratio h/A as found in laboratory experiments by Baines
and Hoinka (1985). It is seen that occurrence of leeside
separation is a function of NA/U, where A is the down-

stream half-width of the hill. This relationship holds
even after a hydraulic transition has occurred. The
present theory can also be applied in this regime. Simi-
lar results are shown in numerical experiments by Bac-
meister and Pierrehumbert (1988), where it is seen that
for high Nh/U a hydraulic transition occurs, but as long
as the hill is wide enough (in their case NA/U � 10) no
leeside separation is observed. In Fig. 5 it is also seen
that the region of postwave separation corresponds to
large NA/U. In the linear theory this regime corre-
sponds to enhanced upstream separation. Indeed it is
experimentally found that postwave separation is usu-
ally associated with a blocked region ahead of the hill,
which may be interpreted as upstream flow separation.

In addition to these experiments, our results are con-
sistent with a wide range of observations. Field obser-
vations by Scorer (1955) describe how leeside eddies at
a hill occur most often when air is well mixed up to
great height. The well-mixed air is an indication of low
stratification, which according to our theory indeed fa-
vors leeside separation. In the same paper, observations
are described where convective stirring at the windward
side of the hill inhibits separation there, again consis-
tent with our theory. Not only is the convective stirring
associated with reduced stratification, it can also be as-
sociated with diabatic heating ahead of the hill, which

FIG. 5. Reproduction of Fig. 5.8 from Baines (1995). Experimentally found separation regimes as a
function of hm/Ad and Nh/U, where h � hm is the maximum height of the hill and Ad is the downstream
half-width of the hill.
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according to our theory also should inhibit windward
separation. It is also established that for stable night-
time conditions air in valleys separates from the air
aloft (e.g., Mason 1987). From our linear theory it fol-
lows that stable stratification inhibits separation imme-
diately behind the peak of the hill, while upstream
separation will be stimulated. The separation of air in a
valley may then be associated with a blocked region
ahead of the downstream hill.

The application of two-dimensional nonviscous
steady theory to real flow over hills has its obvious
limitations, such as the neglect of three-dimensional ef-
fects, turbulence, or Coriolis forces. However, it is
likely that the basic mechanisms for the accelerations
and decelerations are the same in the more realistic
situations, and our results may be applicable to these
more general cases.
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