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ABSTRACT

Empirical orthogonal function (EOF) analysis is a powerful tool for data compression and dimensionality

reduction used broadly in meteorology and oceanography. Often in the literature, EOF modes are interpreted

individually, independent of other modes. In fact, it can be shown that no such attribution can generally be

made. This review demonstrates that in general individual EOF modes (i) will not correspond to individual

dynamical modes, (ii) will not correspond to individual kinematic degrees of freedom, (iii) will not be sta-

tistically independent of other EOF modes, and (iv) will be strongly influenced by the nonlocal requirement

that modes maximize variance over the entire domain. The goal of this review is not to argue against the use of

EOF analysis in meteorology and oceanography; rather, it is to demonstrate the care that must be taken in the

interpretation of individual modes in order to distinguish the medium from the message.

1. Introduction

Since its introduction to meteorology by Edward

Lorenz (Lorenz 1956), empirical orthogonal function

(EOF) analysis—also known as principal component

analysis (PCA), the Karhunen–Loève transform, or

proper orthogonal decomposition—has become a sta-

tistical tool of fundamental importance in atmosphere,

ocean, and climate science for exploratory data analysis

and dynamical mode reduction (e.g., the recent review

by Hannachi et al. 2007). In particular, it has become

common to use EOF analysis as a tool to probe the

physics underlying the variability in a geophysical field

of interest. There is no problem with the use of EOF

analysis to identify structures in geophysical data [from

observations or general circulation models (GCMs)],

which carry relatively large fractions of variance in the

field under consideration. Problems can begin when

these statistical structures are interpreted as being of

individual dynamical, kinematic, or statistical meaning

and are used to define the subsequent physical questions

accordingly. Here we review the conditions under which

EOFs are of individual physical or statistical meaning
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and argue that these conditions are not generally satis-

fied in real observational or GCM fields.

Following a brief overview of EOF analysis in section 2,

the conditions under which individual EOF modes and

dynamical modes correspond in a stable linear system

driven by noise (a paradigmatic system for sustained

variability around some basic state) are computed in

section 3; these conditions are the exception rather than

the rule for geophysical flows. Section 4 further dem-

onstrates that individual EOF modes cannot be ex-

pected to be related to individual kinematic degrees of

freedom of the system, in the context of an idealized

model of the extratropical eddy-driven atmospheric jet.

Furthermore, it is demonstrated in section 5 that if the

probability distribution of the field being analyzed is

non-Gaussian, then EOF modes cannot be expected in

general to be mutually independent (despite being un-

correlated by construction). Finally, the influence on the

structure of EOFs imposed by the nonlocal requirement

that they maximize variance over the entire spatial do-

main is discussed in section 6. A discussion and conclu-

sions follow in section 7.

Note that in this review we follow convention and use

the term EOF mode as shorthand for the pair of an EOF

spatial structure and its associated time series [the prin-

cipal component (PC)]. In the present context, the word

mode is used in the following sense (as given by the

Oxford English Dictionary, http://dictionary.oed.com):

‘‘a particular form, manner, or variety in which some

quality, phenomenon, or condition occurs or is man-

ifested.’’ This sense does not imply that a given mode

is of individual significance (dynamically, kinematically,

or statistically) independent of other modes; in fact, the

following discussion is intended precisely to argue against

such interpretations in general.

Empirical orthogonal function analysis is a powerful

tool for data compression and dimensionality reduction

in atmosphere, ocean, and climate science: the purpose

of this review is not to suggest that this technique is

without value or to advocate its abandonment by me-

teorologists or oceanographers. Rather, the intent is to

bring together several strands of argument demon-

strating that some of the standard interpretations of

EOF modes in terms of the underlying physics that are

common in the literature have a very doubtful basis in

general. That these interpretations can be problematic

follows as a consequence of the fundamental mathe-

matical structure of EOF analysis. A central theme of

the following arguments is that EOF modes convolve

structure present in the data with constraints inherent

to the statistical analysis, such that the mathematical

structure of EOFs (following from basic definitions) is

imprinted upon the EOF modes independent of the

dynamical, kinematic, or statistical features of the field

under consideration. It is in this sense that we borrow

Marshall McLuhan’s phrase that ‘‘the medium is the

message’’ (McLuhan 1964). These mathematical details

are not incidental to the results of EOF analysis; in

fact—as the following discussion will show—they are

central. It is to this discussion that we now turn.

2. EOF analysis: Some relevant facts

We present a brief review of those aspects of EOF

analysis that are relevant to the present discussion;

a more comprehensive discussion can be found, for ex-

ample, in Wilks (1995), von Storch and Zwiers (1999), or

the recent review by Hannachi et al. (2007). The fol-

lowing discussion also draws on basic results of linear

algebra, an introduction to which can be found in

Arfken (1985). This discussion will not consider issues

arising around the statistical sampling of EOFs: it will

be assumed that the underlying probability distributions

(and therefore, all statistical moments) are known ex-

actly. The issues considered in this review are not arti-

facts of sampling variability.

