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In traditional and geophysical fluid dynamics, it is common to describe stratified turbulent fluid flows with low Mach number and
small relative density variations by means of the incompressible Boussinesq approximation. Although such an approximation
is often interpreted as decoupling the thermodynamics from the dynamics, this paper reviews recent results and derive new
ones that show that the reality is actually more subtle and complex when diabatic effects and a nonlinear equation of state
are retained. Such an analysis reveals indeed: (1) that the compressible work of expansion/contraction remains of comparable
importance as the mechanical energy conversions in contrast to what is usually assumed; (2) in a Boussinesq fluid, compressible
effects occur in the guise of changes in gravitational potential energy due to density changes. This makes it possible to construct
a fully consistent description of the thermodynamics of incompressible fluids for an arbitrary nonlinear equation of state; (3)
rigorous methods based on using the available potential energy and potential enthalpy budgets can be used to quantify the work
of expansion/contraction B in steady and transient flows, which reveals that B is predominantly controlled by molecular diffusive
effects, and act as a significant sink of kinetic energy.

1. Introduction

A large class of fluid flows of interest in traditional and
geophysical fluid dynamics are characterised by fluid veloc-
ities much smaller than the speed of sound (low Mach
number), strong density stratification yet with small relative
density variations, and high Reynolds number (i.e., they
are turbulent). It has become common practice to regard
such flows as incompressible or nearly incompressible, and
to describe them by means of particular approximations
to the fully compressible Navier-Stokes equations known as
the Boussinesq and anelastic approximations. Traditionally,
such approximations are derived in the idealised context
of purely adiabatic motions, hence excluding irreversible
processes such as molecular viscous and diffusive processes.
The equation of state is also usually linearised, so that density
anomalies become proportional to temperature anomalies.
In that case, it is easily shown that the resulting approx-
imations filter out acoustic waves and thus fully decouple
the dynamics from the thermodynamics, in such a way that
the mechanical energy (the sum of kinetic energy (KE) and

gravitational potential energy (GPE)) and the internal energy
(IE) obey independent conservation laws.

The coupling between dynamics and thermodynamics
is reinstated, however, when the Boussinesq and anelastic
approximations are appended with a representation of ir-
reversible processes due to molecular viscous and diffusive
processes, and/or when the nonlinearities of the equation of
state are no longer neglected. Such an approach is used for
instance in the field of numerical ocean modelling. The way
the coupling between the dynamics and thermodynamics
manifests itself in that case is through the appearance of
nonconservative terms in the local balance equation for the
mechanical energy, which indicates the need for conversions
with internal energy if total energy is to be conserved.
Whereas the approximate forms of KE and GPE are close
to their nonapproximated forms, the approximate form of
IE has remained so far very mysterious, given that only the
conversion terms with IE are explicitly represented in the
Boussinesq and anelastic approximations, not IE itself. Since
the approximate form of IE is in general unknown and left
implicit, it is in general not straightforward to determine



2 ISRN Thermodynamics

whether the approximation obtained by adding viscous and
diffusive terms has a well-defined energy budget. Moreover,
understanding the role of IE in such approximations may
give rise to misinterpretations as in the case discussed by
Tailleux [1].

The lack of explicit knowledge about the form assumed
by the internal energy in the Boussinesq and anelastic ap-
proximations makes it difficult to understand the precise
role played by internal energy (and hence the dynamics/
thermodynamics coupling) in incompressible or nearly in-
compressible turbulent stratified fluid flows. Until now, this
difficulty has been systematically avoided by assuming the
conversions to and from internal energy, and hence the dy-
namics/thermodynamics coupling, to be dynamically unim-
portant at leading order. Recently, however, Tailleux [1] chal-
lenged this assumption by showing from first principles that
it was inconsistent with the second law, by suggesting that
the coupling between dynamics and thermodynamics should
increase both with the strength of the stratification and the
degree of turbulence in the fluid.

The main objective of this paper will be to provide in-
sights into the dynamics/thermodynamics coupling in weak-
ly compressible turbulent stratified fluid flows. In particular,
it will serve as follows.

(1) It will provide a general overview of the fundamental
physical and technical issues involved in understand-
ing the coupling between dynamics and thermody-
namics in turbulent stratified fluids. It will explain
the importance of isolating the part of the total po-
tential energy (gravitational + potential) that is avail-
able for reversible conversions into kinetic energy, as
well as the part of the internal energy available for
irreversible conversions into mechanical energy. This
is based on the results by Tailleux [1, 2].

(2) It will show how to construct explicitly the full
range of known thermodynamic potentials, including
entropy, internal energy, enthalpy, that have previ-
ously remained implicit in the Boussinesq and anelas-
tic approximations. It will show how it is possible to
establish a formal correspondence between the work
of expansion/contraction in compressible fluids, and
the changes in gravitational potential energy in the
Boussinesq and anelastic approximations.

(3) It will show how the above results can help clarify and
provide new insights into the energetics of turbulent
mixing in turbulent stratified fluid flows, as discussed
in Tailleux [1].

(4) It will discuss the general issue of how to estimate the
overall work of expansion/contraction in steady-state
buoyancy driven circulations, which has received
much attention over the past decade in relation with
understanding the relative importance of the surface
buoyancy fluxes in driving and stirring the ocean
circulation.

2. Energetics and Dynamics/Thermodynamics
Coupling in Compressible Fluids

2.1. Compressible Navier-Stokes Equations for a Binary Fluid.
Issues pertaining to the coupling between the dynamics
and thermodynamics in turbulent-stratified fluids are fun-
damentally rooted in the description of the energetics of a
fully compressible fluid. For most fluids of interest, this can
be achieved in the context of the compressible Navier-Stokes
equations. To fix ideas, these equations are given here for
a binary fluid with a nonlinear equation of state such as
seawater, namely,

ρ
Dv
Dt

+∇P = −ρ∇Φ +∇ · S, (1)

Dρ

Dt
+ ρ∇ · v = 0, (2)

ρ
Dη

Dt
= ρq̇

T
= −∇ ·

(
ρFη

)
+ ρη̇irr, (3)

ρ
DS

Dt
= −∇ · (ρFS

)
, (4)

P = P
(
η, S, υ

) = − ∂e

∂υ
, T = T

(
η, S, υ

) = ∂e

∂η
, (5)

where v = (u, v,w) is the three-dimensional velocity field, ρ
is the density, P is the pressure, Φ = g0Z is the geopotential
expressed in terms of a constant gravitational acceleration
g0 and geopotential height Z = Z(z) and z the geometrical
height, S is the deviatoric stress tensor, η is the specific
entropy, S is salinity, e = e(η, S, υ) is the specific internal
energy regarded as a function of entropy, salinity, and specific
volume υ = 1/ρ, T is the temperature, κ is the molecular
diffusivity, cp is the specific heat at constant pressure, εK is
the viscous dissipation rate, Fη and FS are molecular diffusive
fluxes of entropy and salt, while η̇irr > 0 is the irreversible
production of entropy imposed by the second law of ther-
modynamics. In practice, these equations need to be sup-
plemented with appropriate boundary conditions, for which
specific examples will be discussed in the text.

