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ABSTRACT

The influence of orography on the structure of stationary planetary Rossby waves is studied in the context of
a contour dynamics model of the large-scale atmospheric flow. Orography of infinitesimal and finite amplitude
is studied using analytical and numerical techniques. Three different types of orography are considered: idealized
orography in the form of a global wave, idealized orography in the form of a local table mountain, and the
earth’s orography. The study confirms the importance of resonances, both in the infinitesimal orography and in
the finite orography cases. With finite orography the stationary waves organize themselves into a one-dimensional
set of solutions, which due to the resonances, is piecewise connected. It is pointed out that these stationary waves

could be relevant for atmospheric regimes.

1. Introduction

Maps of potential vorticity on isentropic surfaces (is-
entropic potential vorticity maps) show that the poten-
tial vorticity in the stratosphere is generally much larger
than in the troposphere. Moreover, isentropic potential
vorticity in both the troposphere and the stratosphere is
relatively uniform, with the gradients concentrated in a
narrow band at the tropopause. Being the transition be-
tween high and low potential vorticity values, the tro-
popause is therefore a major factor in determining the
structure of the atmospheric potential vorticity field. In
light of the invertibility principle (Hoskins et al. 1985),
which states that for balanced flow the potential vortic-
ity structure determines the structure of all other me-
teorological fields (assuming knowledge of the poten-
tial temperature at the ground), the tropopause is to
play a key role in the dynamics of large-scale atmo-
spheric flow.

In Verkley (1994, hereafter referred to as VE) this
fact was used as the basis of a concise model of the
atmospheric circulation. In this model the dynamics
was assumed to be confined to a single level of constant
potential temperature, which level was assumed to cut
through the tropopause. The potential vorticity on this
level was then taken to be piecewise uniform, with con-
stant high values representing stratospheric air, con-
stant low values representing tropospheric air, and the
discontinuity representing the tropopause. This was
shown to lead to a contour dynamics system, that is, a
system completely formulated in terms of the discon-
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tinuity, by assuming that the dynamics of potential vor-
ticity on an isentropic surface is governed by the equiv-
alent barotropic vorticity equation.' In the present paper
we wish to extend this contour dynamics model by in-
corporating orography. This is accomplished by adding
an orographic term to the equivalent barotropic vortic-
ity and requiring the latter to be piecewise uniform.

The present study fits in a long tradition of research
concerning the influence of orography on the large-
scale atmospheric flow. An early summary of theo-
retical studies is given in Queney (1948) and two sub-
sequent highlights are Charney and Eliassen (1949)
and Bolin (1950). In the latter study it was argued
that the orography is more important in determining
the structure of the stationary planetary waves than
spatial differences in diabatic heating. Many other
studies have followed since, using models of different
degrees of sophistication—ranging from relatively
simple analytical models like Bolin’s to complex gen-
eral circulation models of the atmosphere. A review
of research until 1965 is given by Saltzman (1968).
Examples of quite recent analytical studies are Char-
ney and DeVore (1979) and Pedlosky (1981), who
showed that the presence of orography in combination
with resonance leads to multiple stationary states.
These multiple flow equilibria usually contain a state
that is rather zonal and another that has a pronounced
wavelike character. For this reason these states are
considered as an explanation for the existence of at-
mospheric regimes like blocking.

' In the general literature on two-dimensional fluid mechanics the
equivalent barotropic vorticity is often called the quasigeostrophic
potential vorticity.
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The technique of contour dynamics was originally
devised by Zabusky et al. (1979). Since then it has
found numerous applications in the study of two-di-
mensional flows (for a review see Pullin 1992), espe-
cially in the context of vortex equilibria. In the latter
field the technique provided us, by computational
methods, with new equilibria besides the already
known circular and elliptical vorticity distributions.
These new equilibria comprise, for example, m-fold
symmetric single-vortex states and translating two-vor-
tex states (Deem and Zabusky 1978), corotating two-
vortex states (Saffman and Szeto 1980) and corotating
multiple-vortex states (Dritschel 1985). Polvani and
Dritschel (1993) extend the family of m-fold symmet-
ric single-vortex states and corotating multiple-vortex
states to the geometry of a sphere in a barotropic model.
The technique they use for finding equilibria consists
of an iteration process, where in every iteration step the
contour is modified, such that in a linear approximation
the contour becomes stationary. Using another iteration
process, Verkley (1994) finds m-fold symmetric sin-
gle-vortex equilibria on a sphere in an equivalent baro-
tropic model. He was not able to find multiple-vortex
equilibria.

The application of contour dynamics techniques to
the atmosphere is relatively new and is mainly concen-
trated on time-dependent studies of the stratospheric
polar vortex in order to understand wave breaking phe-
nomena like observed by McIntyre and Palmer (1983).
The studies often contain a simple orographic term,
much the same way as we include it, in order to induce
waves on the polar vortex. Some examples are Polvani
and Plumb (1992), Waugh (1993), Waugh et al.
(1994), and Nakamura and Plumb (1994). In the pres-
ent study we introduce different types of orography,
including the earth’s orography. We concentrate on sta-
tionary solutions of the model. Thus, we find (to our
knowledge for the first time) asymmetric single-vortex
states. It is showed that the basic facts concerning the
influence of orography—including the existence of
multiple stationary states—are reproduced in this con-
tour dynamics model of the atmosphere.

The contour dynamics model and the inclusion of
orography therein, are outlined in section 2. Three dif-
ferent types of orography are studied: idealized global
orography in the form of a single wave, an idealized
local table mountain, and the earth’s orography. First
we review the case of no orography in section 3 to-
gether with linear and nonlinear free Rossby waves,
that is, the m-fold symmetric single-vortex states, in
terms of their energy and enclosed area. Then we
study the influence of infinitesimal orography in sec-
tion 4. This is done by linearizing around a zonal con-
tour and then calculating analytically the linear per-
turbation that makes the perturbed contour stationary
in the presence of vanishingly small orography. The
expressions we obtain have a well-known structure
(see Egger 1978) and show the importance of reso-
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nances, that is, the existence of free stationary Rossby
waves, in determining the dominant structure of the
resulting response. By changing the latitude of the ba-
sic zonal contours one passes through these reso-
nances and there the dominant response changes sign,
becoming infinite at the resonances themselves. In
section 5 we use a numerical technique to construct
stationary contours in the presence of finite-amplitude
orography. Part of the technique consists of construct-
ing families of stationary contours in the presence of
increasing mountain height. We will see that this pro-
cedure effectively maps every zonal contour—which
is stationary without orography—onto a contour that
is stationary with orography. Close to zonal contours
that are resonant the map depends sensitively on the
direction from which the resonance is approached,
generally resulting in a solution diagram in which
there are several branches. In the case of realistic
orography these branches are argued to be interesting
from the perspective of atmospheric regimes. A sum-
mary and an outlook are given in section 6.

2. Orography and contour dynamics

The starting point of our investigations is the equiv-
alent barotropic vorticity equation on a spherical earth
with radius a = 6.371 X 10° m rotating with angular
velocity 2 = 7.292 X 107° s~'. Lengths are expressed
in units of a and time in units of Q~'. The equations
read

Is]
—5‘tl+v-Vq=0, (1a)
g=f+{—Fy + . (1b)

The first equation expresses material conservation of
potential vorticity q. The velocity field v has compo-
nents # and v along the unit vectors i and j, which point
in the direction of increasing longitude \ and latitude
¢ and form a right-handed set of unit vectors together
with k, which points vertically upward. The nondiver-
gent velocity field is given in terms of the streamfunc-

tion ¢ by v = k X V. Equation (1b) is the quasi-

geostrophic approximation of Ertel’s potential vortic-
ity. The first contribution to g is the planetary vorticity.
In units of €2 it equals

f = 2 sing. (2)

The second contribution is the relative vorticity , that
is, the vertical component of the curl of v, which is
given in terms of the streamfunction ¢ by { = V.
The third contribution to the potential vorticity is the
stretching term — Fi and is the quasigeostrophic rep-
resentation of the vortex stretching effect due to the
stratification. The Froude number F in this term is de-
fined as F = Lz?, where L; is the Rossby radius in
units of a. We will take L, = 1/19, which amounts to
a Rossby radius of 637.1 km. This choice is motivated
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in VE. It will lead to realistic velocities at the jet and
on the rest of the sphere. In the same way, vortex
stretching by orography is represented by the last term
in the expression for g,

T=fn, (3)

where 7 is given by n = h/H, with h the height of the
orography and H an appropriate scale height, which we
set to 10 km. From now on we will refer to the quantity
T simply as ‘‘the orography.’” This extra term in the
potential vorticity is often referred to as *‘topographic
forcing,”’ (cf. Waugh 1993). We like to stress though
that the term does not inject energy in the flow. Its role
is equivalent to that of the Coriolis parameter.