To begin, we consider an N-dimensional vector time

series x(t), which we may think of as a continuous field

(such as temperature or geopotential) sampled at N

discrete points in space. Without loss of generality x can

be assumed to be of zero mean (i.e., any initially nonzero

average has already been subtracted out). The co-

variance matrix of x is given by

C 5 hxxTi, (1)

where the angle brackets denote probabilistic expecta-

tion (i.e., the population mean): if p(x) is the probability

density function of x, then

h f (x)i5
ð

f (x)p(x) dx (2)

for any function f(x). The EOFs can be defined as the

eigenvectors ek of C:

Ce
k

5 m
k
e

k
, (3)

with corresponding eigenvalues mk. Conventionally, the

EOFs are ordered in decreasing magnitude of mk: that is,

m1 $ m2 $ . . . $ mN. It is convenient to assume that these

eigenvectors are unit norm:

e
k

�� ��2
5 e

k
� e

k
5 1. (4)

As C is a nonnegative definite square matrix, the ei-

genvalues mk are all nonnegative and the eigenvectors ek

form a complete orthonormal basis. That is,
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e
j
� e

k
5 d

jk
5

1 j 5 k

0 j 6¼ k

�
, (5)

and any N-dimensional vector z can be expressed as

a linear combination of the eigenvectors ek:

z 5 �
N

n51
z

n
e

n
, (6)

such that the expansion coefficients are projections of z

on en:

z
n

5 z � e
n
. (7)

In particular, we can write

x(t) 5 �
N

n51
a

n
(t)e

n
, (8)

where the expansion coefficient time series an(t) are the

principal components. It follows from the fact that the

ek are orthonormal eigenvectors of C that the PC time

series are mutually uncorrelated:

ha
j
a

k
i5 m

k
d

jk
(9)

and that the variance of aj(t) is mj. Thus, EOF analysis

expresses the (discretely sampled) field x as the super-

position of N mutually orthogonal spatial patterns mod-

ulated by N mutually uncorrelated time series. The spatial

patterns and time series occur in matched pairs, which

are generally referred to as EOF modes.

We note the following points:

1) The EOF expansion can be interpreted geometri-

cally as a change of coordinates in RN through an

orthogonal rotation to a basis in which C is diagonal.

This emphasizes that the EOF expansion is nothing

more than another way of describing the time series x

in terms of a new basis set in which this description is

particularly simple (from the perspective of the dis-

tribution of variance).

2) The total variance of x, �N

n51var(xn), is simply the

sum of the eigenvalues mn so the fraction of variance

‘‘accounted for’’ by the nth EOF mode is

var(x
n
)

�
N

i51
var(x

i
)

5
m

n

�
N

i51
m

i

. (10)

3) EOFs of x can be obtained variationally in terms of

a sequence of lower-dimensional linear approxima-

tions to x of successively decreasing (or non-

increasing) mean squared error. In particular, e1 is

the vector in RN such that the difference between x

and the projection of x along e1 is minimized in

a mean-square sense: that is, the misfit

�2 5 hjjx� (x � e
1
)e

1
jj2i (11)

is minimized by e1 among all unit vectors in RN.

Having determined e1, e2 is defined such that e2 is

orthogonal to e1 and the misfit

�2 5 jjx��
2

k51
(x � e

k
)e

k
jj2

* +
(12)

is minimized, and so on for increasing ek until all N

EOFs are found. This variational problem admits an

analytic solution such that the EOFs are given by the

eigenvector problem (3), which is how the EOFs are

generally found operationally. A particular benefit of

the variational formulation is that it demonstrates

that the truncated EOF expansion

x̂ 5 �
K

n51
a

n
e

n
, (13)

where K , N is the K-dimensional approximation to

x optimal in the sense that the mean squared differ-

ence between x and x̂ is minimal. Furthermore, by

Eq. (10) the fraction of variance accounted for by the

K-dimensional approximation is

�
K

k51
m

k

�
N

n51
m

n

.

The eigenvalues mk do not increase with k, so as the

dimensionality of the approximation K increases, the

newly included EOF modes are successively as or

less important to the overall variance of the ap-

proximation. Truncated EOF expansions therefore

provide a powerful tool for data compression or di-

mensionality reduction when it is desired to capture as

much variance as possible in lower-dimensional ap-

proximations. We note in passing that the fact that

an EOF mode accounts for little variance does not

necessarily imply that it is dynamically irrelevant

(e.g., Crommelin and Majda 2004), so a truncated

EOF basis might not be optimal for representing the

dynamics of a system.

There are various technical issues associated with the

computation of EOFs that will not be considered in this

study, including mixing of EOFs due to sampling-error

induced degeneracy of the associated eigenvalues (e.g.,

North et al. 1982), the use of different norms (such as the

total energy) to define the EOFs, or choices of spatial
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weighting (e.g., correlation-based EOFs, or latitude-

dependent weights accounting for sphericity of the do-

main; cf. Baldwin et al. 2009). The focus of this review is

the accuracy of common interpretations of individual

EOF modes, which is distinct from these more opera-

tional concerns.

3. EOFs and dynamical modes

The most natural system in which the statistical modes

produced by EOF analysis might be expected to have

clear individual dynamical significance is one governed

by linear dynamics for which the notion of ‘‘dynamical

modes’’ as eigenvectors of the linear dynamical operator

is straightforward. In fact, North (1984) demonstrated

that the correspondence between EOFs and dynamical

modes holds only in a very specialized class of linear

dynamical systems that are expected to be the exception

rather than the rule in the (linearized) dynamics of real

geophysical flows. The original North (1984) argument

considered the statistics and dynamics of a continuous

field with dynamics described by a noise-forced partial

differential equation; for the sake of simplicity, the fol-

lowing discussion considers the dynamics of a finite

N-dimensional vector x (which might be considered as

a discrete representation of the continuous field).