2.2. Energetics and Dynamics/Thermodynamics Coupling. In
order to discuss the nature of the coupling between dynamics
and thermodynamics for a compressible fluid, we first form
a local evolution equation for the mechanical energy Em =
v2/2 + Φ, that is, the sum of kinetic energy and gravitational
potential energy, by multiplying the momentum equation
(1); after some rearrangement, one thus obtains

ρ
D

Dt

[
v2

2
+ Φ

]
+∇ · (Pv − ρFke

) = ρP
Dυ

Dt
− ρεK , (6)

which can also be rewritten in conservative form as follows:

∂
(
ρEm

)

∂t
+∇ ·

[
ρ

(
Em +

P

ρ

)
v − ρFke

]
= ρP

Dυ

Dt
− ρεK ,

(7)

where the work against the stress tensor v·∇·S = ∇·(ρFke)−
ρεK has been decomposed into the divergence of the viscous
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flux of kinetic energy minus the viscous dissipation rate ρεK .
Physically, the presence of the right-hand side in both (6) and
(7) indicates that mechanical energy Em is not a conservative
quantity. The principle of total energy conservation suggests
that the r.h.s. must therefore represent a conversion with
internal energy.

In order to make this apparent, we now turn to the der-
ivation of a local evolution equation for the internal energy.
From the well-known expression of its total differential form:
de = Tdη + μdS − Pdυ, combined with the evolution equa-
tions for entropy and salt (3) and (4), it follows that

ρ
De

Dt
= ρ

[
T
Dη

Dt
+ μ

DS

Dt
− P

Dυ

Dt

]
= T

[
−∇ ·

(
ρFη

)
+ ρη̇irr

]

− μ · ∇ · (ρFS
)− ρP

Dυ

Dt

= −∇ ·
[
ρ
(
TFη + μFS

)]

+ ρ
[

Fη · ∇T + FS · ∇μ + Tη̇irr

]
− ρP

Dυ

Dt
.

(8)

By summing the mechanical energy equation with the inter-
nal energy, we arrive at the following result:

∂
(
ρE
)

∂t
+∇ ·

[
ρ

(
E +

P

ρ

)
v − ρFke + ρFq

]

= +ρ
[

Fη · ∇T + FS · ∇μ + Tη̇irr − εK
]

︸ ︷︷ ︸
Ėirr

,
(9)

where E = Em + e is the total energy, while we also defined
Fq = TFη + μFS as a generalised heat flux. This in turn pro-
vides the expression for the entropy flux Fη = (Fq − μFS)/T .
Now, the principle of total energy conservation implies that
the total energy within a control volume can only change
through energy and mass fluxes through this control volume.
This in turn requires that the term Ėirr vanishes identically,
which imposes the following constraint on the irreversible
entropy production term:

η̇irr =
εK − Fη · ∇T − FS · ∇μ

T
. (10)

This in turn implies constraints on the admissible forms of
the entropy flux Fη and salt flux FS, which need to be such
that η̇irr ≥ 0 in all circumstances. We also see that the
irreversible production of entropy must vanish at thermo-
dynamic equilibrium, which for a binary fluid is achieved
when T and μ become uniform. This is clearly the case here.
It follows from these considerations that the internal energy
equation can therefore be rewritten as

ρ
De

Dt
+∇ ·

(
ρFq

)
= −ρPDυ

Dt
+ ρεK . (11)

Note that this expression is consistent with the classical form
of the first law of thermodynamics De/Dt = q̇ + ẇ, with
q̇ = εK − ρ−1∇ · (ρFq) as the local rate of heat transfer,

and ẇ = −PDυ/Dt as the local rate of work transfer. Ac-
cording to (11), the coupling between the dynamics and
thermodynamics can be regarded as the sum of two effects.
The first effect is due to the viscous dissipation of kinetic
energy into the “heat” part of internal energy, while the
second is related to the conversion between the elastic part
of internal energy and kinetic energy. It is the latter term that
is usually assumed to be of secondary importance in weakly
compressible turbulent stratified fluids at low Mach number,
and therefore the one under focus in this paper.

2.3. Energetics of Purely Buoyancy-Driven Circulations. As
further motivation and justification for investigating the
coupling between the dynamics and thermodynamics in
turbulent-stratified fluids, let us simply point out that the
work of expansion/contraction plays a central role in the
energetics of purely buoyancy-driven circulations, as in
horizontal convection, for example, Hughes and Griffiths
[3], which has received much attention in the oceanography
community over the past ten years. Thus, for a fluid heated
and cooled at the top, assumed to be a surface of constant
geopotential, the mechanical energy balance is as follows:

∫

V
P
Dυ

Dt
dm

︸ ︷︷ ︸
B

=
∫

V
ρεKdV ,

(12)

where dm = ρdV is the mass of an elementary fluid element,
and expresses the fact that in a steady state, the work of
expansion/contraction must balance the volume-integrated
viscous dissipation. Such a balance was recently discussed in
details by Tailleux [2] in the context of the “ocean heat engine
controversy.” The importance of understanding what such a
balance tells us about B and the viscous dissipation stems
from the central role played by εK in the theory of turbulent
flows, since it is the primary quantity entering Kolmogorov
theory of turbulence for instance. The riddle here comes
from the apparent conflict between the traditional belief
that compressibility effects are small in weakly compressible
fluids such as water and seawater, which on the basis of
(12) would tend to suggest that flows in such fluids cannot
really be large or be associated with significant amount
of viscous dissipation, and the observation that even in
water, buoyancy-driven flows can be sometimes vigorous,
as in Rayleigh-Bénard convection, for instance, for which
(12) is also supposed to hold. The primary purpose of this
paper is to convince the reader that compressible effects in
turbulent stratified fluids are significantly more important
than usually assumed, and that such large compressible
effects are actually described both by the incompressible
Boussinesq and Anelastic approximations, in contrast to
widely held beliefs to the contrary.