It will be convenient to assume that 7 can be written
as a finite series of spherical harmonics Y,,,. This is not
an essential feature, but it will simplify the calculations
on some occasions. So 7 will be written as

N n
T =Too + Z 2 TmnYmn,

n=1 m=-—n
where Y,..(\, ¢) = P"(sing)e™ with P7(x) the as-
sociated Legendre polynomials of order m and degree
n. The spherical harmonics Y,,, are eigenfunctions of
the Laplace operator V? on the sphere with eigenvalue
—n(n + 1) and are normalized such that

1
47r

4

YmnYmn ds 6mm 6’!” > (5)

where the superscript * denotes complex conjugation.
Defining P,"(sin¢) = P, (sing), we must have 7_,,
= 7% as 7 1s a real-valued field.

We now assume that the g field is piecewise uniform.
We will thus assume that ¢ has the constant value g, in
a region R, (around the north pole) and another con-
stant value g, on the rest of the sphere, denoted by R,.
The boundary between R, and R, is assumed to be a
single closed curve B, see Fig. 1. So the potential vor-
ticity g is assumed to be of the form

q(r) = go + gqp(r), (6)
with
91— qo, TER,
= 7
4s(r) {0, reR,. )

Due to g being materially conserved, this idealized dis-
tribution of potential vorticity will remain intact in the
course of time. So at all times the position of the con-
tour B uniquely determines the structure of the potential
vorticity field. In order to calculate how the position of
the contour changes as time proceeds we need to know
the velocity field at the position of the contour. We start
by calculating the streamfunction s from the equation

vzl//—F‘ﬁ:q—f“T:%_f—T‘*'qB- (8)
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FiG. 1. Potential vorticity field as used in our contour dynamics
model. The shaded region is the region R, with high potential vortic-
ity value g,. The unshaded region R, has the lower potential vorticity
value go. Their common boundary B is the contour that determines
the complete potential vorticity field and all quantities derived from
it.

This is a nonhomogeneous linear equation in . The
solution of this equation can be written as

Y=o+ Y+ &, + s, 9)

where ¢, ¥y, ¥, and ¢ respectively refer to the four
source terms on the right-hand side of (8). As the first
three source terms can be written in terms of spherical
harmonics (note that g, is proportional to Yy and fis
proportional to Yy, ), their contributions to the solution
of (8) are straightforward. We have

Yo(r) = — ; (10)
Yp(r) = ;(:; (11)
U(r) = =2 + ?1 M:Z m Yo(r). (12)

These three contributions to the streamfunction are in-
dependent of the contour’s position, the latter contri-
bution being determined by the orography. We will
take go = 0, which results in ¢, = 0. We have this
freedom of choice because of the stretching term in the
definition of g. One can easily add up a constant to the
streamfunction without changing the dynamics, but, ac-
cording to (10), adding a constant to the streamfunc-
tion is equivalent to adding a constant to the potential
vorticity. In the barotropic case this freedom is lost be-
cause the global average of the left-hand side of (8)
vanishes when F = 0.

In Fig. 2 we present three types of orography with
their corresponding ¢, + ., which will be used
throughout this paper to illustrate the theory. These are
a single Y33 wave, a table mountain, and the earth’s
mountains. The Y3; orography is a linear combination
of the single wave P3(sin¢) cos3\ and a constant, such
as to make the height vary between 0 km and 4.2 km.
The table mountain is a flat round mountain with its
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FiG. 2. The three types of orography (left panels) and their corresponding ¥, + ¢, (right panels). (a) Orography, which is a linear combination
of the Yy and the Y3, spherical harmonics. The height varies from 0 km at the lowest points to 4.2 km at the highest points. (b) 721 spectral
representation of a circular table mountain at 30° latitude, 0° longitude with radius 15°. The height is 1.4 km. Due to the finite truncation the
height actually varies between —121 m and 1526 m. (c) T21 spectral representation of the earth’s orography. The height varies from —606

m to 5488 m.

center at 30° lat, 0° long with a radius of 15° and a
height of 1.4 km. Finally, we also used the earth’s orog-
raphy. In the model the table mountain and the earth’s
mountains are represented spectrally with a T21 trian-
gular truncation (i.e., the spherical harmonics Y,,,, used
to describe the mountains satisfy n < 21 and —n < m
< n). Due (o the finite truncation, the actual minimum
and maximum heights have somewhat different values.
In the case of the table mountain the height reaches
from a minimum of —121 m to a maximum of 1526
m. For the earth’s mountains this was —606 m and 5488
m, respectively. Note that if the mountains n are rep-
resented spectrally by a TN truncation, 7 = f 7 is rep-

resented spectrally by a TN + 1 truncation. So in the
case of the Y3; orography, the N in Eq. (4) equals 4 and
in the case of the table mountain and the earth’s orog-
raphy N equals 22. The pictures of the streamfunctions
Y + ¢, are dominated by easterlies, resulting from the
Coriolis effect. Mountains show up as high stream-
function areas in the Northern Hemisphere. This is due
to the vortex stretching effect of the mountains; on the
Northern Hemisphere negative relative vorticity is in-
troduced at the position of the mountains. The anom-
alous velocity fields introduced by these sources are
superposed on the zonal easterlies. This is the effect of
the orography in our model. So under the assumption
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of constant potential vorticity in the tropical area, our
model reproduces the prevailing easterlies in this re-
gion.

To obtain an expression for ¢z we will use the tech-
nique of Green’s functions, which gives rise to the typ-
ical contour dynamics calculations. We will summarize
some of the definitions, which already appeared in VE,
because we will need them for further calculations. The
Green’s function G of the Helmholtz operator V> — F
is defined by the equation

V2G(r;r') — FG(r;r') = 6(r; 1),
and is given by (see VE)
G(r;r’) = ~[4 cosh(mk)] ™' P /20 (— cost"),
(14)
where P%,,,.,. is a Legendre function with order 0 and
complex degree —1/2 + ik as defined in Gradshteyn
and Ryzhik (1965, their formula 8.840). These special
Legendre functions are also known as conical func-
tions. The parameter « is related to Fby F = 1/4 + «2.

The argument —cos#”, where 8" is the angular distance
between the points r and r’, equals

cos@” = sing sing’ + cos¢ cosd’ cos(A — \'). (15)

It can be verified that due to (13) we have

(13)

¢B(r)=LG(r;r’)qB(r’)dS’

= (q —qo)fR G(r;r')ds’. (16)

Now it can be shown (see VE, appendix) that the
Green’s function can be written as a divergence:

G(r;r') = —11; [V”V(r; r') - %] , (A7)

which formula is also valid with the unaccented nabla
operator, because V'? = V2. Here V a scalar function
defined by

V(r;r')=G(r;r’) — H(r;1'), (18)
with
"o _1_ 1 — cos®”
H(r;r )_47r ln(—————2 ) (19)

Substituting (17) into (16) and using the divergence
theorem, we obtain

G —GA | g — g
e — +
Yp(r) = F 4 F

xfsn’-V’V(r;r’)dl’, (20)
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where dl’ is a line element along the boundary B and
n’ is a unit vector locally perpendicular to the boundary
and to k and pointing away from R,. By A, we denote
the area of R,.

The function H is the Green’s function for the in-
version of the barotropic potential vorticity, that is, the
F = 0 case. It satisfies

VzH(r;r')+—1—=6(r;r’). 21)

4r

As for small scales and distances the equivalent baro-
tropic equations reduce to the barotropic ones, H will
equal the singularity in G. This observation allows us
to interpret the function V as the desingularized Green’s
function. This property is advantageous in the numer-
ical implementation of the formulas but from a theo-
retical point of view it is actually not necessary to in-
troduce the function V. All formulas could as well be
written in terms of G, thus complying more with the
general literature on contour dynamics.