Many studies have shown that sustained small-

amplitude variability in a broad range of physical situ-

ations in the atmosphere and ocean (e.g., Farrell and

Ioannou 1996; Kleeman 2008; Zanna and Tziperman

2008) can be described by linear dynamics subject to

random (i.e., ‘‘turbulent’’) forcing representing the effects

of unresolved physical scales:

dx

dt
5 Ax 1 B _W, (14)

where A is a constant N 3 N matrix, B is a constant

N 3 M matrix, and _W is an M-dimensional vector of

independent white noise processes:

h _W
i
(t) _W

j
(t9)i5 d(t � t9)d

ij
(15)

(uncorrelated in both space and time). The matrix A

is the linear dynamical operator governing the ‘‘de-

terministic dynamics’’ (most naturally thought of as

a linearization of the nonlinear dynamics around some

basic state), whereas B characterizes the spatial struc-

ture of the noise forcing. The deterministic dynamics

will be stable (i.e., perturbations will all decay asymp-

totically to zero in the absence of noise forcing) if the

real parts of all eigenvalues of A are negative. In this

situation, sustained variability of x is maintained by the

turbulent noise forcing alone.

As a first statement about the connection between

EOFs and dynamical modes, we can say immediately

that the two sets of vectors will not correspond in the

case that the linear operator A is nonnormal; that is, if it

does not commute with its adjoint Ay: AAy2 AyA 6¼ 0. In

this case, the eigenvectors of A are in general not mu-

tually orthogonal. As the EOFs are necessarily mutually

orthogonal by construction, the EOFs and the dynami-

cal modes will not generally be the same. In fact, studies

such as Penland (1996) and Farrell and Ioannou (1996)

demonstrate that the EOFs and the dynamical eigen-

vectors may be very different indeed. Nonnormality of

the dynamical matrix is the generic case for the linear-

ized dynamics of geophysical systems, particularly in the

presence of shear or coupling between systems with very

different time scales (e.g., Farrell and Ioannou 1996;

Kleeman 2008). It follows that we can say, as a general

rule, that EOFs and dynamical modes will not coincide.

This argument does not rule out the possibility that

EOFs correspond to dynamical modes in the special case

that the linearized dynamics are governed by a normal

operator. In this case, it can be shown (appendix A) that

the EOFs will only correspond to the dynamical eigen-

vectors of A if the noise has no spatial structure: that is, if

it is spatially uncorrelated. If the driving noise is spatially

correlated, then its structure will be imprinted on the

covariance matrix of the damped, driven system so that

the EOFs of x mix the structure of the noise with the

structure of the linearized dynamics. In this case again,

the EOFs and dynamical modes will not correspond.

As an illustration of the difference between normal

modes and EOFs for nonnormal systems, consider the

simple two-dimensional system [adapted from a similar

model considered in Farrell and Ioannou (1996)]:

d

dt

x
1

x
2

� �
5
�0.1 �0.9 cotf

0 �1

� �
x

1

x
2

� �
1

0 0

0 s

� � _W
1

_W
2

 !
.

(16)

The angle f determines the degree of nonnormality of

this system: the system is normal for f 5 908 and be-

comes increasingly nonnormal as f is increased or de-

creased. The eigenvectors of the dynamical matrix are

b
1

5
1

0

� �
, b

2
5

cosf

sinf

� �
, (17)

with corresponding eigenvalues l1 5 20.1 and l2 5 21.

The eigenvalues are both real and negative, and in the

absence of external forcing x will approach 0 as time

grows. The stochastic forcing is orthogonal to the least-

damped mode. The covariance matrix C can be com-

puted explicitly [from Eq. (A27) in appendix A]:
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C 5
s2

22

81 cot2f �9 cotf

�9 cotf 11

� �
. (18)

The normal modes bi and the EOFs ei are illustrated in

Fig. 1 for f 5 708 and f 5 1208. Evidently, the dynamical

modes and EOFs of this nonnormal system are quite

different.

The relevance of individual EOF modes to the pre-

dictability of a linear forced system is determined by the

degree of nonnormality of the dynamics. For a system

governed by normal dynamics, the strongest response to

a perturbation occurs when the spatial pattern of the

forcing is the same as that of the least-damped dynam-

ical eigenmode (i.e., the two vectors are parallel); in this

case, the response and the (leading) EOF will be col-

linear with the forcing (e.g., Farrell and Ioannou 1996).

In contrast, constructive/destructive interference among

nonorthogonal eigenmodes of a nonnormal system re-

sults in a more complex response to a perturbation,

such that the perturbation that generates the maximum

response will in general project on many dynamical

eigenmodes—as will the EOFs of the system. These

facts are particularly pertinent in the context of pre-

dictions of El Niño/Southern Oscillation (ENSO). In the

tropical Pacific, the leading EOF of sea surface tem-

perature (SST) projects strongly on the composite maps

of SST anomalies for mature El Niño or La Niña events.