3. Dynamics/Thermodynamics Coupling in
Boussinesq/Anelastic Fluids

3.1. Thermodynamically Consistent Boussinesq/Anelastic Ap-
proximations. Two main classes of “sound-proof” approx-
imations are commonly used for the study of weakly
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compressible fluid flows at low Mach numbers, such as
those typical of oceanic and atmospheric flows. These are
the Boussinesq approximation, for example, Boussinesq [4],
and the anelastic approximation, for example, Ogura [5]. As
shown recently by Pauluis [6], improving on earlier ideas by
Ingersoll [7], it is possible to derive a thermodynamically and
energetically consistent set of anelastic equations for a binary
fluid with an arbitrary nonlinear equation of state that also
includes the Boussinesq approximation as a particular case.
For the present purposes, these can be written as follows:

Dv
Dt

+∇ ·
(
δP

ρ0

)
= −

(
ρ − ρ0

ρ0

)
∇Φ +

1
ρ0
∇ · S, (13)

∇ · (ρ0v
) = 0, (14)

ρ0
Dη

Dt
= ρq̇

T
= −∇ ·

(
ρ0Fη

)
+ η̇irr, (15)

ρ0
DS

Dt
= −∇ · (ρ0FS

)
, (16)

where v = (u, v,w) is the three-dimensional velocity field,
δP = P − P0 is the difference between the total pressure
P and the reference pressure P0, ρ and ρ0 are the density
and reference density respectively, Φ = g0Z is the geopo-
tential, which can be written as the product of a constant
gravitational acceleration times the geopotential height, a
function of depth alone; S is the stress tensor, εK is the
viscous dissipation rate, η is the specific entropy, and S is the
salinity. Pauluis [6] regards the second equation as one for
the total water content. The present results are applicable to
an arbitrary equation of state for a binary fluid in principle.

3.2. Proof of Energetic and Thermodynamic Consistency. Prior
to the studies by Ingersoll [7], Pauluis [6], Young [8],
Nycander [9], and Tailleux [10], it was generally thought to
be impossible to derive energetically and thermodynamically
consistent Boussinesq and anelastic approximations for a
binary fluid with an arbitrary nonlinear equation of state.
It is therefore of interest to verify such consistency, as it is
closely related to understanding the nature of the dynam-
ics/thermodynamics coupling in the BA system. To that end,
we first derive the kinetic energy equation similarly as for the
compressible case addressed above, which yields

ρ0
D

Dt

v2

2
+∇ · [δPv − ρ0Fke

] = ρ0b
DZ

Dt
− ρ0εK , (17)

where b = −g0(ρ− ρ0)/ρ0 is the buoyancy, and where v · ∇ ·
S = ∇ · (ρ0Fke) − ρ0εK was split into a divergent term, and
the classical viscous dissipation term, as previously.

The previous approaches to establishing the energetic
consistency of the BA system by Ingersoll [7], Pauluis [6],
Young [8], and Nycander [9] all similarly relied on linking
the term ρ0bDZ/Dt to the following function:

h‡
(
η, S,Z

) = h0
(
η, S
)−

∫ Z

Z0

b
(
η, S,Z′

)
dZ, (18)

where h0(η, S) = h‡(η, S,Z0) is a priori an arbitrary function
of the adiabatically conserved variables η and S. The evolu-
tion equation for such a function is, therefore,

ρ0
Dh‡

Dt
= ρ0Cη

Dη

Dt
+ ρ0CS

DS

Dt
− ρ0b

DZ

Dt
, (19)

where

Cη = ∂h0

∂η
−
∫ Z

Z0

∂b

∂η

(
η, S,Z′

)
dZ′,

CS = ∂h0

∂S
−
∫ Z

Z0

∂b

∂S

(
η, S,Z′

)
dZ′.

(20)

Now, combining the kinetic energy equation with (19) leads
to:

ρ0
D

Dt

[
v2

2
+ h‡

]
+∇ · [δPv − ρ0Fke

]

= ρ0

[
Cη

Dη

Dt
+ CS

DS

Dt
− εK

]
.

(21)

This is an important result, which clearly shows that the
energy quantity ρ0(v2/2 + h‡) is conserved in absence of
viscous (εK = 0) and diabatic effects (Dη/Dt = DS/Dt = 0)
and hence can be regarded as the relevant energy of the
BA system in such conditions. As argued by Tailleux [10],
however, it is important to realize that the principle of en-
ergy conservation must hold both for adiabatic/inviscid con-
ditions, as well as for diabatic/viscous ones. In the latter case,
the r.h.s. of (21) will not vanish in general, which calls for
the existence of an additional energy quantity h∗ satisfying
an evolution equation of the type:

ρ0
Dh∗

Dt
+∇ · (ρ0Fh

) = −ρ0

[
Cη

Dη

Dt
+ CS

DS

Dt
− εK

]
,

(22)

where the r.h.s. of (22) exactly cancels out the r.h.s. of (21),
making the quantity v2 + h‡ + h∗ the relevant total energy
for the BA system, rather than the quantity v2/2 + h∗. The
problem of the latter approach, however, is that it focuses on
the coupling between the adiabatic energy v2 + h‡ and the
diabatic energy h∗, which because of the function h0(η, S)
does not appear to be uniquely defined. As a result, this
makes it difficult to relate this way of discussing the energetics
of the BA system to the classical approach.