The velocity field follows from v = k X Vi, where
in view of (9), we can write

V= Vi, + Vi, + Vi, (22)

The expressions for Vi, and V., can be derived
straightforwardly from (11) and (12). For Vi, we
can write [see (16)]

Vip(r) = (q - CIo)fR VG(r;r’)dS'. (23)

Now, also the gradient of the Green’s function can be
written in terms of a divergence (see VE, appendix):

VG(r;r') =V'-[G(r;r")T(r;r")]. (24)

This formula is valid for any function that is only de-
pendent on the angular distance between r and r’. The
tensor T has a metrical nature and connects the gradient
with respect to the variable r with that to the variable
r’'. On a plane this tensor would be minus the identity
but on the sphere it equals

T(r;r')y= - i:)ss(i i'i + sing’ sin(A — N')i’j

—~cos(A—N)j"j. (25)

Substituting (24) into (23) and using the divergence
theorem, we obtain

Vis(r) = (g1 — go)

X in"(G(r; r)T(r;r'))dl’. (26)

These expressions give the streamfunction and its gra-
dient (and therefore the velocity) in terms of the
boundary B. The last expression allows us to determine
the evolution of B in terms of B itself. Each point of B
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is advected by the velocity field at the corresponding
point and this velocity is determined by the gradient of
the streamfunction, as given by (22).

The contour dynamics system just described has two
conserved quantities, the area A, enclosed by the con-
tour and the total energy E,,

Al = J‘ dS,
R

E = %J‘ [v2 + Fy?]dS.
N

(27)

(28)

(If the orography is zonally symmetric, then, in fact,
also the total angular momentum is a conserved quan-
tity.) In a contour dynamics context the conservation
of patch area A, is the only one that remains of the
infinite series of conserved quantities associated with
the integrals of all possible functions of the potential
vorticity, like, for example, the enstrophy. This can be
best understood if one examines the true nature of this
infinite series of conserved quantities. In fact, they fol-
low from the conservation of all areas A, of the subsets
R, of the sphere, which are defined as

R, = {r € S|q(r) <y}. (29)

The areas of these sets are conserved if the g field is
advected by any nondivergent velocity. Obviously, in
our system the patch area is the only nontrivial area
that is conserved. _

Expressions (27) and (28) can be transformed into
contour integrals. Using (21) we can rewrite the ex-
pression for the area, again using the divergence the-
orem, as

A

—41rf V2H(r; r')dS
Ry

—4r ﬂn-VH(r;r’)dl, (30)
if r' is chosen outside the region R,. A convenient
choice for this point is the south pole. The total energy
E, can also be written as a contour integral. In appendix
A, we show that

E=E, +E, +E, (31)
87 87T T
E = + 2T —
P3P+ B(F+2) F
N o T* 7

mn mn 2

+2”£', E_"F+n(n+ TR

4r{q)T
E,.=(q — q) £ n-V(x + x.)dl - _g};_o_o,
(33)
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_ (¢ — q0)°
E.= 2F
X §B §B (on’ : T(r; r"))V(r; r’)dldl’
4(q)*
+ 2F (34)
where
__f
XEF+2)° (35)
N n T
Xr=2 X = Y. (36)

nn+ DIF+n(n+1)] ™

Brackets (g), as in (33) and (34), denote the global
average (1/4w) f s 8(r)dS of a scalar function g on the
sphere. The area and the energy will be used to classify
the stationary contours that will be considered in the
next sections.

n=1 m=~

3. The case of no orography

In the absence of orography, zonal contours—that
is, contours that coincide with a latitude’ circle—are
stationary. This follows from the rotational symmetry
of the system. Furthermore, linear Rossby wave per-
turbations on these contours have real phase velocities
(see VE), which implies that zonal contours are line-
arly stable. The phase velocity of these waves is equal
to the background velocity plus the Rossby wave ve-
locity. The background velocity is the eastward veloc-
ity at the center of the jet, which is located at the con-
tour. The Rossby wave velocity is westward and is
caused by the self-advection of the wave. At certain
parameter values these two contributions to the phase
velocity can compensate each other, in which case the
waves are stationary. These Rossby waves have the fa-
miliar feature that waves with the smallest wavenum-
bers have the largest Rossby wave velocities. For re-
alistic zonal velocities, only small wavenumber (2, 3,
4) waves have a large enough Rossby wave velocity to
compensate the background velocity. Small-scale per-
turbations, which have a relatively small Rossby wave
velocity, are essentially advected eastward by the back-
ground velocity. More information about zonal con-
tours and other stationary solutions in the absence of
orography can be found in VE. '

In Fig. 3 the energy of zonal contours is plotted
against the area for ¢, — g, = 2.81. For this value of
g, — qo a zonal contour at a latitude of 40° admits a
stationary Rossby wave with wavenumber 4. Otherwise
this choice for ¢, — g is rather arbitrary in the sense
that other values would lead to qualitatively the same
picture. On the other hand, values of g, — g, ~ 3 lead
to realistic peak velocities in the jet (see VE, Fig. 4).
The energy and area in Fig. 3 are evaluated analytically.
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FiG. 3. The energy (in units 0.01) as a function of the area for zonal
contours in the absence of orography. For the jump in potential vor-
ticity we took g, — go = 2.81, which is chosen such that the m = 4
resonance exactly lies at the contour with ¢ = 40°. The calculations
that lead to this plot are given in appendix B. The wavenumbers,
plotted with the large dots, are the waves that are resonant at these
points. The m = 2 wave is resonant on a zonal contour with latitude
62.7°, the m = 3 wave at 51.1°, and m = 4 wave at 40.0°.

This calculation is presented in appendix B. In fact, we
can interpret this plot as a two-dimensional projection
of a part of phase space. That the energy has a mini-
mum as a function of the patch area is due to the fol-
lowing effect: If the patch area is identically zero, the
energy is the total energy in the westward velocity field
produced by the Coriolis parameter. A small patch of
high potential vorticity air around the north pole will
introduce an eastward velocity around its boundary.
This will compensate the westward background veloc-
ity, thus decreasing the total kinetic energy. Increasing
the patch area, the energy will continue decreasing, un-
til the kinetic energy of the eastward velocity field of
the patch becomes higher than the kinetic energy in the
background velocity field. From this point on the en-
ergy will start to increase as a function of area.

The large dots in Fig. 3 represent zonal contours that
support stationary linear Rossby waves of the wave-
number that is plotted with the dots. At these points in
phase space, the (at least) one-dimensional space of
stationary contours, represented by the parabola-like
line in Fig. 3, admits a second direction of stationary
contours consisting of linear waves. In VE it is shown
how these stationary linear perturbations can be ex-
tended numerically into the nonlinear finite-amplitude
-regime. In this way m-fold symmetric solutions with
finite amplitude are obtained, starting from wavenum-
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FiG. 4. A family of threefold symmetric finite-wave solutions, ob-
tained by the method described in VE. The potential vorticity jump
is ¢, — go = 2.81, which is such that the zonal contour at ¢z = 51.1°
supports a stationary m = 3 wave (see Fig. 3). This zonal contour is
the first member in the family.

ber m linear waves. These solutions are called *‘V
states’’ [see Deem and Zabusky (1978), for planar ge-
ometry and Polvani and Dritschel (1993) for spherical
geometry ], though these more generally also include
the rotating m-fold symmetric solutions. An example
of a family of threefold symmetric solutions is given
in Fig. 4. In Fig. 5 the energy and the area of these
finite-amplitude solutions is plotted along with the en-
ergy and area of the zonal contours. We see how the
wave solutions branch off from the zonal branch at the
points where the corresponding linear waves are sta-
tionary. We will call these extra branches the ‘‘wave

+ i v T r
area 2 3

FiG. 5. As in Fig. 3, but now also the energy and area of the finite-
wave solutions, as found by the method described in VE, are plotted.
It is argued in section 4 that this is the phase portrait of stationary
contours for vanishing orography.
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branches.”” Note that the wave branches are themselves
at least two-dimensional in the sense that the phase of
these solutions is arbitrary. Because of the rotational
symmetry, the phase does not influence the energy or
the area. )

As we can see from Fig. 5, the solutions organize
themselves in lines on the energy—area graph. When
we choose a point on any branch we see that there are
at least two directions in phase space in which we find
another stationary solution, namely along the branch in
one or the other direction. These two directions cotre-
spond to a stationary linear perturbation that can be
given a positive or negative amplitude. On the zonal
branch an m = 0 perturbation is always stationary cor-
responding to a meridional shift of the zonal contour.
On the wave branches a wavelike perturbation, with
the same m-fold symmetry as the branch, is stationary.

