Evaluating pollution transport in weather prediction models?

Helen Dacre, Lucy Davies Helen Webster, David Thomson

Talk Outline

- Air pollution forecasting
 - Offline forecasting
 - Online forecasting
- Aim
- Overview of ETEX 2 case study
- Tracer experiments
 - NAME tracer analysis
 - UM tracer analysis
- Comparison with observations
- Conclusions and future work

Offline Air Pollution Forecasting

- Offline modelling is performed by Chemistry Transport Models (CTM's)
- CTM's require the input of data including:
 - Meteorology (NWP, site)
 - Emissions (NAEI, EMEP)
- Pollutants are transported by 3D winds
- CTM's can include parameterised processes including:
 - Turbulent diffusion
 - Chemical transformations
 - Wet and dry deposition
 - Depletion via radioactive decay
 - Downwash effects of buildings

Offline Air Pollution Forecasts

- 24 hour Air pollution forecast available from National Air Quality Archive (www.airquality.co.uk)
- Results from NAME model
- Forecasts NO_x, NO₂, CO, SO₂ and PM₁₀ concentrations for 16 urban areas and 16 UK regions
- Forecast for East (last updated at 10:00 on 12/02/2009)
 - In towns & cities near busier roads: LOW 3
 - Elsewhere in towns and cities: LOW 3
 - In rural areas: LOW 3

Online Air Pollution Forecasts

 Online forecasting is performed using numerical weather prediction (NWP) models to transport chemical pollutants AND perform chemical transformations (MetCTM's)

Advantages

- No time interpolation 3D fields available at each timestep
- Physical parameterisations consistent
- Met-Chemistry feedbacks

Disadvantages

 High computational cost - unsuitable for ensembles and operational activities or emission scenario forecasts

Online Air Pollution Forecasts

- Met Office UKCA (UK Chemistry Aerosol) model
- Climate resolution simulations
- Air quality forecasts March 2010
- MetCTM's are more complex than existing tools and have not been subject to the degree of testing applied to short-range dispersion models
- Work needed to examine the ability and limitations of MetCTM's to adequately predict air pollution episodes during a range of met conditions

Aim

 Assess performance of UK Met Office's weather prediction model in forecasting the transport of pollutants across Europe

Forecast errors

- Input emissions
- Parameterised processes deposition (dry/wet), chemical transformations, radioactive decay,
- Transport advection, convection, mixing

Overview of ETEX

- European Tracer Experiment (ETEX)
- Aim: To evaluate the ability of a variety of long-range dispersion models to predict pollution concentrations across Europe

ETEX 2:

- Inert and non-depositing tracer released between 15UTC on 15/11/94 and 02:45UTC on 16/11/94 in NW France
- Tracer perfluoromethylcyclopentane (PMCP)
- 168 surface station measurements

ETEX: Observational Network

ETEX 2: Frontal Analysis 00Z

ETEX 2: Satellite IR 07:50 14/11/94

ETEX 2: Surface Observations

Tracer Experiments - NAME

- 'Validation of the UK Met Office's NAME model against the ETEX dataset' (Ryall and Maryon, 1998)
- NAME (Numerical Atmospheric dispersion Modelling Environment)
 - Lagrangian particle dispersion model
 - Pollutants represented by particles each representing a mass of pollutant
 - Each particle carried by 3D wind, with random turbulent motions at each timestep
 - Each particle follows a different trajectory with whole representing plume
- UM meteorology with 50km, 3h resolution

Ryall and Maryon (1998)

- Plume matches obs in first 24h but fails to capture tracer behind cold front
- NAME over predicts obs tracer concentrations

ETEX 2: Hypothesis

- Surface over prediction due to failure to resolve prefrontal ascent and convective updrafts
- Plume orientation error due to failure to capture rapid drop in wind speed and change in wind direction associated with passage of front

NAME Method

- Ryall and Maryon (1998) used 3 hourly met input at 50km resolution
- Vary temporal resolution of met input from UM (6h, 3h, 1h, 30min, 15min)
- Vary spatial resolution of met input from UM (50km, 12km)
- Can we capture the plume re-orientation behind the front?
- Can we reduce the over prediction of surface concentrations?

NAME – Tracer Concentrations

- High resolution tracer plume does not extend as far east
- High resolution maximum tracer behind cold front

NAME – OBS Comparison

T+12

T+24

T+36

NAME Δx=12km Δt=1hr

OBS

NAME Summary

- Agreement between the obs and NAME simulation increases when higher spatial resolution met data is used
 - Correlation coefficient increases T+24-T+48
 - Fractional bias decreases for high resolution simulation if higher temporal resolution met data is used
- Improvement due to better representation of
 - Rapid change in wind speed and direction associated with the cold front
 - Vertical ascent along the cold front

UM - Method

- UM is an Eulerian model
 - Emit tracer over 1 grid box
 - Emit tracer in lowest model level (20m)
- Tracer is passive, non-depositing and non-reactive
- Tracer transported by advection, convection and turbulent mixing
- Vary spatial resolution (50km, 12km)

UM – Tracer Concentrations

- High resolution maximum tracer concentrations larger
- Both resolutions capture tracer behind cold front

UM – NAME Comparison

- UM shows similar plume shape to NAME simulation
- UM predicts larger tracer concentrations (bl mixing param?)

UM – OBS Comparison

UM ∆x=12km ∆t=5min

OBS

T+24

T+36

Helen Dacre

UM – Tracer Concentrations

Tracer concentrations at 2880m

- Tracer transported vertically out of boundary layer
- Mid-level tracer plume is orientated east-west

10.0

UM – Tracer Concentrations

Vertical Cross-section of tracer concentrations

- Tracer transported vertically out of boundary layer along $\theta_w = 287K$ isotherm
- Convection transports tracer up to 8km

ETEX 2: Isentropic Surface Analysis

Frontal Cyclone Schematic

Conclusions

- Agreement between obs and NAME simulations increases when high res met data is used
- UM plume shape similar to NAME simulation but tracer magnitudes are larger
- UM is capable of simulating transport of point source emissions
- Analysis of tracer transport processes possible in online model
 - Vertical transport occurs in warm conveyor belt ascent and in frontal convection

Future Work

- Sensitivity studies to timing and location of emission relative to front show anomalies on the order of the tracer concentrations
- How do you quantitatively evaluate Eulerian pollution transport models?
- QPF techniques too sparse observational network
- Model concentrations should be described in a probabilistic framework
- Concentration is a random variable and so should be described statistically using ensemble mean, variance and probability distribution

ETEX 2: UM fields at 18Z 14/11/94

Wet-bulb potential temp at 500m

Vertical velocity at 750mb

Large-scale rain amount

UM – NAME Comparison

UM ∆x=12km ∆t=5min

NAME ∆x=12km ∆t=1hour

T+12

T+36

- UM shows similar plume shape and magnitude to NAME
- UM predicts deeper tracer plume

NAME - Statistics

ETEX 2: Obs and UM