Tailleux [10] showed that the energetic and thermody-
namic consistency of the BA system can in fact be approached
in a way closer to the classical approach by rewriting the ki-
netic energy equation as follows:

ρ0
D

Dt

(
v2

2
− b(Z − Z0)

)
+∇ · [δPv − ρ0Fke

]

= −ρ0(Z − Z0)
Db

Dt
− ρ0εK

(23)
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by using the result that bdZ = d[b(Z − Z0)] − (Z − Z0)db,
which in conservative form becomes

∂
(
ρ0Em

)

∂t
+∇ ·

[
ρ0

(
Em +

δP

ρ0

)
v − ρ0Fke

]

= −ρ0(Z − Z0)
Db

Dt
− ρ0εK

(24)

by defining the total mechanical energy by ρ0Em = ρ0v2/2 −
ρ0b(Z−Z0) = ρ0v2/2+g0(ρ−ρ0)(Z−Z0), which is consistent
with the traditional definition. Now, it is easily seen that
(23) and (24) are directly comparable with the compressible
mechanical energy equations (6) and (7) provided that it is
meaningful to establish the following correspondence:

ρP
Dυ

Dt
←→ −ρ0(Z − Z0)

Db

Dt
. (25)

Tailleux [10] shows that such a correspondence is legitimate.
In the Boussinesq case (ρ0 = constant), this can be shown by
expanding the pressure and specific volume as follows: P =
Pa− ρ0g0Z + · · · and υ = 1/ρ = 1/ρ0− (ρ− ρ0)/ρ2

0 + · · · , so
that

ρP
Dυ

Dt
≈ −ρ0

(
Pa − ρ0g0Z

) D
Dt

(
ρ− ρ0

ρ2
0

)
= −ρ0(Z − Z0)

Db

Dt
(26)

in agreement with (25), provided that one defines Z0 by Z0 =
Pa/(ρ0g0). Although the anelastic case is somewhat more
involved, it turns out that such a correspondence can also be
established in the anelastic case, as discussed by Tailleux [10].

3.3. Thermodynamics of Boussinesq and Anelastic Fluids. The
possibility to regard the term δWba = (Z − Z0)db as the
counterpart of the compressible work δW = −Pdυ is an
important result, because it naturally points to the method
by which to construct the thermodynamics of the Boussi-
nesq/Anelastic system. Indeed, let us recall that a basic tenet
of classical thermodynamics is that the specific internal
energy e = e(η, S, υ), whose total differential is given by

de = Tdη + μdS− Pdυ, (27)

where μ is the relative chemical potential of seawater in
seawater, is a function of state independent of the ther-
modynamic path followed. As a result, it follows that the
generalised heat transfer differential δQ = Tdη + μdS is not
independent of the work transfer δW = −Pdυ. In classical
thermodynamics, this interdependence is imposed by the so-
called Maxwell relationships, for example, Callen [11], which
simply expresses the result that the cross-derivatives with
respect to two different variables must be equal for twice
continuously differentiable functions. In the present case, the
assumption that e is a function of the thermodynamic state
only implies that

T = ∂e

∂η
, μ = ∂e

∂S
, P = − ∂e

∂υ
, (28)

which in turn implies the following three Maxwell relation-
ships:

∂T

∂υ
= ∂2e

∂η∂υ
= −∂P

∂η
,

∂T

∂S
= ∂2e

∂η∂S
= ∂μ

∂η
,

∂μ

∂υ
= ∂2e

∂S∂υ
= −∂P

∂S
.

(29)

The above remarks suggest that the simplest way to ensure
that the BA system is energetically and thermodynamically
consistent is to ensure that the approximation to the general-
ised heat transfer, denoted here by δQba = Tbadηba +μbadSba,
is similarly linked via relevant Maxwell relationships to the
approximation to the work transfer identified previously,
namely,

δWba = (Z − Z0)db, (30)

where the subscript ba was used to denote the approximation
to the generalised “heat variables and functions” T , η, μ, and
S. If so, this would in turn allows one to regard the following
expression:

deba = Tbadη + μbadS + (Z − Z0)db, (31)

as the natural counterpart of the fundamental relation of
thermodynamics (27), and hence as the total differential of
the relevant approximation to the internal energy of the “BA
fluid,” for which the natural variables are entropy η, salinity
S, and buoyancy b. In practice, however, it is often more
convenient to work with pressure P as a dependent variable
rather than specific volume, as well as with temperature T
rather than entropy η, which motivates the introduction of
additional thermodynamic potentials constructed from (27)
by means of the Legendre transform, for example, Alberty
[12]. The most common thermodynamic potentials that are
also the most relevant for the present work are the specific
enthalpy h = e+pυ and the Gibbs free energy g = e+pυ−Tη,
whose natural dependent variables are (η, S,P) and (T , S,P),
respectively. From (31), it is easy to convince oneself that
the corresponding approximations to h and g are given by
hba = eba − b(Z − Z0) and gba = eba − b(Z − Z0) − Tbaηba,
with the following total differentials:

dhba = d[eba − b(Z − Z0)]

= Tbadηba + μbadSba − bdZ
(32)

dgba = d
[
eba − b(Z − Z0)− Tbaηba

]

= −ηbadTba + μbadSba − bdZ.
(33)

Until now, the above considerations have remained rather
formal, and while they indicate that it is in principle
possible to construct the full range of known thermodynamic
potentials for a BA fluid, they have not addressed the issue of
how such potentials might be constructed in practice.

In the previous approaches by Ingersoll [7], Pauluis [6],
Young [8], and Nycander [9], the authors have generally
assumed the buoyancy b = b(η, S,Z) to be given as a function
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of the dependent variables considered, typically entropy,
salinity, and geopotential height Z. From (32), this can be
integrated with respect to Z, namely,

hba
(
η, S,Z

) = hba
(
η, S,Z0

)−
∫ Z

Z0

b
(
η, S,Z′

)
dZ′, (34)

for some reference geopotential height Z0, traditionally taken
at the ocean surface in the oceanic case, but this only
provides an expression for the specific enthalpy up to an
indeterminate function of entropy and salinity, which cannot
be specified without additional thermodynamic information
about the fluid. This problem arises simply because the
knowledge of density alone is in general never sufficient by
itself to specify all possible thermodynamic properties of the
fluid, which in general also requires some knowledge of such
properties as the heat capacity, speed of sound, for example,
see Feistel [13] or Callen [11] for exhaustive discussion of
this issue. For this reason, it seems preferable to investigate
the possibility of deriving the approximate thermodynamic
potentials from the knowledge of the Gibbs function g =
g(T , S,P), for instance, which is currently used to synthesise
all thermodynamic properties for seawater as discussed in
Feistel [13]. Here, we show that the function,