Note also that the finite wave branches represent so-
lutions that have an energy that is lower than the zonal
solution with the same area. The question arises
whether the zonal solutions are the maximum energy
solutions for a given area. This question is of impor-
tance considering the possible nonlinear stability of
zonal solutions. The general assertion, that zonal con-
tours provide the maximum energy solutions for a
given area does not hold. In fact, it is quite easy to find
a contour for a given area that has a higher energy than
the corresponding zonal contour. But these contours
were arbitrary in the sense that they were not stationary.
On the contrary, every stationary contour that we have
found has a lower energy than the corresponding zonal
contour. So the more specific assertion, that stationary
solutions have energies lower than the energy of the
zonal contour with the same area, might still be true. It
remains to be proven though.

What changes in this picture of the phase space of
stationary contours in the presence of orography is
shown in the following sections.’ We will argue that
there is a very clear correspondence between the phase
spaces in the absence and in the presence of orography.
Furthermore, we will find an important reinterpretation
of the phase space of zonal contours by studying infin-
itesimal orography. This is the case we will consider in
the next section. In a later section we will consider the
finite-orography case.

4. Infinitesimal orography

Qur next goal is to calculate stationary solutions in
the presence of infinitesimal orography. This problem
can be handled analytically. As a starting point let us
again consider zonal contours. As before, they are sta-
tionary if the orography has zero height. A zonal con-
tour, denoted by B, is determined by its meridional
position ¢ and can be parameterized by the longitude
A '

¢

37

= {(\ ¢5)|0 <\ < 27}.
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Now we will consider the orography to be O(¢), with
€ = 0. The corresponding stationary contour will be a
linearly perturbed zonal contour. We will assume that
this perturbed contour can still be parameterized by the
longitude, so we will assume that.in the linear regime
the contour is not a multivalued function of A. Let us
denote this perturbed contour, more or less abstractly,
as B + 6B. So let us write

B + 6B = {(\, ¢z + 66(N))]0 < - (38)

We will demand this contour to be stationary when the
orography has the form

N < 27},

N

T = €(to + Z Z )s (39)

where £,, = O(1) when € — 0. Because we write the
orography in terms of spherical harmonics, it seems a
judicious choice to write the corresponding contour
perturbation é¢ as a Fourier series in A:

54)()\) =€ Z ane™ | (40)

m=—w

Here, a,, = O(1) when € = 0. So our problem can be
stated as follows: calculate a,, such that the contour
(38) is stationary in the presence of orography of the
form (39).

The ‘contour is stationary if the streamfunction is
constant on the contour, because in this case the veloc-
ity perpendicular to the contour vanishes. The stream-
function ¢ is a function of position r and a functional
of the contour B [see (20)]. We will denote these de-
pendencies in the total streamfunction as

Y[B](r).

So if our perturbed contour is stationary, we must have

LN, dp + 66N )N, b5 + 6B(N)) =k,  (41)

where k must be constant as a function of \. It can be
expressed as a series expansion in e:

k=ko+ ek, + €%k, + (42)

Its zero-order term k, equals i, + i + 5 at latitude
¢ where 5 is evaluated for the zonal contour B.
There are three first-order contributions to (41).
First, there is the streamfunction ¢, due to the orog-
raphy (39), which, because we are interested in first-
order terms, can be evaluated at the original zonal con-
tour’s position. Then we have the first-order contribu-
tion to the streamfunction because y; + 5 is evaluated
at the new contour’s position instead of the original
zonal contour’s position. This reflects the change of
(41) due to the positional dependence of the contour’s
position. Finally, we have the streamfunction ¢,, due
to the anomaly potential vorticity dg, which is the dif-
ference in the g-field due to the change 6B of the con-
tour. Because we are interested in first-order effects,
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this contribution can be evaluated at the original zonal
contour’s position. This contribution reflects the
change of (41) due the functional dependence of the
contour’s position. Setting these three first-order terms
equal to the first-order term in the constant in (41), we
have

O(P + Yp
YO\ $5) + % O\ 65)56(0)
+ (N, dp) = ¢k, (43)
For the different terms on the left-hand side of (43),
we have the following expressions:

e YLt P (singg)e™
z/;,()\,qbg)—e( +2 X F+n(n+1) >,

F

n=1 m=—n

(44)

Oy + Yp)
— ep (N, d5)6b(N)

= —~Upbp(\) = —¢ i Usa,e™, (45)

m=-—co

Ya (N, ¢B)=LG((N, ®5);1")bq(x")dS’, (46)

where Uy is the zonal wind velocity at the contour’s
latitude due to the Coriolis parameter and the zonal
potential vorticity patch. In appendix C we will show
that the anomaly contribution (46) equals

Yo\, Pp) = —€ Y, cnane™,

m=—o

(47)

where c,, is the Rossby part of the wave velocity of a
linear wave with wavenumber m (so the total wave
velocity equals Uz + c¢,). Now observing that these
three terms are all proportional to e™, we can use the
linear independence of complex exponentials to obtain

a. = i tmn P? (Sin¢8)
" noim FH+n(n+1) Us+ca

when 1lsm=<N. (48)

For m > N the a,, vanish. The term q, is a function of
k,, which can be chosen such that g, also vanishes. This
freedom expresses the fact that we can shift the basic
zonal contour an amount proportional to ¢ without
changing the wave amplitudes up to first order.
Equation (48) is the central result of this section. It
has the familiar structure observed in formulas express-
ing the linear response of a barotropic model to oro-
graphic forcing. See, for example, Egger (1978, his
formula 2.7). It expresses what amplitudes should be
given to wavelike perturbations of the contour in order
that their contributions to the streamfunction be exactly
compensated by the streamfunction induced by the
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orography. Note that any Fourier component of the
contour perturbation can only be compensated by the
corresponding Fourier component of the orography.
Note also that, when a component of the orography has
a larger total wavenumber #n, it has less influence on
the corresponding stationary wave. This is of course
the well known smoothing effect of the inversion op-
erator, involved in obtaining the streamfunction from
the potential vorticity (Hoskins et al. 1985). The am-
plitude of the wave a,, that meets the condition of sta-
tionarity is inversely proportional to it’s total wave ve-
locity. When the total wave velocity vanishes, the lin-
ear response is infinite. In fact, the wave will then
saturate due to nonlinear effects. This is called a reso-
nance. In Fig. 3 we can see which wave will be resonant
at which position in phase space, the resonances cor-
responding to the large dots in the figure.

As we already mentioned, the mountains act as a
source of negative relative vorticity, due to the vortex
stretching effect. This results in an anticyclonic veloc-
ity field around the mountain. If the contour lies over
the mountain, then at the east of the mountain the an-
ticyclonic velocity will advect high potential vorticity
air from the north to the south. But at the west of the
mountain low potential vorticity air is advected north-
ward (see Fig. 6). Now if the contour is perturbed by

8
8

-180 180

(15 TR .......................... .......................... L0

20 . ; ; ; 90
-180 90 0 90 180

FIG. 6. In this picture the patch of high potential vorticity is shaded.
A mountain at the position of the circle generates a negative vorticity,
which induces a velocity field, as given by the arrows. In case (a)
this velocity tends to advect the contour westward. In case (b) it tends
to advect the contour eastward. Under the right conditions, as ex-
pressed by (48), this extra velocity can compensate for an opposite
total wave velocity to make the wave stationary.
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a wave with a ridge over the mountain (Fig. 6a), these
advecting processes will tend to shift the wave west-
ward. This extra velocity can, under the right circum-
stances [as expressed by (48)], compensate for an
eastward total wave velocity, thus making the wave
stationary. If a trough of the wave is over the mountain
(Fig. 6b), the advection by the anticyclonic velocity
will tend to shift the wave eastward, thus possibly com-
pensating for a westward total wave velocity. This is
the mechanism by which a mountain can make a wave-
like perturbation on the contour stationary. From this
mechanism it also becomes clear why a wave has to
change sign if one passes through a resonance, thus
changing the sign of the total wave velocity Uz + ¢,,.
More informally, one can think of the mountains pro-
ducing Rossby waves on the contour. These will gen-
erally be radiated eastward, but due to the lack of fric-
tion the waves will circle the earth and meet the moun-
tains again from the west with the original amplitude.
Indeed, orography that is symmetric around a given
longitude produces stationary waves that are also sym-
metric relative to this longitude. This can be easily de-
duced from (48). One can anticipate that inclusion of
friction will introduce an eastward shift of the station-
ary waves, because, due to the damping of the Rossby
waves circling the earth, most of the wave action is
expected eastward of the mountains. A proper way of
including forcing and friction into contour dynamics
has not been established though.