However, those perturbations (or initial conditions) that

induce rapid growth into mature episodes bear little

resemblance to this EOF mode (e.g., Penland 1996;

Kleeman 2008). The leading EOF mode carries a sub-

stantial fraction of the total variance, but it is not a dy-

namical mode: in particular, strong ENSO events are

not induced by perturbations with the spatial pattern of

this EOF mode.

The correspondence between EOFs and dynamical

modes is even less clear in the case of systems governed

by nonlinear dynamics, in which the concept of the dy-

namical mode must be generalized to the more abstract

notion of dynamically invariant subspaces (which the

system will not leave once having entered). Such sub-

spaces will not in general even be planar, in contrast to

the case of subspaces spanned by EOFs or linear dy-

namical modes. For such systems the EOFs will be of

course determined by—but on an individual basis can-

not be expected to bear any simple relationship to—the

dynamics. Consider first an example drawn from Mo and

Ghil (1987), in which the vector x(t) describes the per-

fectly elliptical orbit of a planetary body around a star

(Fig. 2). In the absence of external perturbations, this

elliptical orbit will be ‘‘dynamically invariant.’’ By

symmetry, the leading EOF e1 will be aligned along the

semimajor axis of the ellipse (which is longer and there-

fore carries the most variance) and the second EOF e2

along the semiminor axis. Both of these directions are

dynamically significant, but neither is a ‘‘dynamically

invariant subspace’’ on its own. In particular, a self-

contained dynamical model restricted to the semimajor

axis of the ellipse would not make a good theory of or-

bital dynamics. Another illustrative example, also drawn

from Mo and Ghil (1987), is that of the EOFs of the

Lorenz (1963) model with the standard parameter values

for which the system’s trajectory settles down onto a

strange attractor (Fig. 3). Once again, the EOFs identify

FIG. 1. Dynamical eigenvectors (bi, black vectors) and EOFs (ei,

gray vectors) for the stochastic dynamical system Eq. (16) for f 5

708 and f 5 1208. For this representative nonnormal system, the

dynamical eigenvectors and EOFs do not coincide. Note in par-

ticular that whereas the EOFs are by construction orthogonal, the

dynamical eigenmodes are nonorthogonal. FIG. 2. First and second EOFs (e1 and e2 respectively) of an

elliptical planetary orbit. Redrafted following Mo and Ghil (1987).
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the orthogonal directions carrying the most variance

but do not cleanly correspond to any invariant aspect

of the dynamics. The EOFs of this highly nonlinear

dynamical system do not have individual dynamical

significance.

4. EOFs and kinematic degrees of freedom

We have seen that EOFs will not generally be of

individual dynamical significance. Because statistical

properties of a system are descriptions of variability and

thus inherently kinematic, we might ask if individual

EOF modes will be simply related to natural kinematic

descriptors of variability. That this cannot be expected

to be the case in general will be illustrated by the example

of a simple model of a fluctuating jet in zonal-mean zonal

wind, for which the EOF problem is analytically solvable.

In both observations and atmospheric GCMs, the

leading EOF of extratropical zonal-mean zonal wind is

a dipole with a central zero-crossing at approximately

the mean latitude of the eddy-driven jet (e.g., Hartmann

and Lo 1998; Codron 2005; Fyfe and Lorenz 2005;

Eichelberger and Hartmann 2007). To address the ki-

nematic significance of this EOF mode, we consider a jet

in zonal-mean zonal wind with Gaussian profile and

fluctuating in strength and position:

u(x, t) 5 U(t) exp �
[x� x

c
(t)]2

2s2
0

( )
, (19)

where x is a meridional coordinate. In this model, the jet

strength U(t) and position xc(t) are the natural kinematic

variables of the jet—what we will call the kinematic

degrees of freedom. For convenience, we will assume

that fluctuations in U(t) and xc(t) are independent and

Gaussian. Based on observations of the extratropical

zonal-mean eddy-driven jet (in either hemisphere), we

will assume that both of l 5 std(U)/mean(U) and h 5

std(xc)/s0 are �1. With these assumptions, the co-

variance matrix of u(x, t) can be computed analytically

and expanded as a Taylor series in the small parameters

l, h [details of these computations are presented in

Monahan and Fyfe (2006)]. From these expansions the

leading EOFs can be determined in terms of the nor-

malized basis vectors f1(x), f2(x), and f3(x) (Fig. 4),

corresponding respectively to a monopole, a dipole, and

a tripole. By symmetry, the dipole is orthogonal to the

monopole and tripole, but the monopole and tripole

themselves are not mutually orthogonal (and therefore

cannot simultaneously be EOFs).

In the case of pure fluctuations in jet strength, the

only EOF with nonzero variance is the monopole. For

FIG. 3. Lorenz (1963) attractor x(t) for standard parameters producing a strange attractor.

The colored lines are the projections of x(t) onto the three EOF modes: pj(t) 5 [x(t) � ej]ej.

