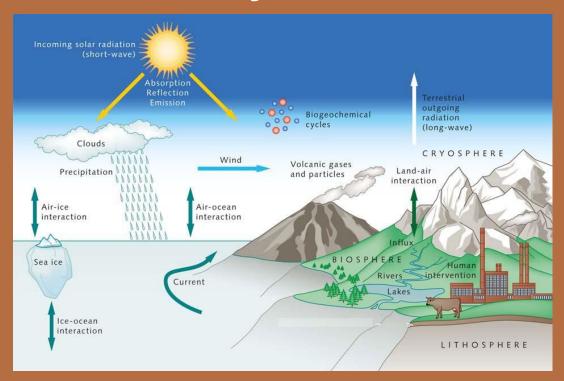
#### Atmospheric Monitoring and Assessment - Geospatial Data and Models



Mir Matin M. S. R. Murthy

International Centre for Integrated Mountain Development


Kathmandu, Nepal

#### What do we Observe



THREE DECADES FOR MOUNTAINS AND PEOPLE

# The spatio-temporal states and processes of the climate system



Source: Yang et al., Nature Climate Change, 15 Sep, 2013





- Microscale: kilometers
- Mesoscale: tens of kilometers
- Synoptic: hundreds or thousands of kilometers
  - Weather Maps
- Global
  - Wind belts
  - El Nino and other oscillations

## **Tools for Observation**



- Surface Network
- Ground based Radar
- Upper air
- Space based

## Ground based monitoring



THREE DECADES FOR MOUNTAINS AND PEOPLE

#### • Strengths:

- Accurate, precise measurements
- Provide near surface condition

#### • Limitations:

- Measurements only in location of the instrument. Needs interpolation.
- Expensive to cover large region

### Satellite data



- Strengths:
- Provide seamless coverage at various scale and from places where ground based monitoring is difficult
- Provide routine measurement at various temporal scale
- Many of the data are in public domain
- Limitations:
- Optical sensor care blocked by cloud
- Measure entire vertical column not specific to near surface.
- Temporal and spatial resolution can limit data availability.

Integration of Satellite and Ground based data



- Satellite provide data from area where ground coverage aren't available
- Ground based data are used to validate satellite measurement
- Correlation between satellite and ground data are used to improve satellite measurement

### Model forecast data



- Strengths:
- Provide future conditions
- Helpful for decision making for future
- Limitations:
- Uncertainty in forecast
- Difficult to interpret

# Importance of Satellite based observation



- The Global Climate Observing System (GCOS) declared 26 out of 50 essential climate variables (ECVs) as significantly dependent upon satellite observations
- Observing the climate system at multiple spatio-temporal scales
- Improvement of meteorological reanalysis data

#### Essential Climate Variables (ECVs) for which satellite observations make a significant contribution

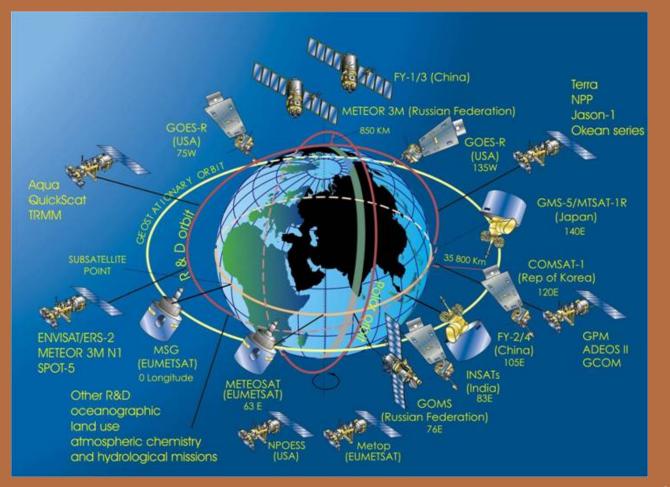


THREE DECADES FOR MOUNTAINS AND PEOPLE

| Domain                                                                                       | Essential Climate variables                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atmospheric<br>(over land,<br>sea<br>and ice)                                                | Surface: Air temperature, Wind speed and direction, Water<br>vapour, Pressure, Precipitation, Surface radiation budget.<br>Upper-air : Temperature, Wind speed and direction, Water vapour, Cloud<br>properties, Earth radiation budget (including solar irradiance).<br>Composition: Carbon dioxide, Methane, and other long-lived<br>greenhouse gases, Ozone and Aerosol, supported by their<br>precursors |
| Oceanic                                                                                      | Surface: Sea-surface temperature, Sea-surface salinity, Sea level,<br>Sea state, Sea ice, Surface current, Ocean colour, Carbon dioxide<br>partial pressure, Ocean acidity, Phytoplankton.<br>Sub-surface: Temperature, Salinity, Current, Nutrients, Carbon<br>dioxide partial pressure, Ocean acidity, Oxygen, Tracers.                                                                                    |
| Terrestrial                                                                                  | River discharge, Water use, Groundwater, Lakes, Snow cover,<br>Glaciers and ice caps, Ice sheets, Permafrost, Albedo, Land cover<br>(including vegetation type), Fraction of absorbed photo synthetically<br>active radiation (FAPAR), Leaf area index (LAI), Above-ground<br>biomass, Soil carbon, Fire disturbance, Soil moisture.                                                                         |
| CCOS 2011: SYSTEMATIC OBSEDVATION REALIDEMENTS FOR SATELLITE BASED DATA RRADUCTS FOR CLIMATE |                                                                                                                                                                                                                                                                                                                                                                                                              |