gba = gba(T , S,Z) = g(T , S,P0(Z)) + g0(Z − Z0), (35)

satisfies the above differential relationships and hence can be
regarded as the relevant Boussinesq/Anelastic approximation
to the Gibbs function. Indeed, from the result that dg =
−ηdT + μdS + υdP, it follows that the total differential of gba
is given by

dgba = −η̃dT + μ̃dS + g0
(
1− ρ0υ̃

)
dZ, (36)

where we used dP0 = −ρ0g0dZ, and where the tilde quanti-
ties denote the exact quantities in which the actual pressure
is replaced by the reference pressure P0(Z), that is, η̃ =
η(T , S,P0(Z)), μ̃ = μ(T , S,P0(Z)), and υ̃ = υ(T , S,P0(Z)).
This expression is consistent with the previous one, provided
that one chooses

ηba = η̃, μba = μ̃,

b = −g0
(
1− ρ0υ̃

) = −g0

(
ρ̃ − ρ0

ρ̃

)
.

(37)

This in turn shows that the density entering the definition
of the buoyancy is actually related to the “true” density by
ρ = ρ0 + ρ0/ρ̃(ρ̃− ρ0) = 2ρ0 − ρ2

0/ρ̃.
Assuming that g is known, we can deduce the following

thermodynamic potentials as follows:

eba(S,T ,Z) = gba + b(Z − Z0) + Tbaηba

= g̃ +
(
g0 + b

)
(Z − Z0)− T

∂g̃

∂T
,

hba(S,T ,Z) = eba − b(Z − Z0) = g̃ + g0(Z − Z0)− T
∂g̃

∂T
,

(38)

which are, respectively, associated with the total differentials:

deba = Tdη̃ + μ̃dS + (Z − Z0)db,

dhba = Tdη̃ + μ̃dS− bdZ.
(39)

While the above approach is well suited to the case of sea-
water whose Gibbs function is now well documented, it is
arguably less relevant to the case of a fluid whose thermody-
namic properties have been synthesised using a different kind
of thermodynamic potential. In theory, such a synthesis can
indeed be achieved in many ways, for instance, using internal
energy, enthalpy, Helmholtz-free energy, or even the more
esoteric Massieu functions as discussed by Callen [11]. While
it is beyond the scope of this paper to treat all possible cases,
it is useful for illustration to discuss the particular case where
the specific enthalpy h = h(η, S,P) is the thermodynamic
potential used to synthesise the thermodynamic properties
of the fluid considered. In that case, it is left to the reader
to check that the relevant approximation hba to the specific
enthalpy h is then given by hba = h(η, S,P0(Z))+g0(Z−Z0), as
can be verified from taking the total differential of the latter
expression, namely,

dhba = T̃dη + μ̃dS + g0
(
1− ρ0gυ̃

)
dZ = T̃dη + μ̃dS− bdZ,

(40)

which is in agreement with (32). As seen previously, eba =
hba + b(Z − Z0), which implies that the the internal energy

can then be written as eba = h̃ + (g0 + b)(Z − Z0) = h̃ +
ρ0g0(Z − Z0)υ̃.

The above derivations therefore make it clear that it is
possible to use any existing knowledge of the thermodynamic
properties of the fluid considered to reconstruct the relevant
approximations for a BA fluid, and also that the approxi-
mations underlying the construction of the BA system of
equations only slightly alter the form of the thermodynamic
properties, which remain close to that of a fully compressible
fluid.

4. Consequence for Understanding the
Energetics of Turbulent Stratified Fluids

4.1. Model Formulation. In this section, we discuss the
consequences of the above results for our understanding of
the energetics of turbulent mixing in stratified fluids, which
were originally pointed out by Tailleux [1]. Until recently, the
energetics of turbulent-stratified mixing had been essentially
discussed for an incompressible Boussinesq fluid with a
linear equation of state governed by the following equations:

Dv
Dt

+
1
ρ0
∇P = − ρ

ρ0
g0k + ν∇2v,

∇ · v = 0,

DT

Dt
= κ∇2T ,

ρ = ρ0[1− α(T − T0)],

(41)

where α is the thermal expansion coefficient, ν the molecular
viscosity, and κ the molecular diffusivity, with all remaining
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notations as before. The situation considered is that of a
freely decaying turbulent flow. For instance, a configuration
extensively studied is that of a stably stratified parallel shear
flow that becomes unstable. Turbulent behaviour ensues
until the flow relaminarises, see Tailleux [1] for references.
As a result of turbulence, diffusive mixing is enhanced. Here,
mixing refers to the irreversible modification of temperature
by molecular diffusion. Winters et al. [14] introduced a
conceptual framework able to quantify precisely the amount
of mixing taking place during a turbulent mixing event.

4.2. The Classical View of the Energetics of Turbulent Mixing.
The classical view on the energetics of turbulent mixing has
usually revolved on the idea that during a turbulent mixing
event, although most of the initial kinetic energy of the
parallel shear flow is lost to viscous dissipation as expected, a
significant fraction (often reported to be around 20 percent)
appears to be lost to gravitational potential energy. This can
be mathematically formulated by considering the evolution
equation for the kinetic energy, namely,

ρ0
D

Dt

v2

2
+∇ · (Pv − ρ0Fke

) = −ρgw − ρ0εK , (42)

integrated over the volume of the fluid, as well as over the
duration of a turbulent mixing event, which yields

ΔKE = −
∫

V
ρgw dV −

∫

V
ρ0εKdV < 0, (43)

where the overbar denotes the integration over the relevant
time interval, and ΔKE is the difference between the final and
initial kinetic energy. Looking now at the evolution of the
gravitational potential energy,

D
(
ρgz
)

Dt
= ρgw + gz

Dρ

Dt
= ρgw + gzκ∇2ρ, (44)

integrating over the volume, as well as in time over the
duration of the mixing event, we obtain

ΔGPE =
∫

V
ρgw dV +

∫

V
gzκ∇2ρ

︸ ︷︷ ︸
.