Redrafted following Mo and Ghil (1987).
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fluctuations in position alone, the leading two EOFs are

the dipole and the tripole, respectively. When the jet

fluctuates in both strength and position, if fluctuations

in position are relatively large compared to those of

strength (as is the case in observations) then the leading

EOF is the dipole f1(x). The leading PC time series is

given by (to leading order in the small parameter h)

a
1
(t) 5

ffiffiffiffi
p
p

2s
0

� �1/2

U(t)x
c
(t). (20)

That is, while the dipole pattern arises because of the

presence of fluctuations in position, the fluctuations in

jet strength also project upon it and are therefore mixed

into the associated PC time series. The first EOF mode

bundles together both kinematic degrees of freedom

and cannot be uniquely associated with position fluctu-

ations. Furthermore, the spatial pattern of the second

EOF is a monopole/tripole hybrid where the degree of

hybridization is determined by the quantity

d 5
3h4

8l2
. (21)

When d � 1, e2 is a monopole and when d � 1 it is

a tripole: in between, it is a linear combination of the

two. The monopole comes in from strength fluctuations

and the tripole from position fluctuations, but because

these are not orthogonal they cannot both simulta-

neously be EOFs. Spatial structures that are EOFs in the

case of fluctuations in a single kinematic degree of

freedom on its own will not necessarily be EOFs in the

presence of multiple fluctuating degrees of freedom as

a consequence of the requirement that the EOFs be

mutually orthogonal. Not surprisingly, the time series

associated with the second EOF, a2(t), also mixes to-

gether variability in both strength and position.

The observed extratropical eddy-driven jet fluctuates

in strength, position, and width (with the first and third

of these correlated as a consequence of momentum

conservation). The above arguments can be generalized

to include fluctuations in jet width (Monahan and Fyfe

2006), to relax the assumptions of Gaussian jet pro-

file and kinematic parameter probability distributions

(Monahan and Fyfe 2009), and to consider the geo-

potential EOFs associated with the fluctuating jet

(Monahan and Fyfe 2008). The central conclusion re-

mains unchanged: despite the fact that they directly re-

flect the kinematics of variability, the defining constraints

on EOFs (orthogonal straight-line axes with uncorrelated

time series) prevent them in general from being in simple

one-to-one correspondence with kinematic descriptors

of the field.

5. EOFs of non-Gaussian fields

We have seen that individual EOF modes cannot in

general be expected to correspond to individual dynam-

ical or kinematic modes. That is, EOFs will not generally

partition the state space into dynamically or kinemati-

cally independent structures. One might at least hope

that the EOF decomposition will produce statistically

independent structures: after all, the PC time series are

mutually uncorrelated. However, decorrelation does

not imply independence: two uncorrelated variables can

still be nonlinearly related (appendix B). If the distri-

bution of x is multivariate Gaussian, then the PC modes

will in fact be both mutually uncorrelated and indepen-

dent. If x is non-Gaussian, however, PC modes will not

generally be mutually independent.

The idealized zonal jet model with fluctuations in both

strength and position considered in section 4 provides an

example of a system in which the PC modes are not in-

dependent. When the fluctuations in position are taken

to be Gaussian, the resulting field is non-Gaussian [as

u(x, t) is a nonlinear function of xc(t)]. A series of nu-

merically simulated scatterplots of a1(t) against a2(t) are

presented in Fig. 5 for values of the parameter d [Eq.

(21)] between 0.1 and 10. A clear dependence between

a1 and a2 is evident when d is not very small (i.e., when

position fluctuations are sufficiently strong). In particu-

lar, strong negative and positive excursions of a1 are

FIG. 4. Normalized basis vectors f1(x), f2(x), f3(x) (respectively the monopole, dipole, and tripole) from

which are constructed the EOFs of the idealized jet in zonal-mean zonal wind.
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both associated with strong positive excursions of a2.

The colors in Fig. 5 correspond to those points for which

the jet is anomalously strong [U . mean(U), red dots] or

anomalously weak [U , mean(U), blue dots]. The cur-

vature of the interface between the two regions is an-

other measure of the coupling between these two PC

time series. That this coupling of EOF modes is not

simply an artifact of this idealized system is illustrated

by scatterplots of a1 against a2 for 500-hPa zonal-mean

zonal winds from the Southern Hemisphere summer-

time in reanalysis data and from a dry primitive equation

GCM (Fig. 6). The idealized GCM is characterized by

stronger fluctuations of the jet position than are the

observations, and the two scatterplots in Fig. 6 corre-

spondingly resemble scatterplots in Fig. 5 for larger and

smaller values of d, respectively.

Another field in which non-Gaussianity is manifest

through statistical dependence of EOF modes is tropical

Pacific sea surface temperature, as was discussed in

Monahan and Dai (2004). Maps of the leading EOF

patters of SST as computed from the Hadley Centre Sea

Ice and SST dataset (Rayner et al. 2003) are presented in

Fig. 7. Also presented are maps of the estimated standard

deviation and skewness fields; the latter corresponds

to the normalized third-order moment (measuring the

asymmetry of a probability distribution around its mean)

skew(a) 5
a� hai
std(a)

� �3
* +

(22)

and vanishes if the distribution is Gaussian. Nonzero

values of this statistic are therefore a measure of non-

Gaussianity. The skewness field illustrated in Fig. 7 in-

dicates that the SST probability density tilts toward

positive anomalies in the eastern equatorial Pacific and

toward negative anomalies in a horseshoe-shaped band

from the central subtropical South Pacific through the

western equatorial Pacific back up to the northern sub-

tropics. The leading SST EOF, which carries the most

variance, bears a strong resemblance to the standard

deviation field. Also notable is the similarity between e2

and the skewness field, the reason for which becomes

evident through an inspection of a scatterplot of a1 with

a2 (Fig. 8). From this plot it is evident that strong posi-

tive and negative anomalies of a1 (corresponding re-

spectively to El Niño and La Niña events) are both

associated with strong positive anomalies of a2. In other

words, the second EOF mode makes a positive contri-

bution to the SST field during both extreme phases of

ENSO, so on average the strongest positive SST anom-

alies during El Niño are located farther east than the

strongest negative SST anomalies during La Niña. This

asymmetry in the SST field between the opposing phases

of ENSO is then manifest in the skewness field. Again

we see a relationship between non-Gaussianity of the

field and statistical dependence of the EOF modes.