GCOS 2011: SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE , GCOS 154

### Atmospheric remote sensing -History




- 1960: TIROS 1 proved that satellite can observe weather pattern
- 1964-78: Nimbus series seven satellites launched during that period.
- 1962: Defense Meteorological Satellite Program (DMSP) launched
- 1966: ESSA I, II, first US global weather satellite
- 1972: LandSAT series launched
- 1974: Geostationary Operational Environmental Satellite (GOES) series launched
- 1975: SMS-A, SMS-B, first spacecraft with geosynchronous orbit. Started providing cloud cover every 30 minutes
- 1984: The earth radiation budget (ERBE) satellite began
- 1986: SPOT-1 satellite launched
- 1992: US-French TOPEX Poseidon Satellite began, JERS
- 1997: TRMM launced including precipitation RADAR
- 1999: LandSAT 7, ASTER, MODIS-Terra, IKONOS
- 2002: SPOT-5, ENVISAT, MODIS Aqua
- 2003: GEOSS system launched, RadarSAT-2 launched

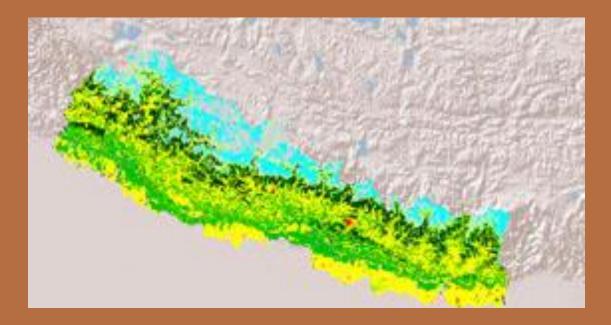
# Access to a **Variety** of remote sensing platforms



THREE DECADES FOR MOUNTAINS AND PEOPLE



Integration across: Platforms, Sensors, Products, DAACs is non-thi2ial



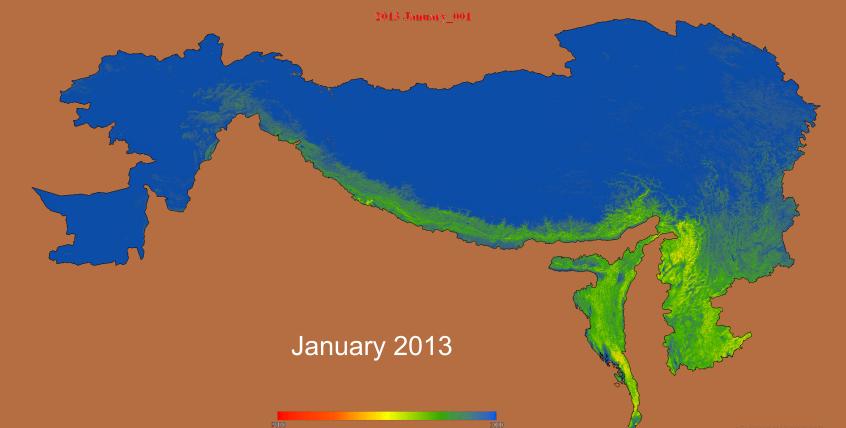

- MODIS ground station. MODIS level 2 and level 3 products
  - Near real time data delivery of selected Level-II products (within 30 minutes of satellite overpass)
  - Improved Level-III data products calibrated and customized to regional context



THREE DECADES FOR MOUNTAINS AND PEOPLE

# Land Cover Dynamics Decadal Land cover maps of HKH region




Nepal Land cover 2010

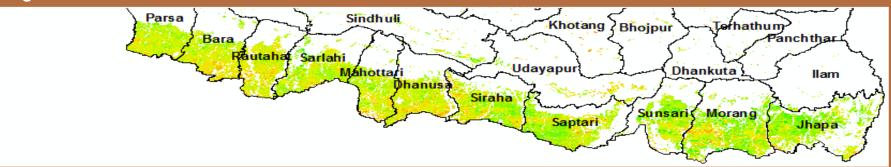


THREE DECADES FOR MOUNTAINS AND PEOPLE

#### Land Cover Dynamics

– Annual/Seasonal vegetation dynamics (in process)