In Fig. 7 we see how the response to infinitesimal
orography, which is proportional to the orography from
Fig. 2, changes when we pass from close to one reso-
nance until over the next resonance. This is done by
decreasing the latitude of the basic zonal contour, thus
increasing the area of the patch. In fact, we follow the
parabola-like line in Fig. 3 from close to one dot until
over the next dot. We observe that close to a resonance
the resonant wave dominates the stationary perturba-
tion. In between two resonances we have a mixture of
the two waves, except of course in the Y,; case, where
only the m = 3 wave can be stationary. Passing through
a resonance the wave indeed changes sign.

Now we will address the question of how the phase
portrait in Fig. 3 changes on introducing infinitesimal
orography. From (40) and (48) we see that, if we are
not right on a resonance, the amplitude of the response
will vanish if € = 0. Thus, the phase portrait will not
change at these points on introducing infinitesimal
orography. At the resonant points though, the linear
response will be infinite, irrespective of the magnitude
of €. So a zonal contour at a resonance is not a station-
ary solution when the amplitude of the orography goes
to zero. In fact, the response will have a finite ampli-
tude. Thus, we will arrive at the stationary finite wave
solutions as found by VE, which are indeed stationary
if the amplitude of the orography goes to zero. This
leads us to the following conclusion: in the case of
vanishing orography the phase portrait of stationary
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contours will look like Fig. 5 rather than Fig. 3. Other-
wise formulated: for stationary contours, the limit of
vanishing orography is a singular one.

5. Finite orography

In the previous sections we have discussed the
changes that occur in the phase portrait of stationary
waves when we introduce infinitesimal orography. We
were able to find stationary solutions analytically in the
presence of infinitesimal orography. These solutions
consisted of infinitesimal perturbations of zonal con-
tours. When the orography becomes finite this analyt-
ical treatment does not apply anymore. We can use nu-
merical techniques to find stationary solutions in this
case. In fact, we use the same numerical technique as
described in VE, where it was used to find the finite
amplitude waves mentioned in section 3. We obtain
stationary solutions for the three types of orography
displayed in Fig. 2: A simple Y;;-wave, a round table
mountain, and the earth’s orography.

The numerical procedure for finding stationary so-
lutions in the nonlinear case is based on minimizing the
functional

b

w=1 [ wew) - woas, @9

a
where i1, is the average of the streamfunction over the
contour B and s is a continuous label that parameterizes
the contour. This functional ¥ is positive except when
the streamfunction is constant on the contour, which is
again the condition for stationarity. In the numerical
implementation of the method we represent the contour
by a finite number of points (nodes) connected by
pieces of great circle, a standard representation in con-
tour dynamics. In our experiments the contour was usu-
ally represented by about 100 nodes. The contour in-
tegral in (20), involved in obtaining the streamfunc-
tion, and the one in (49) are replaced by a sum over
the contour nodes. The minimization routine is a quasi-
Newton algorithm from the NAG Fortran Library. Fur-
ther details about the numerical implementation can be
found in VE.

The convergence of the minimization procedure
strongly depends on the quality of the first guess of the
contour. The most successful method of obtaining good
first guesses consisted in constructing families of sta-
tionary contours by linear extrapolation of both moun-
tain height and contours. Suppose the r{"™" are the
nodes, indexed by subscripts i, representing the sta-
tionary contour which we obtained by minimization of
% at a mountain height n"~". The superscripts be-
tween round brackets label the members of a family.
Suppose we also have the r ™ obtained at a mountain
height n ™. Now n"*" is taken as

D =™ 4 (™ — ), (50a)

A first guess of the points for the corresponding sta-
tionary contour is
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180 % %0 180 FiG. 7. An example of stationary solutions in the presence
of infinitesimal orography, proportional to the types of orog-
raphy of Fig. 2. On the abscissa is the longitude. The ordinate
represents the linear latitudinal excursion of the contour. In
— all three cases ¢, — ¢go = 2.81, which makes the m = 2 wave
,\/— resonant at 62.7° lat, the m = 3 wave at 51.1°, and the m = 4
wave at 40°. In case (a) the orography is proportional to the
Ys; wave. The latitudes of the basic zonal contours are 63°,
180 90 % 180 58°, 53°, and 48°. Only the m = 3 wave is excited. The last
two contours have different signs because they are located on
different sides of the m = 3 resonance. In case (b) the orog-
raphy is proportional to the table mountain. The latitudes of
the basic zonal contours are 50°, 46°, 42.5°, and 37.5°. The
\/ first contour is close to the m = 3 resonance so the m = 3
wave is the dominant feature in this picture. The third and
fourth contours are close to the m = 4 resonance, but at dif-
ferent sides of it. The second contour is in between the two
-180 %0 % 1 resonances; the m = 3 wave and the m = 4 wave are almost
equally present in this contour. In case (c) the orography is
proportional to the earth’s orography. The latitudes of the ba-
sic zonal contours are 48°, 45°, 42.5°, and 37.5°. The same

comments as in case (b) apply.

-180 90 90 180
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(n)

aln+! n -
2 =+ (e - "), (50b)
Then starting from this first guess #;""", the minimi-

zation of X is applied, resulting in a new solution

(n+1) N . . .
r; . In this fashion a family of stationary contours
is constructed with ever higher mountains, where the
last member corresponds to the desired (realistic)
mountain height. As can be seen from (50b), we need
two contours as starting points of the family. To this
end we can work with a zonal contour, which is a sta-
tionary solution when the mountains have zero height.
The second member of the family can be obtained by
using this same zonal contour as a first guess for the
minimization routine, which is well enough for small
mountain heights. From these two contours we can start
the construction of the family. Such a family we call a
primary family.

If we construct two primary families that are the
same except that the starting zonal contours are at a
slightly different latitude, we find two final members at
the same orography that are generally a little bit dif-
ferent from each other. These two contours can be used
again as a starting point for an extrapolation scheme to
construct another family but now at a constant moun-
tain height. These families are called secondary fami-
lies. In formulas the construction of a secondary family
looks like

n(mﬂ) = T’(m)’ (51&)

(51b)

alm+1) (m)

(m) (m—1)
f; =Tr; - T ).

+ (r;
Then again starting from this first guess £ the
minimization of ¥ is applied, resulting in a new solu-
tion r{"*". So primary families consist of stationary
contours with increasing mountain height, while sec-
ondary families consist of stationary contours at the
same (generally finite) mountain height.

In Fig. 8 we depict some primary families obtained
with the three types of orography. The height of the
orography increases linearly through the family. The
largest amplitude waves correspond to the highest
orography and are the final members in the primary
families. They are stationary at the mountain heights
mentioned in Fig. 2. The potential vorticity disconti-
nuity equals 2.81 in all three cases. It is noted that the
solutions in Fig. 8a, which are stationary with moun-
tains of the Y;; type, resemble the free solutions as
found in VE (see Fig. 4). Notable differences though
are that the amplitudes as well as the phases of the
waves are not free parameters anymore. They are de-
termined by the mountain’s height and position.

In Fig. 9 some examples of secondary families are
shown. The contours in one family are all stationary
contours for the mountain heights in Fig. 2. Resonance
features also play a role in the case of finite orography
because some contours show little meridional structure
while others have a strong dominant wave amplitude.
On the other hand, resonance is only defined in the
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FiG. 8. Examples of primary families for orography, proportional
to the three types of orography of Fig. 2. The constant by which the
mountain height is multiplied varies in these families from 0 to 1. In
all three cases ¢, — qo = 2.81.

vanishing-orography case. One might say that reso-
nance leaves a strong fingerprint in the nonlinear case.
How this fingerprint looks like will become clear later
in this section when we plot the energy—area graph of
these stationary solutions.