Wlaminar

(45)

According to the latter equation, the net change in gravita-
tional potential energy ΔGPE is made up of two contribu-
tions, one in appearance occurring at the expenses of the
kinetic energy of the shear flow, and the other to due to
internal energy via the term Wlaminar. In this description, the
role of internal energy appears to be very limited and restrict-
ed to the weak laminar conversion Wlaminar. On the other
hand, a somewhat puzzling feature of the above description
is that the term ρgw is supposed to represent in principle a
reversible conversion of KE into GPE. Yet, the net change in
GPE is irreversible by construction, as the time integration is
achieved over a turbulent mixing event separated by laminar
evolution. In other words, while reversible conversions of KE
into GPE are physically well understood, irreversible conver-
sion of KE into GPE is significantly harder to rationalise.

4.3. Available Potential Energy and Irreversible Mixing. As
first recognised by Lorenz [15], only a small fraction of the
total gravitational potential energy is generally available for
reversible conversion into kinetic energy. This fraction is
usually referred to as the “available potential energy” (APE)
and is defined as the difference in potential energy between
the actual state and the reference state of minimum potential
energy obtained in an adiabatic rearrangement of the fluid
parcels. Physically, it can be shown that the density ρr(z, t)
and pressure Pr(z, t) of the reference state depend on z and
t only. Moreover, they must be in hydrostatic equilibrium at
all times, namely,

∂Pr
∂z
= −ρrg0. (46)

Physically, the reference state can be described in terms of
the function zr = zr(x, t) to represent the position that a
parcel located at (x, t) in the actual state would have in the
reference state. As a result, the assumption that the parcel
is displaced adiabatically from (x, t) to zr(x, t) implies that
ρr(zr , t) = ρ(x, t), that is, the parcel retains its density in
the adiabatic displacement. This makes it possible to derive
the following expressions for the background gravitational
potential energy and available gravitational potential energy:

GPEr =
∫

V
ρr(zr)g0zrdV =

∫

V
ρg0zrdV ,

AGPE =
∫

V
ρg0(z − zr)dV.

(47)

Because the reference state is obtained from the actual state
by an adiabatic transformation, it follows that it can only
change with time if diabatic effects are present in the system.
The work by Winters et al. [14] was the first study to suggest
that such a property could be used as a rigorous way to
diagnose the amount of irreversible mixing taking place in
stably stratified turbulent fluids, and suggested to estimate
the degree of turbulent mixing taking place in a fluid from
the rate of change of GPEr . This idea can be put on a rigorous
footing by deriving the following evolution equation for
GPEr :

dGPEr

dt
=
∫

V
ρg0

Dzr
Dt

dV +
∫

V
g0zr

Dρ

Dt
dV

=
∫

V
g0zrκ∇2ρ dV.

(48)

A key result in Winters et al. [14] was to show that the
first term in the r.h.s. of (48) always vanishes, by using an
explicit construction of the reference density profile. Since
then, the result was generalised to a fully compressible fluid
by Tailleux [1], while Pauluis [16] showed that the result
follows naturally from the reference state being a constrained
potential energy minimum. As a result, (48) becomes

Wr,mixing =
∫

V
g0zrκ∇2ρ dV = −

∫

V
g0κ

∂ρr
∂zr
‖∇zr‖2dV > 0,

(49)
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where the last part was obtained by using an integration by
parts, assuming the density flux to vanish at all boundaries,
and using the result that ρ(x, t) = ρr(zr(x, t), t) by construc-
tion, so that ∇ρ = ∂ρr/∂zr∇zr . The result that Wr,mixing >
0 follows from the fact that ∂ρr/∂zr /= 0 everywhere, since
the reference state is stably stratified by definition. Equation
(49) makes it clear that Wr,mixing measures the amount of
turbulent mixing taking place in the system, because ‖∇zr‖2

measures the degree to which isopycnal surfaces are distorted
by turbulent stirring. As a result, we can therefore write

dAGPE
dt

= d(GPE−GPEr)
dt

=
∫

V
ρg0w dV + Wlaminar −Wr,mixing.

(50)

4.4. Energy Budget of a Turbulent Mixing Event. Let us now
return to the problem of understanding the energetics of a
turbulent mixing event, again defined as an episode of in-
tense turbulent mixing characterised by potentially high
values of AGPE preceded and followed by laminar conditions
for which AGPE = 0. Thus, integrating the above equations
over the duration of one such turbulent mixing event yields

ΔAGPE = 0 =
∫

V
ρg0w dV + W laminar −Wr,mixing, (51)

ΔGPEr =Wr,mixing. (52)

The first important conclusion that one may infer from (51)
is that the buoyancy flux

∫
V ρgw dV can be linked to the

time-and volume-integrated irreversible diabatic effects due
to molecular diffusion since (51) implies

∫

V
ρg0w dV =Wr,mixing −W laminar = D(APE), (53)

where D(APE) represents the dissipation of AGPE by means
of molecular diffusive processes. The second important
conclusion inferred from (52) is that the total amount of
turbulent mixing having taking place during the turbulent
mixing event can be measured from the net change in GPEr .
Regarding the latter equation, Winters et al. [14] suggested
that its physical meaning is best understood by rewriting it as
follows:

ΔGPEr = D(APE) + W laminar, (54)

which suggests that the fraction of kinetic energy that is
consumed by turbulent mixing but not dissipated by viscous
friction is first converted reversibly into AGPE, but then
irreversibly converted somehow into GPEr by molecular dif-
fusion, as illustrated in Panel (b) of Figure 1, with an addi-
tional small contribution to the net increase of GPEr being
due to internal energy.

4.5. Alternative Interpretation of the Energetics of Turbulent
Mixing. It is important to remark that the validity of Winters
et al. [14] interpretation relies on the idea that the irreversible

conversion of one form of mechanical energy (AGPE) into
another form of mechanical energy (GPEr) is a physically
legitimate one. As discussed by Tailleux [1], however, this
idea is difficult to accept from the vantage point of thermo-
dynamics, because the irreversible character of such a con-
version necessarily implies that it should be accompanied by
a change of entropy, and therefore of internal energy. Indeed,
assuming the reverse to be true would lead to a contradiction.
This is because for no change in internal energy to occur,
an equal and opposite amount of compressible work δW =
−Pdυ would be needed to exactly balance the heat transfer
δQ = Tdηirr implied by the assumed diabatic and irreversible
character of the AGPE/GPEr conversion. However, this
would violate the second law of thermodynamics, because
it is well known from the theory of heat engines that only
a small fraction of the heat transfer δQ can be transformed
into useful work δW , for example, Callen [11], which implies
the impossibility for δW and δQ to be equal in magnitude.

