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Entropy as a measure of uncertainty

How much information is received when we observe a specific
value of random variable x?

Information is ‘degree of surprise’.

A highly probable observation contains less information than
a highly improbable one.

So the information content h(x) depends on the pdf of x, and
information has to be monotonically dependent on this pdf.

If two events x and y are unrelated their information content
should by additive: h(x,y) = h(x) + h(y) when p(x,y)=p(x)p(y).

This forces us to assume h(x) = - log (p(x)).
The average amount of information is given by
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Examples

* For a uniform pdf over the unit interval with probability
intervals 1/N we find
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Zp ) log p(x —Zﬁlog [N] = log N

* For a peaked pdf with probability 1 at one of the intervals 1/N
and zero elsewhere we find

Zp )logp(x) =0



Prediction and relative entropy

Before an actual prediction we know the system by its
climatological or equilibrium pdf.

So we need a measure of how far the prediction pdf is away from
climatology.

A useful measure is the relative entropy:

Elplu] = - [ p( 1og( ;)mp

Positive definite and temporal monotonic:

Ep(ty)|p(t1)] = Ep(ta)|u(t2)]  for 19 > 1y
Jaynes (1963) has shown that this information entropy is equal
to the thermodynamic entropy and as such is a natural extension

for non-equilibrium thermodynamics.




Information flow |

* Consider the change in relative entropy for a variable x due to
information from y, the Mutual Information of x and y:

Mila.y] = Elz] - Elaly) = [ pla.y)log (pfaff];f;)ﬂ dudy

 Advantage is that the M/ can be obtained from ensemble
integrations

* Disadvantage is that when x and y are both related to z the
Ml can be high, while x and y are not physically coupled.

An example is uncoupled processes that both react to the
seasonal cycle. (Compare correlation and causality.)

* Note that the Ml is symmetricin x and y.



Information flow Il

Define information flow from y to x as the relative entropy
evolution of x for full system evolution minus the relative
entropy evolution of x when y is kept constant:

o _dEp@)]  dE[p(x)
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dt dt y=constant
Hence compare the dv = f(x,y)dt

the relative entropy
evolution of this system: dy = g(x,y)dl +dp

to that of this system: dv = f(x,y)dt
dy = 0



Information flow I

* Expressions for the relative entropy evolution can be obtained
from the Liouville (or Fokker-Planck, Kolmogorov, equation):
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Information flow IV

For the climate prediction problem, when the equilibrium pdf
is Gaussian interesting relations can be derived, like
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in which the energy transfer fromy to x is equal to the
time-rate-of-change of the energy in x:

(Work by Kleeman, Madja, Liang, Harlim)



Observation information |

* Kleeman (2007) applied ‘this’ to find the information impact
of observations on predictions. However, the update of the
model pdf by the observations before prediction was not
taken into account. Using MI on the full model state at

observation time:

MIfz,y] = PElz|— Elzly| = /p 1og< ?gff};(y;))>dxdy
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Observation information i

 The Mutual information is also equal to the mean of the
entropy of p(x|y) relative to p(x):

MI|x,y] = /p(az,y) log <p?£)$];(y;))> drdy
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p(x)

So the value of the observation does not matter, as in the linear
methods.



Observation information |l

An ensemble representation p(x) = =) da—ua)
gives: '
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Where we used also an ensemble of observations drawn from

25 Yy — yzk

OS L

Q

each p(y|z;) as:

p(yl|w;) =

The point of all this is to show that we can extend the common
linear ‘observation information measures’ to fully nonlinear ones.



Observation information IV

The previous slides got us the M/ for the full model state, so
the full model pdf. This work can be extended to local MI, but
that becomes more complicated.

The problem is that a certain variable has no direct physical
relation to a specific observation, so we need to evaluate the
joint pdf of that model variable and the model equivalent of
the observation.

It might be doable, however...



And prediction...?

Mutual information is the natural tool for data assimilation.

But not so for prediction, where the evolution equations have
to be exploited and the ‘information flow’ is used.

How to combine them? What is the exact relation between
Mutual Information and Information Flow?