In the construction of primary and secondary fami-
lies a remarkable fact showed up: We found that the
final members of primary families always coincide with
some member of some secondary family. It also turned
out that members of secondary families are always final
members of some primary family. Moreover, we found
that if we decreased the step size in the construction of
the primary families—that is, if we let the height in-
crease more slowly —the endpoint of the primary fam-
ily, thus obtained, converged to a well-defined solution.
This led us to conclude that the construction of primary
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FiG. 9. Examples of secondary families of stationary contours for
the three types of orography in Fig. 2. The heights of the mountains
are constant in these families and equal to those in Fig. 2. In family
(a) the area varied from 1.66 to 3.33, in family (b) from 1.99 to 2.59,
in family (c) from 1.55 to 1.73.

families is a well-defined map of the zonal contours
onto the stationary solutions with finite orography.
This map is defined for any kind of orography and it
maps a zonal contour onto a contour that is stationary
at the given orography. The map is defined in theory
for all zonal contours except for the resonant ones. In
fact, not only at the resonances but already close to the
resonances the map was difficult to find due to slow
numerical convergence. In the same terminology we
can call the treatment in the previous section the lin-
earization of this map. This linearized map is defined
explicitly by Eq. (48). Note that this linearized map is
also not defined on resonances.

In Fig. 10 we plot the energy and the area of the
solutions we found by our numerical technique for the
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three types of orography as displayed in Fig. 2. Because
in the construction of a primary family one has to per-
form several minimizations to obtain the final member,
while in the construction of secondary families only
one minimization is needed to find this final member,
the construction of secondary families is by far the most
efficient way to obtain stationary solutions with a given
finite orography. Therefore, most of the solutions in
Fig. 10 are obtained as members of secondary families.
Note that the energy—area graphs are divided into dis-
connected branches, every branch consisting of one
secondary family. Let us describe how the graphs in
Fig. 10 arise as images of Fig. 3 under the map defined
above. If we increase the patch area of the zonal con-
tour, we will generally find an increase of the area of
its image under the map. The energy of the image will
change accordingly. This correspondence explains the
general parabola-like structure, which can be recog-
nized in Fig. 10 as well as in Fig. 3. This correspon-
dence though fails to hold if the zonal contour, by in-
creasing it’s area, comes close to a resonance. In this
case, the image under the map will have a large wave
amplitude, which refiects the resonance in the nonlinear
case. But this large wave amplitude effectively de-
creases the area. This area decrease is seen as a cusp
in the phase portrait. The extra branch one then finds
we call the first blocking branch because it consists of
stationary solutions with a strong wavelike character.
When, on the other hand, we bring a zonal contour
close to a resonance by decreasing its area, the image
under the map again has a strong wavelike character,
thus giving an even stronger decrease in the area. This
branch of wavelike solutions we call the second block-
ing branch. The parts of the phase portrait that are not
part of the first or second blocking branch we call the
zonal branch. The solutions on the zonal branch have
relatively low wave amplitude. An enlarged view of
these branches around area 1.0 in Fig. 10c can be seen
in Fig. 11. This structure is the generic fingerprint that
resonance leaves in the nonlinear case. Note further-
more that the two blocking branches must converge to
each other in the case of decreasing orography, until at
vanishing orography they coincide as in Fig. 5.

As we can see in Fig. 10 and Fig. 11, the blocking
branches have a finite length. At the contours at the end
of the branches, which have a strong wavelike char-
acter, the construction of secondary families stops. This
phenomenon is also present in the wave branches of
Fig. 5. In VE it is speculated that this is the point where
a topological transition from a single vorticity patch to
multiple patches will start but that this transition cannot
be reached because of limited resolution or that our
method is simply not able to reach these transitions. On
the other hand, the endpoints of the branches seem to
be quite far from such a transition, and increasing the
resolution did not bring us much further toward the
topological transition. What precisely happens at these
points remains a question of interest. The finiteness of
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the branches has a definite effect on the structure of the
energy—area graphs of Fig. 10. The branches can be so
short that the generic picture of a resonance, as shown
in Fig. 11, sometimes degenerates: the first blocking

branch might be absent (as in the resonance around

area 0.5 in Fig. 10c) or the zonal branch in between
the second and first blocking branches is absent (as in
the resonance-fragment around area 2 in Fig. 10c).
Because the first and second blocking branches are
images, under the aforementioned map, of zonal con-
tours that lie at different sides of one resonance, the
corresponding wavelike solutions will be out of phase,
as for the linearized map (see Fig. 7). To demonstrate

L S | R TR TRy D P R e R R R
w

area

FiG. 10. The energy (in units 0.01) plotted against the area
of all the solutions found by constructing endpoints of primary
families or members of secondary families, for the three types
of orography in Fig. 2. Panel (a) corresponds to the Y3, wave,
panel (b) to the table mountain, and panel (c) to the earth’s
orography.

these features we present in Fig. 12 the stationary so-
lutions in the presence of the earth’s orography for an
area of 0.85. If we look at the phase portrait in Fig.
10c, or it’s enlarged version in Fig. 11, we see that for
this area there are three solutions that lie on the three
different branches. Indeed, the two blocking-branch so-
lutions are out of phase and have a large wave ampli-
tude, contrary to the zonal-branch solution. Note fur-
thermore that, though the stnicture of the three solu-
tions is completely different, their areas are identical
and their energies differ by only a small amouint. Here
we have in a sense the unforced and undamped analog
of the multiple steady-state solutions due to the orog-
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FiG. 11. Enlarged view of the part of Fig. 10c around area 1.0.
This picture is the generic structure of the fingerprint that resonance
leaves in the nonlinear case. It shows the three branches close to a
resonance. The large dots in the figure represent solutions with an
area of 0.85. They are depicted in Fig. 12.

raphy. In the forced and damped case this was first
observed in a study of Charney and DeVore (1979).
These results have been reproduced since then by a
number of authors, but always in the context of models
with relatively few degrees of freedom and simple
orography. Here we observe an analogous behavior in
a contour dynamics model, which has substantially
more degrees of freedom, and realistic orography. Iden-
tifying regimes with stationary solutions of a model,
we are able to find a number of qualitatively very dis-
tinct regimes that are very close to each other in terms
of their energy and area.

6. Summary and outlook

In this article we investigated the effect of mountains
in a contour dynamics model of large-scale atmo-
spheric flow. This seems to be both a natural and nec-
essary extension of the ‘‘free”” dynamics, as presented
in VE. The research was centered upon finding station-
ary solutions. The mountains, as well as the Coriolis
effect, are described by an effective additional stream-
function. The flow induced by this additional stream-
function is dominated by easterlies, resulting from the
Coriolis effect, disturbed by relative highs, resulting
from the orography (Fig. 2).

First, the linear case was considered. Here the
mountain heights are taken to be infinitesimal, as well
as the contour’s latitudinal excursion. It followed that
for every orography a stationary contour could be
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found except when the induced wavelike contour dis-
turbance had a zero total wave velocity. The latter
situation is called a resonance. In all other cases every
Fourier component of the orography induced a cor-
responding Fourier component in the contour’s per-
turbation (Fig. 7).

Actually, the limit for vanishing mountain heights is
a singular one. The picture of the zonal contours as the
stationary solutions to the model without orography is
not robust in the sense that any infinitesimal orographic
forcing will blow up the resonant contours up to a fi-
nite-amplitude wave. These finite-amplitude waves are
the free modes as found in VE. In an energy—area
graph, where the energy is plotted as a function of the
patch area, this singular limit can be seen as an exira
branch that springs from the branch of zonal contours
at the points of resonance (Fig. 5).