The above difficulty is easily resolved, however, if one
accepts to regard the term (Z−Z0)db as a conversion between
internal energy and gravitational potential energy in the
energetics of the BA system. Indeed, note that the term
Wr,mixing can be rewritten as follows:

Wr,mixing =
∫

V
g0zr

Dρ

Dt
dV = −

∫

V
ρ0zr

Db

Dt
dV , (55)

which is precisely of the form associated with a conversion
of internal energy into mechanical energy, with zr instead of
Z − Z0. If so, Wr,mixing and D(APE) should therefore be nat-
urally regarded as conversions between internal energy and
gravitational potential energy, suggesting that the internal
energy should evolve according to

dIE
dt
= D(KE) + D(APE)−Wr,mixing. (56)

Although such an interpretation now appears to be consis-
tent with thermodynamics, the form of (56) suggests that it
might still be possible for the APE dissipated into internal
energy to be then converted into GPEr , in which case the
whole argument would arguably look like a minor quibble,
since it is hard to understand why it should matter whether
APE is directly dissipated into GPEr or via prior conversion
into internal energy.

The latter issue was addressed by Tailleux [1], who argued
that internal energy is best regarded as the sum of distinct
types of internal energy, such that the kind of internal energy
into which APE is dissipated differs from the kind of internal
energy converted into GPEr , making it possible for (56) to
hold without necessarily implying that the APE dissipated
into internal energy is converted into GPEr . In particular,
Tailleux [1] argue that in the same way that it is possible to
decompose the temperature as follows:

T(x, t) = T0(t) + Tr(z, t) + T′(x, t), (57)

that is, as the sum of a time-dependent mean temperature, a
part accounting for the mean vertical gradient, and a resid-
ual, it is similarly possible to decompose the internal energy
into three reservoirs:

IE = IE0 + IEexergy + AIE, (58)
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(a) Classical Energetics
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D(KE)

W
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(b) Winters et al. [14]
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Wr,mixing

(c) Tailleux [1]

Figure 1: Evolution of ideas about the energetics of turbulent stratified mixing. (a) Interpretation seemingly following the result of classical
energetics arguments based on the three reservoirs KE, GPE, and IE; (b) interpretation proposed by Winters et al. [14] based on the use of
Lorenz [15] ideas to separate the gravitational potential energy into an available and unavailable component; (c) new interpretation proposed
by Tailleux [1] on the basis of a rigorous analysis of the energetics of compressible Navier-Stokes equations aimed at elucidating the role of
internal energy.

where IE0 is the internal energy of the thermodynamic equi-
librium obtained from Lorenz [15] state in a process con-
serving the total enthalpy of the system, IEexergy = IEr− IE0 is
the difference in internal energy between the internal energy
of Lorenz [15] reference state, and AIE = IE − IEr is the
available internal energy, that is, the difference in internal
energy between the actual state and Lorenz [15] reference
state. Tailleux [1] showed how to derive evolution equations
for each subcomponents of the internal energy and was able
to show that at leading order, neglecting only very small
terms, it is possible to decompose (56) into the two following
equations for IE0 and IEexergy as follows:

dIE0

dt
≈ D(KE) + D(APE), (59)

dIEexergy

dt
≈ −Wr,mixing. (60)

In physical terms, Tailleux [1] shows that increasing or de-
creasing IE0 is equivalent to increasing or decreasing the
mean thermodynamic equilibrium temperature T0, whereas
decreasing IEexergy is equivalent to smooth out the vertical
temperature gradient of Tr(z, t). As a result, (59) inter-
pretation is that both the viscous dissipation of KE and
the diffusive dissipation of APE increase T0, whereas (60)
interpretation is that turbulent mixing smoothes out the
vertical gradient of Tr(z, t). This is an important result,
because both Wr,mixing and D(APE) are widely recognised
to represent leading order energy conversions in turbulent-
stratified mixing. In the current dominant paradigm based

on Winters et al. [14] interpretation, however, these conver-
sions have been rationalised without invoking any significant
role for the internal energy, in contrast to our interpretation.
Physically, our interpretation also implies that whereas the
dissipation of KE and APE should not be associated with
any significant overall expansion of the fluid owing to its
assumed weakly compressible nature, the release of exergy
IEexergy should in contrast be comparatively associated with
a significant reduction in the volume of the fluid. By com-
parison, Winters et al. [14] interpretation call only for a tiny
volume expansion due to the viscous dissipation, and for a
tiny volume contraction due to the conversion of internal
energy into GPEr at the laminar rate Wlaminar. Figure 2 illus-
trates a laboratory experiment that clearly tends to support
our interpretation.

5. Net Compressible Work in Purely
Buoyancy-Driven Flows

Having determined that the classical Boussinesq and anelas-
tic approximations formally possess a representation of the
coupling between the dynamics and thermodynamics that is
comparable to that of the fully compressible Navier-Stokes
equations, we now seek to illustrate some aspects of such
coupling in the particular case of a purely buoyancy-driven
circulation driven by differential heating/cooling imposed at
the top boundary of the domain, as in the oceanic case, a con-
figuration generally referred to as “horizontal convection,”
see Hughes and Griffiths [3] for a review. The importance
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(a) Laminar evolution (b) Turbulent evolution

Very fast
descent of interface

Very slow
descent of interface

Air-water interface

Cork

Magnetic
stirrer

Hot water

Lukewarm
water

Cold water

Figure 2: Experimental setup of an experiment showed to the author by Peter Rhines during a visit to his GFD Laboratory in Seattle in June
2008, suggesting that compressibility effects increase with the degree of turbulent in stably stratified fluids. An Erlenmeyer flask is filled up
with water at room temperature. A vertical stratification is then created by bringing the upper part of the water near boiling point, and a
magnetic stirrer is dropped in the fluid. The top of the flask is then sealed up with a cork through which a thin glass tube is inserted in order
to magnify the variations of the air-water interface. In laminar conditions (a), the fluid is near resting conditions, and the air-water interface
moves downward very slowly as the result of molecular diffusion and/or radiative cooling. Activating the magnetic stirrer generates stratified
turbulence (b) that results in the spectacular drop of the air-water interface, most likely as the result of the well-known contraction upon
mixing effect that is due to the temperature dependence of the thermal expansion coefficient.