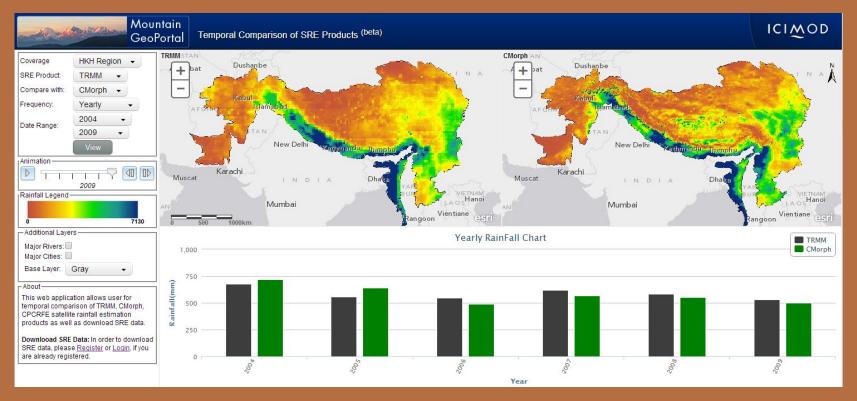

THREE DECADES FOR MOUNTAINS AND PEOPLE

# Land Cover Dynamics – Crop area and growth

12 August 2013

#### **Temopral Patterns of Rice**




12 August 2014



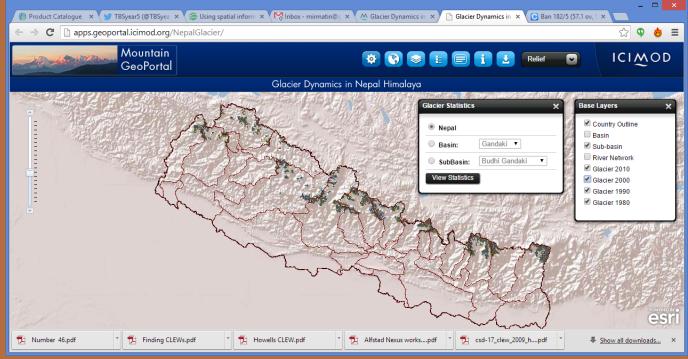


THREE DECADES FOR MOUNTAINS AND PEOPLE

# Rainfall TRMM based rainfall



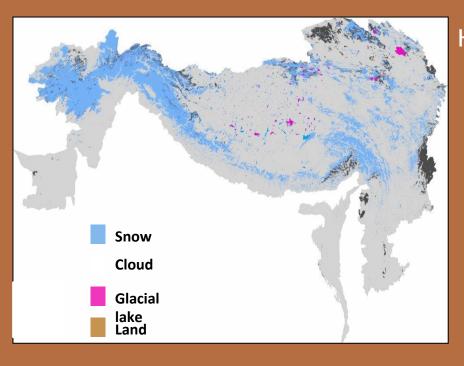



THREE DECADES FOR MOUNTAINS AND PEOPLE

#### Cryosphere

- Baseline data on Glaciers of the HKH region
- Decadal glacier inventory Nepal, Bhutan
- MODIS snow cover data (500m, 8-day composite)




- Cryosphere
  - Baseline data on Glaciers of the HKH region
  - Decadal glacier inventory Nepal, Bhutan



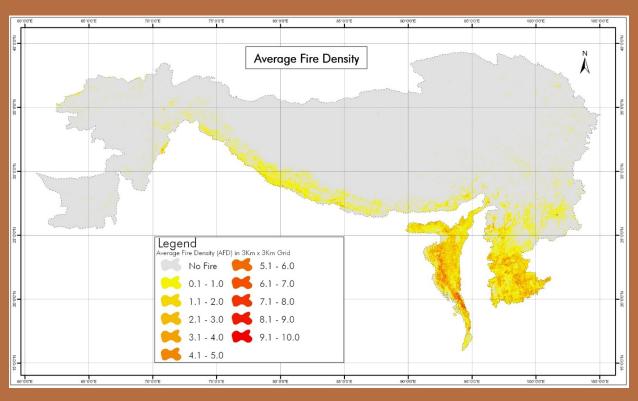


THREE DECADES FOR MOUNTAINS AND PEOPLE

- Cryosphere
  - MODIS snow cover data (500m, 8-day composite)



HKH Annual Snow Map (2011)




- Active Forest fire
  - Based on MODIS active fire data
  - Filtered based on local context and fire probability
  - Overlaid with administrative, topographic and land cover information



THREE DECADES FOR MOUNTAINS AND PEOPLE

#### Active Forest fire



Mean Fire Density (Based on 10 Years MODIS based daily Fire occurrence data

#### Integration with Climate Model

ICIMOD

30

- Input of climate models
  - Provide boundary conditions
  - Reinitialize models
  - Update the state variables
  - Provide constrains
    - Net cloud forcing
    - Short-term cloud feedback
- Validate/calibrate climate models
- Improve Climate model

#### Limitations



- Short time span of data
- Biases associated with instrument
  - Inadequate spatial resolution and temporal frequency
  - Poor calibrations
  - Merging data from different systems
- Uncertainties in retrieval algorithms
  - Radiative transfer models
  - Uncertainties in common inputs

### **Prospect for Future**



- Future improvement in satellite
- Further calibration of additional data layers for HKH region
- Develop validation network within HKH region for critical variables
- Downscale ECVs for application at local and national scale





# $\frac{\mathsf{ICIMOD}}{\widetilde{30}}$







# $\frac{\mathsf{ICIMOD}}{\widetilde{30}}$