We therefore see that individual EOFs will not cor-

respond in general even to statistically independent

structures. This fact is mitigated by the observation that

for many geophysical fields deviations from Gaussianity

are not strong. Nevertheless, in considering the results of

an EOF analysis, it is worth bearing in mind that as

a general rule an EOF decomposition will not generally

partition state space into directions that are independent

dynamically, kinematically, or statistically.

6. Nonlocality of EOFs

We have seen that individual EOF modes are not in

general mutually independent either dynamically, ki-

nematically, or statistically: as an even weaker result, we

might hope that when a field contains structures that are

truly statistically independent, then these will be sepa-

rated by the EOFs. In fact, this will not be the case if the

structures are localized or not orthogonal. These results

follow from the nonlocality of EOFs, which by definition

maximize variance over the entire analysis domain, and

from the requirement that by construction EOFs be

mutually orthogonal.

A simple illustrative example of the general inability

of EOFs to separate localized structures was presented

FIG. 5. Scatterplots of numerically calculated a1(t)/U0 vs a2(t)/U0 for h 5 0.26 and d 5 0.1, 0.25, 1, 2.5, and 10. Blue

dots denote those points for which U , U0 and red dots denote those points for which U . U0.
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in Ambaum et al. (2001). This example considers the

three-dimensional vector x 5 (x, y, z) such that x and z

are of unit variance and are mutually independent, and

y 5 2x 2 z; each of these variables might be thought of

as corresponding to, for example, the time series of re-

gional geopotential height anomalies. It follows that the

covariance matrix of this system is

C 5

1 �1 0

�1 2 �1

0 �1 1

0
@

1
A. (23)

Only two EOFs are of nonzero variance:

e
1

5

1

�2

1

0
@

1
A, e

2
5

�1

0

1

0
@

1
A, (24)

carrying respectively 75% and 25% of the total variance.

Despite the fact that x and z are independent, they are

mixed together in the leading EOF because of their

mutual relationships with the third variable y. Because

the leading EOF by construction maximizes the explained

variance over the entire domain, the localized features

are combined. As a general rule, independent localized

features that share some variance in common with other

parts of the field will not be separated by EOF analysis.

This example was introduced by Ambaum et al. (2001)

in the context of a debate regarding the extent to which

low-frequency variability in the Northern Hemisphere

extratropical atmospheric circulation is hemispheric or

regional in scale, as expressed by the Northern Annular

Mode (NAM) versus North Atlantic Oscillation (NAO)

dichotomy. The hemispheric-scale NAM appears as the

leading EOF computed over the entire Northern Hemi-

sphere extratropics whereas the regional NAO is ob-

tained when the analysis is limited to the Euro-Atlantic

sector, as is illustrated in Deser (2000). Noting that the

correlation between circulation anomalies in the Atlantic

and Pacific sectors is weak, Deser (2000) questioned

the extent to which the NAM can be interpreted as

a coherent hemispheric-scale phenomenon. Interpret-

ing the variables x, y, and z in their simple statistical

model as corresponding respectively to geopotential

height anomalies over the North Atlantic, Arctic, and

North Pacific Oceans, Ambaum et al. (2001) demon-

strated that independent variability in the Atlantic and

Pacific sectors can be combined into a leading EOF of

hemispheric scale because of their joint covariability

with the Arctic sector. While the debate regarding the

degree of zonal localization of extratropical atmospheric

variability remains open (e.g., Wallace 2000; Vallis and

Gerber 2008), this example clearly illustrates the fact

that the presence of large-scale structures in a particular

EOF pattern is not sufficient evidence for the existence

of such coherent structures in the actual flow.

In the case of independent but nonorthogonal pat-

terns, the argument for a lack of correspondence be-

tween EOFs and statistically independent modes is

straightforward. Suppose for example that

x(t) 5 a
1
(t)u

1
1 a

2
(t)u

2
, (25)

where u1 � u2 6¼ 0 and the time series a1 and a2 are truly

independent. The expansion (25) has the form of a

(truncated) EOF expansion, but as the vectors u1 and u2

FIG. 6. As in Fig. 5, but for 500-hPa zonal-mean zonal wind data (left) from Southern

Hemisphere summertime reanalyses and (right) from a dry primitive equation GCM. Adapted

from Fyfe and Lorenz (2005 � American Meteorological Society, reprinted with permission.).
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are not orthogonal, these cannot be the EOFs. A more

detailed discussion of this point and its consequences is

presented in Dommenget and Latif (2002).