When the orography is made finite, this extra branch
splits into two branches representing wavelike contours
that are out of phase. The phases of the branches are
determined by the mountain’s position. These branches
are called the blocking branches because they exhibit
a strong wavelike character with large meridional ex-
cursions of the contour. These contours were found by
an iterative process where we minimized a functional
that measures the distance from stationarity. By extrap-
olation of different solutions with a finite mountain
height, we gained a quite complete picture of the pos-
sible stationary solutions of the problem with orogra-
phy. They form a one-dimensional set, which is piece-
wise connected. Resonances leave a strong fingerprint
in the nonlinear case. Close to such a resonance we
generally find three solutions that have the same area
but a slightly different energy, analogous to the mul-
tiple steady-state solutions with orography, found by
other authors.

The search of stationary solutions is inspired by the
fact that they might be identified with regimes. Our
contour dynamics model of the large-scale atmospheric
flow is capable of reproducing stationary solutions that
are realistic, both concerning their amplitudes and their
phases. Blocked as well as zonal solutions are obtained.
The solutions are organized in one-dimensional piece-
wise connected sets, which might serve as a catalog of
regimes.

The question of stability of the solutions is still an
open one and is currently under investigation. Prelim-
inary time integrations show that the stationary solu-
tions retain their structure for at least 10-20 days. To
prove nonlinear or formal stability analytically, usually
Lyapunov functionals are introduced involving com-
binations of energy, Casimirs, and other conserved
quantities. As non-zonally symmetric orography
breaks the rotational symmetry of the system, angular
momentum is not a conserved quantity anymore. This
broken symmetry will probably make the system even
less tractable to analytical proofs of stability. The prob-
lem of introducing forcing and friction in contour dy-
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FiG. 12. Three stationary solutions in the presence of the earth’s orography. Shaded are the
vorticity patches. The streamlines are also drawn. The boundary of the patches coincide with a
streamline, which means that they are stationary solutions. All three solutions have an area of
0.85 (see Fig. 11). Contour (a) is on the zonal branch, (b) on the first blocking branch, and (c) on
the second blocking branch.
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namics, which is essentially nonviscous, poses another
challenge. Once this problem has been solved, we can
investigate the robustness of the solutions under forcing
and friction.
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APPENDIX A
Energy of the Patch in Terms of a Contour Integral

Using the definition of the streamfunction, we can
rewrite (28) as

E, =% f [Vi(r)- Vi(r) + Fip(r)’1dS. (A1)

Applying the divergence theorem we can write this as

E, —%fsw(r)(VZ—F)«/f(r)ds

_%J‘S(,,(r)(q- f-T)D)dS, (A2)

where (8) is used. Using the Green’s function G, we
can rewrite ¢ in terms of the potential vorticity, by
inverting equation (8):

1 '
E,=—5fsfs(q—-f—r)(r)e(r;r)

X (q - f_ T)(l")deS' = Eb + Eb,c + EC,

where

(A3)

E, = —%LL(f+ M(E)G(r; 1)

X (f+ 7)(r')dSdS’', (A4)

=f fq(r)G(r;r')(f+ T)(r')dSdsS’, (AS)
s¥s

1 . ’ ’ ’
E =- 3 fs J;q(r)G(r, r')q(r’)dSds’. (A6)

The term E, as given by (A4) is the energy in the
background field as produced by the earth’s rotation
and the orography. It is independent of the ¢ field. Its
value can be obtained quite easily if one interprets the
integration over r’ as the inversion of the Helmholtz
operator (V> — F). As both fand T are given in spher-
ical harmonics, which are eigenfunctions of the Helm-
holtz operator, this inversion is straightforward. See
formulas (11) and (12). Using the orthogonality rela-
tion (5) for spherical harmonics, the integration over
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r also becomes straightforward. The result is given
in (32).

The second term ( AS) represents the energy follow-
ing from the interaction of the g field with the back-
ground field. The integration over r’ can again be in-
terpreted as the inversion of the Helmholtz operator.
Performing this inversion we can rewrite (A5) as

E, = —fs q(®) (Y + Y)(r)dS = (g1 = qo)

4m(q)T o0

r o (AD

X §Bn-V(xf+ x-)(r)ydl —

where the divergence theorem is used again and xand
X~ are such that

T o0

d V2, =
an X F

VX = =4 — .. (A8)
The fields —¢; and 74 /F — . are given in spherical
harmonics and their global average vanishes. So the
inversion of the Laplace operator in (A8) becomes
straightforward and unique. The results of this inver-
sion are in (35) and (36).

The third term (A6) represents the self-energy of the
g field, which would be the only contribution to the
energy in the absence of planetary vorticity or orog-
raphy. Using (17) without the accent on the nabla op-
erator we can write

Ec=—%¢ij‘sq(r)

X [VZV(H‘; r') — Zl;]q(r’)deS’. (A9)

Then we apply (24), which is also valid for V, because
this is also a function of the angular distance between
randr’:

1
E =- ﬁiiqm[v-(v’ (V(r e)T(r; e))N]

X q(r')dsds’ + ETVZ_ <f q(r)dS) . (Al0)

Finally, we use the divergence theorem to obtain

Ec=—(—27q—°)2§ § (mn’ : T(r; ')

4n(q)’
X V(r;r')dldl' + ——. (All
(r;r’) F (All)
For this derivation the remark under formula (21) also
applies: the formulas could evenly well be rewritten in
terms of G instead of V, using (13) instead of (17).
Thus, we arrive at an equivalent formulation in terms
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of G instead of V, which we state for the sake of com-
pleteness:

— g‘il___ q0)2 ’. ’
E =— oF ﬂi(nu :T(r,r’))

X G(r, r')dldl' + (A12)

4m(q°)

2F
Note that, apart from the use of V or G, the only dif-
ference between (All) and (A12) is the relative po-
sition of the square to the averaging brackets. In the
actual numerical implementation of these formulas, we
used (A11), which is more appropriate because here
one does not integrate over a singularity. In analytical
calculations equation (A12) is usually more appropri-
ate (cf. appendix B).

APPENDIX B
Energy of a Zonal Patch without Orography

When the potential vorticity patch is zonal, the cal-
culation of the energy can be done explicitly. We will
do this calculation in the absence of orography in order
to obtain the graph in Fig. 3. The abscissa of this graph
is the area A, of the zonal patch. It can be obtained
easily and equals

A, = 2x(1 — singp),

where ¢; is the latitude of the boundary B.
The energy E, contains three contributions as in
(31). The first contribution to (31) is (32). Its evalu-

ation in the absence of orography is easy:

__ 8T
T3(F+2)°

In the second contribution (33) again the terms with
orography vanish. The resulting contour integral can
be performed easily for a zonal contour. Note that the
unit normal vector on the contour equals — j. So we
arrive at

(BI)

E, (B2)

E,. =(q — q) fz‘i n'VXj.”dl

co—an [0
= (g ‘IO)J; ¢ (2(F+2))COS¢Bd)\

_ 27(q) — go) cos’Py

h F+2 : (B3)
To evaluate the last contribution (34) for a zonal con-
tour, we use formula (A12), which is equivalent to

(Al1l) or (34). First we have

ar(q®) 4r 1
% = S LaiA + gitan — A
= % [g3(1 — singp) + g3(1 + singp)]. (B4)
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In order to evaluate the contour integral in (A12) for
a zonal patch we must contract the T tensor first with
—j’ and then with — j. This equals — cos(A — \'). So
we have, using (14),

ﬂ ﬂ (nn’ :T(r;r"))G(r; x')dldl’

J‘Zﬂ J‘Z‘n 1
= A=) ——
o Yo cos( ) 4 cosh(mk)

X P(l”“i,((—coso") coszlﬁgd)\.d)\', (BS)
where [see (15)]

cos®” = sin’py + cos’py cos(A — \'). (B6)

At this point we have to introduce the addition theorem
for Legendre functions. It can be found in Gradshteyn
and Ryzhik (1965) in several equivalent forms. We will
use their formula 8.796 in combination with 8.752.2. Fur-
thermore, we use the fact that the change of variables
¢ — ¢ — w/2 changes cos¢ into sing and vice versa. So
for our purposes we can state the addition theorem as

PO(—siny, sing, — cosy, cosi, cosé)
= PJ(—siny, ) P} (siny,)

I'v—-m+1)

2% (_l)mr(u+m+l)

m=1

Py (—siny,)