In the end, can we at least hope that the structure of

individual EOFs will be entirely determined by the

statistical features of the field under consideration? In

fact, the answer is no—this will not always be the case.

When a field is characterized by spatially homogeneous

statistics (i.e., invariant from place to place), the EOFs

will be strongly influenced by the size and shape of

the domain (e.g., Buell 1975, 1979; Richman 1986;

Dommenget 2007). For example, if x represents the

values of a field observed at points along a line such that

neighboring points are related by an AR(1) process—

that is,

x
j
(t) 5

1

d
x

j�1
(t) 1 a�

j
(t), (26)

where �j are independent and identically distributed

random variables—then the EOFs of x are sinusoids

regardless of the magnitudes of d or a (Allen and Smith

1994). This result can be shown to follow from the

Wiener–Kinchin theorem, from which we know that the

Fourier coefficients of a stationary field are uncorrelated

random variables [e.g., Gardiner (1997) and Yaglom

(1961), in which it is also shown that the EOFs of a ho-

mogeneous random field on a sphere will be spherical

harmonics]; the spatial orthogonality of the Fourier

modes then ensures that these are EOFs. The scales of

the EOF spatial structures will be determined by the size

of the domain. In particular, the leading EOF mode will

be the gravest mode with a wavelength determined not

by the properties of the field but by the size of the do-

main. If interpreted as being of individual significance,

these EOF modes will impose spatial structure where in

fact there is none. Dommenget (2007) uses this fact to

suggest a ‘‘stochastic null hypothesis’’ for determining if

EOF structures more reflect the variability of the field or

the geometry of the domain. Furthermore, it has been

noted that hemispheric-scale EOF structures such as the

Northern and Southern Annular Mode (SAM) can arise

from variability that is zonally localized (e.g., mid-

latitude eddy activity) but with statistics that display

a high degree of zonal symmetry (e.g., Cash et al. 2005;

Kushner and Lee 2007; Vallis and Gerber 2008). That is,

the (hemispheric) zonal scale of the SAM and NAM

may be set by the zonal symmetry of midlatitude dynam-

ical processes rather than by the existence of hemispheric-

scale coherent structures.

7. Conclusions

The study of atmospheric and oceanic fields (either

observed or simulated by a GCM) requires consider-

ation of datasets of very high dimensionality (not un-

commonly of order 103). Such datasets obviously cannot

be visualized in their raw form: some sort of statistical

processing is required to reduce the dimensionality of

the data to a size accessible to the human mind. This

statistical processing imposes a filter on the data, so that

the structures that emerge are a convolution of both the

data itself and the statistical technique used for the

analysis. That is, the statistics used leave their imprint on

FIG. 7. Maps of the leading two EOF patterns of tropical Pacific SST, along with the standard deviation and skewness

[Eq. (22)] fields. Redrawn from Monahan and Dai (2004).
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the output, so that the results obtained are influenced

by the features of the filter. Empirical orthogonal func-

tion analysis is a powerful and versatile tool for di-

mensionality reduction, but it is not free from this

‘‘bias.’’

The examples presented in this review have demon-

strated that in general EOF modes cannot be expected

to be of individual dynamical, kinematic, or statistical

meaning (independent of other EOF modes). These

facts follow from the definition of EOF modes as spatially

orthogonal, temporally uncorrelated (but not necessarily

independent), and nonlocally maximizing variance over

the analysis domain. Different generalizations of EOF

analysis have been introduced to relax some of these

constraints. A well-established technique that attempts

to extract nonorthogonal or localized features from data

is so-called ‘‘rotated principal component analysis’’

(e.g., Richman 1986; Hannachi et al. 2007), in which

either the constraints of spatial or temporal orthogo-

nality (or both) are relaxed. A special case of rotation

known as independent component analysis (ICA; Aires

et al. 2002) attempts to determine spatial patterns such

that the projection time series are statistically inde-

pendent. Statistical techniques designed to diagnose

low-dimensional nonlinear structure in multivariate

datasets include nonlinear principal component analysis

(NLPCA; e.g., Monahan et al. 2003), which determines

a single globally nonlinear approximation that is optimal

in the sense that it minimizes the mean-squared error,

and methods that approximate the data by a collection

of distinct locally linear (but globally nonlinear) ap-

proximations (e.g., Horenko 2008). While all of these

methods have their utility for particular problems, they

all share with EOF analysis the fundamental limitation

that they do not make use of any physical understanding

of the system under consideration.

It is possible to incorporate dynamical information

into the statistical analysis. For example, Brunet (1994)

and Brunet and Vautard (1996) demonstrate that if the

norm used to define the orthogonality of EOF modes is

a globally conserved quantity such as wave activity, then

(under certain approximations) the resulting empirical

normal modes (ENMs) can be expected to be in close

correspondence to the eigenvectors of the linearized

dynamics. Principal interaction patterns (PIPs), which

are defined variationally to minimize the norm of the

difference in tendencies between the full dynamics and

its projection onto a lower-dimensional subspace, have

proved useful for model reduction (e.g., Hasselmann

1988; Crommelin and Majda 2004). The explicit embed-

ding of dynamics into the reduction techniques makes

both ENMs and PIPs attractive from a physical per-

spective, although their application to observational

datasets is nontrivial (e.g., Zadra et al. 2002; Kwasniok

2007). Finally, somewhere between EOF analysis and

diagnostic tools that encode explicit dynamical infor-

mation lie techniques that make use of the temporal

structure of the dataset, such as extended EOF analysis,

multichannel singular spectrum analysis (MSSA), and

complex EOF analysis (e.g., Hannachi et al. 2007).