X P (sing,) cosmg, (B7)

where —7/2 < ¢y < Y, < w/2 and £ is real. In our
case the theorem is also defined for ¢, = ¢,. Note that
if wetake v = —1/a + ik and ¢, = ¢y, = ppand £ =\
— M\, the addition theorem precisely matches the form
of the integrand in (B5), up to a factor. Now using the
addition theorem in (B5), we see that the integrations
over A and N\’ become trivial: the only nonvanishing
contribution is the m = 1 term in (B7) and we arrive at

27 27 1
- \N)————P% .. (—cos"
J; fo cos(\ >\)4cosh(m<) 112+ix(—€086")

7.(.2

X cospidAdN’ = — m

I'(—1/2 + ix)
{72 + ik +2)
X Pl—l/2+iK(Sin¢B) COSz(/’B- (B8)

Using I'(x + 1) = xI'(x) and F = 1/4 + «*, we can
further simplify this

T (—1/2 + ix) 1

Lzri( —singg)

= . B9
'z +ixk +2) F (B9)

Now we can write down the complete expression for the
energy of a zonal contour in the absence of orography:
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3(F+2)

_ 2n(q. — qo) 00524’3
F+2

E=E,+E,,+E =

+ ;’; [43(1 — sind)

2

(¢ —gqo)*
2F*  cosh(wk)

+ g§(1 + sindp)] —

X PLijavic(—singg) PLy 24 (singy) cos’ep.
(B10)

This is a function of ¢5. As the area A, is a monotonous
function of ¢, we can also write the energy as a func-
tion of the area. This dependence is plotted in Fig. 3.

APPENDIX C
Streamfunction Due to a Linear Perturbation

In this appendix we will evaluate the anomaly
streamfunction i, as given in (46). First, we will eval-
uate its value for the whole sphere and later we will
relate its value on the zonal contour to the Rossby wave
velocity c,,, as in (47).

So we have, using (46)

(1) =LG(r;r’)6q(r’)dS’

(g1 — q0) i}_n'-ér’G(r; r’)dl’

27

—(q1 — q0) . 6p(\")

X G(\, ¢; N, ¢p) cosppdN’, (C1)

where we have used n-6r = —6@(\) as in (38). Now
we can substitute (40) for 6¢(\) and we can rewrite
this formula as follows by using that G(\, ¢; \’, ¢z)
is a function of A — \':

oo

Ya(h @) = (@1 = go)e X Xn(d, da)ane™, (C2)

m=-—oo

where

2m

Xm(d” ¢B) = COS¢B o G()\, ¢; )\'9 ¢B)

X e AN = \'). (C3)
In fact, C1 is a convolution of §¢ and G. But a con-
volution equals a product in Fourier space as in (C2).
As G(\, ¢; \', ¢g) is an even function of X\ — \’, we
can rewrite (C3) as
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Xm(P, P5) = COS%L G\, d5 N, &)
X cosm(N — N')d(A —\')

2
—COS . .
Os f P2 ;21i(—sing singy

- 4 cosh(mk) Jo
— cos¢ cosdz cos(N — \'))

X cosm(N — N)d(n —\'), (C4)

where for the last equality the definition of the Green’s
function is used. The integrand meets the form of the
addition theorem (B7) up to a factor and using this
theorem, the integration over (A — \') becomes trivial.
According to the constraints of the addition theorem
we must distinguish between ¢ < ¢ and ¢ = ¢5. For
¢ < ¢y we find

¢zt _2m(=1)" cosy
Xn($ b5) = = ()

T(1/2 + ix — m)
T(1/2 + ix + m)

X P2\ 2ic(Singg),

P7p1i(—sing)

(Cs)
while for ¢ = ¢z we have
2n(—1)" cosdy

4 cosh(wk)

(/2 + ik — m)
T(1/2 + ik + m)

X P2y 5 (sing).

At ¢ = ¢, these expressions coincide. These expres-
sions for x,, should be compared with the expressions
for x in VE with the identification

X(®) = Xn(P, $5) (C7)

[see VE, Eq. (50)]. A fair amount of manipulations,
involving the Wronskian of two Legendre functions,
prove that these expressions for x are equivalent to the
more involved expressions derived in VE.

In VE is also shown that

¢ i(bs

Xm(¢’ ¢B) = -

Py 5 1ic(—singp)

(C6)

—(q1 = 90) X (D5, P5) = Cu, (C8)

[cf. VE, Eq. (60)]. Here we have defined the Rossby
wave velocity c¢,, as the difference between the total
phase velocity of a wave with wavenumber m and the
zonal velocity Uz. Now, combining (C2) and (C8),
we have

(l/a(x, ¢B) =€ Z Cmameimx,

m=—~o

(C9)

where, combining (C8) and (C5) or (C6), we have
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2r(—=1)" T'(1/2 + ix — m)
4 cosh(mk) I'(1/2 + ik + m)

X P jpric(—singdp) P™ ) 124 (Singp).

REFERENCES

cn = (q1 — qo)

(C10)

Bolin, B., 1950: On the influence of the earth’s orography on the
general character of the westerlies. Tellus, 2, 184—195.

Charney, J. G., and A. Eliassen, 1949: A numerical method for pre-
dicting the perturbations of the middle latitude westerlies. Tel-
lus, 1, 38-54.

——, and J. G. DeVore, 1979: Multiple flow equilibria in the at-
mosphere and blocking. J. Atmos. Sci., 36, 1205-1206.

Deem, G. S., and N. J. Zabusky, 1978: Vortex waves: Stationary ‘“V-
states,”’ interactions, recurrence, and breaking. Phys. Rev. Lett.,
40, 859-862.

Dritschel, D. G., 1985: Stability and energetics of corotating uniform
vortices. J. Fluid Mech., 157, 95~134.

Egger, J., 1978: Dynamics of blocking highs. J. Atmos. Sci., 35,
1788-1801.

Gradshteyn, L. S., and 1. M. Ryzhik, 1965: Table of Integrals, Series
and Products. Academic Press.

Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the
use and significance of isentropic potential vorticity maps.
Quart. J. Roy. Meteor. Soc., 111, 877-946.

Machenhauer, B., 1979: The spectral method. Numerical Methods
Used in Atmospheric Models, Vol. I, WMO/GARP Publ. Ser.
17, 121-275.

Mclntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves
in the stratosphere. Nature, 305, 593—-600.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 52, No. 15

Nakamura, M., and R. A. Plumb, 1994: The effects of flow asym-
metry on the direction of Rossby wave breaking. J. Atmos. Sci.,
51, 2031-2045.

Pedlosky, J., 1981: Resonant topographic waves in barotropic and
baroclinic flows. J. Atmos. Sci., 38, 2626-2641.

Polvani, L. M., and R. A. Plumb, 1992: Rossby wave breaking, mi-
crobreaking, filamentation and secondary vortex formation: The
dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462-476.

——, and D. G. Dritschel, 1993: Wave and vortex dynamics on the
surface of a sphere. J. Fluid Mech., 225, 35-64.

Pullin, D. I, 1992: Contour dynamics methods. Ann. Rev. Fluid
Mech., 24, 89-115.

Queney, P:, 1948: The problem of air flow over mountains: A summary
of theoretical studies. Bull. Amer. Meteor. Soc., 29, 16—29.
Saffman, P. G., and R. Szeto, 1980: Equilibrium shapes of a pair of

equal uniform vortices. Phys. Fluids, 23, 2339-2342.

Saltzman, B., 1968: Surface boundary effects on the general circu-
lation and macroclimate: A review of the theory of the quasi-
stationary perturbations in the atmosphere. Causes of Climate
Change, Meteor. Monogr., No. 30, Amer. Meteor. Soc., 4—-19.

Verkley, W. T. M., 1994: Tropopause dynamics and planetary waves.
J. Atmos. Sci., 51, 509-529.

Waugh, D. W., 1993: Contour surgery simulations of a forced polar

vortex. J. Atmos. Sci., 50, 714-730.

, L. M. Polvani, and R. A. Plumb, 1994: Nonlinear, barotropic
response to a localized topographic forcing: Formation of a
““tropical surf zone’’ and its effect on interhemispheric propa-
gation. J. Atmos. Sci., 51, 1401-1416.

Zabusky, N. I, M. H. Hughes, and K. V. Roberts, 1979: Contour
dynamics of the Euler equations in two-dimensions. J. Compu.
Phys., 30, 96—106.