As was stated in the introduction, the purpose of this

review is not to denounce the use of EOFs in the analysis

of meteorological or oceanographic data. Empirical or-

thogonal function analysis is an extremely useful tool for

data compression and dimensionality reduction. EOFs lie

along the principal axes of the attractor of the system in

state space, and the knowledge of what spatial structures

carry the most variance is valuable in guiding the de-

velopment of physical understanding. For example, the

recognition that planetary orbits are elliptical was a cru-

cial observation in the development of Newtonian me-

chanics. Furthermore, the fact that the leading M EOFs,

taken together, provide an M-dimensional approxima-

tion to the attractor of the system that is optimal in terms

of the fraction of variance explained can usefully be

exploited in the construction of approximate low-

dimensional dynamical models (although this too must

be done carefully; e.g., Selten 1997; Crommelin and

Majda 2004).

Not only for EOF analysis do the statistical modes

represent a convolution of structure in the data with the

constraints of the analysis technique. Caveats similar to

those discussed in this review have been identified in the

context of techniques designed to extract ‘‘coupled’’

modes of variability between different geophysical fields

FIG. 8. Scatterplot of leading two PC modes of tropical Pacific

SST (each normalized to unit variance). Redrawn from Monahan

and Dai (2004).
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(canonical correlation analysis and singular value de-

composition; e.g., Newman and Sardeshmukh 1995;

Cherry 1996). Statistical modes reflect the variability of

a system driven by the underlying physics, but they will

not in general be of individual significance: this is

particularly true when the statistical modes are subject

to constraints imposed by the method itself. The pre-

ceding discussion does not imply that for any particular

system individual EOF modes are necessarily not of

individual dynamical, kinematic, or statistical meaning.

Rather, this analysis demonstrates that such an in-

terpretation cannot a priori be expected to be valid and

must be justified by other lines of argument (dynami-

cal, kinematic, or statistical). No statistical tool will

ever replace a good mechanistic understanding of a

system under consideration. In the analysis of atmo-

spheric and oceanic variability, any statistical analysis

must be interpreted with an eye toward structures im-

posed by both the underlying dynamics and the statis-

tical tool itself in order to distinguish the medium from

the message.
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APPENDIX A

Covariance Matrix of a Stable Linear
Stochastic–Dynamical System

Consider a system with dynamics given by Eq. (14),

such that the linear operator A is stable (all eigenvalues

have a negative real part). Independent of the initial

state of the system, a statistical equilibrium will even-

tually be reached between the fluctuating forcing and

the damped response such that the mean of x is zero and

the covariance matrix C satisfies

AC 1 CAT
5�BBT (A27)

(e.g., Penland 1996). The statistical equilibrium repre-

sented by Eq. (A27) allows us to compute the statistics

of the response to fluctuating forcing in terms of the

deterministic dynamics and the character of the noise.

In the case that A is normal (i.e., AAT 2 ATA 5 0),

Eq. (A27) can be solved for the covariance matrix C

(Gardiner 1997). In this case, the eigenvectors of A will

form a complete orthogonal set and there will be a uni-

tary matrix U (for which UUy 5 UyU 5 I, where I is the

N 3 N unit matrix) such that

A 5UyLU, (A28)

where L 5 diag(l1, l2, . . . , lN) is a diagonal matrix of

the eigenvalues of A. It follows then that

(UAUy)(UCUy) 1 (UCUy)(UAyUy) 5�UBBTUy

(A29)

and so

�
k

l
i
d

ik
F

kj
1 �

k
F

ij
l

k
*d

kj
5�(UBBTUy)

ij
, (A30)

where

F 5UCUy. (A31)

Solving for C, we obtain

C 5UyFU, (A32)

where F is the matrix with components:

F
ij

5�
(UBBTUy)

ij

l
i
1 l

j
*

. (A33)

If F is diagonal, then we can conclude that C and A are

diagonalized by the same unitary matrix and therefore

have the same eigenvectors, in which case the dynamical

modes and EOFs coincide. In general, F will not be di-

agonal unless B has the same eigenvectors as A (a highly

unlikely situation) or BBT 5 bI so that the noise is

spatially uncorrelated with spatially uniform variance:

that is, if the noise is white in space.

We note that it is often possible to make a change of

coordinates from x to y such that the dynamics of the

new variable is governed by a normal operator (Farrell

and Ioannou 1996). However, this fact is of little help if

we are interested in the statistics of the original field x

itself.

APPENDIX B

Uncorrelated versus Independent Variables

Two variables a and b are statistically independent

only if their joint probability distribution function fac-

tors as the product of its marginals: p(a, b) 5 p(a)p(b), so
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the state of a is irrelevant to the state of b (and vice

versa). Independence implies vanishing correlation, but

the reverse implication does not hold in general. This

can be demonstrated with a simple example: if a is

Gaussian distributed with mean zero and unit variance

and b 5 a2, then habi 5 0, so these two variables are

uncorrelated. However, as the value of b is determined

exactly by that of a, these are clearly not independent.
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