of the dynamics/thermodynamics coupling, and of the
compressible work, comes from that in such a context the
mechanical energy balance reduces to a balance between the
compressible work and the total viscous dissipation, namely,

∫

V
P
Dυ

Dt
dm =

∫

V
εKdm, (61)

where dm = ρdV is the mass of an elementary fluid element.
The central question here is to what extent is it possible to
quantify the compressible work in (61), and whether the
resulting estimates are sensitively affected by using the Bous-
sinesq/Anelastic approximation as compared with using the
fully compressible Navier-Stokes equations.

5.1. Antiturbulence Theorem and ε-Theorems. The above
issue was first addressed for a Boussinesq fluid with a linear
equation of state governed by (41), as part of the derivation
of the so-called antiturbulence theorem by Paparella and
Young [17], whose particular aim was to derive an upper
bound for the total viscous dissipation

∫
V εKdm. Paparella

and Young [17] derived their result for a two-dimensional
rectangular ocean forced at its top by a Dirichlet-like surface
temperature boundary condition, with insulating boundary
conditions everywhere else. For the particular system of
equations considered, the local balance equations for the

kinetic energy and gravitational potential energy are then,
respectively, given by

ρ0
D

Dt

v2

2
+∇ ·

(
Pv − ν∇v2

2

)
= −ρg0w − ρ0εK ,

D
(
ρg0z

)

Dt
= ρg0w + g0z

Dρ

Dt
.

(62)

For a steady state, summing these two equations, and inte-
grating over the whole domain yields

∫

V
g0z

Dρ

Dt
dV =

∫

V
g0zκ∇2ρ dV

︸ ︷︷ ︸
Wlaminar

=
∫

V
ρ0εKdV.

(63)

The diffusive term Wlaminar has been previously encountered.
As a result, such a balance can be written:

Wlaminar = κg0A
[
〈ρ〉bottom − 〈ρ〉top

]
=
∫

V
ρ0εK . (64)

Paparella and Young [17] showed that for the boundary
conditions considered, the maximum principle imposes to
the quantity 〈ρ〉bottom − 〈ρ〉top to be bounded from above
by a constant independent of the molecular diffusivity κ and
viscosity ν. This result implies that

∫
V εKdm must converge

toward zero in the limit of zero diffusivity by holding the
Prandtl number Pr = ν/κ constant, which is the so-called
antiturbulence theorem. For the present purposes, the result
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is of interest, because it provides an explicit expression of
the work of expansion/contraction in terms of quantities
that are all observable or measurable. Thus, Wang and
Huang [18] used typical oceanic values to estimate that
B = O(15 GW) based on (64), which is about two orders
of magnitude smaller than the power input due to the wind,
generally estimated to be O(1 TW). This result has been very
influential, because it has generally been concluded that the
observed amount of viscous dissipation in the oceans can
only be accounted for by the mechanical stirring due to the
wind and tides. It has also been regarded as implying that
surface buoyancy fluxes can only drive a weak overturning
circulation. The latter inference, however, requires that it is
possible to link in some way the volume-integrated viscous
dissipation, which only measures the amount of kinetic
energy present at the dissipation scale, to the amount of
kinetic energy of the large-scale overturning circulation. As
far as we know, such a link is yet to be established rigorously.

5.2. Generalisation to a Nonlinear Equation of State. The
equation of state of seawater is strongly nonlinear, however,
so that it is unclear whether (64) remains valid for the more
realistic oceanic case. The following provides a brief overview
of various attempts at generalising (64) to a nonlinear
equation of state typical of that for seawater.

5.2.1. Unsuitability of the Direct Approach. The most nat-
ural approach to estimating the volume-integrated work
of expansion/contraction for a compressible ocean with a
nonlinear equation of state is perhaps to regard the specific
volume as a function of entropy and pressure (we discard
salinity temporarily for simplicity), which allows one to ex-
pand the rate of expansion/contraction as follows:

Dυ

Dt
= ∂υ

∂η

Dη

Dt
+
∂υ

∂P

DP

Dt

= αT

ρcp

[
∇ ·

(
κρcp∇T

)
+ ρεK

]

ρT
− 1

ρ2c2
s

DP

Dt
,

(65)

and therefore the volume-integrated work of expansion/con-
traction as follows:

B =
∫

V

αP

ρcp
∇ · (κρcp∇T)dV

︸ ︷︷ ︸
B1

+
∫

V

αP

ρcp
ρεKdV

︸ ︷︷ ︸
B2

−
∫

V

P

ρc2
s

DP

Dt
dV

︸ ︷︷ ︸
B3

,

(66)

where the expression was obtained by using the results that
∂υ/∂η = αT/(ρcp) = Γ is the so-called adiabatic lapse rate,
and ∂υ/∂P = ∂(1/ρ)/∂P = −(1/ρ2)∂ρ/∂P = −1/(ρ2c2

s ),
where cs is the speed of sound. We also assumed the evolution
equation for entropy to be given by

Dη

Dt
=
∇ ·

(
ρκcp∇T

)
+ ρεK

ρT
, (67)

which assumes that the only terms contributing to the
diabatic heating are the molecular diffusion of heat and the
viscous dissipation. Equation (66) regards B as being made
up of essentially three contributions, where B1 is the net effect
due to molecular diffusive heating/cooling, B2 is the net effect
due to viscous dissipation, and B3 represents the net effect
due to the adiabatic expansion/contraction. The two first
terms B1 and B2 can be seen to involve the key dimensionless
quantity Υ = αP/(ρcp), which plays the role of a thermody-
namic efficiency-like quantity. In the oceans, typical values
are α = 10−4 K−1, P ≈ 4000 dbar = 4.108 Pa (near the ocean
bottom), ρ ≈ 103 kg·m−3, cp ≈ 4.103 J·kg−1·K−1, leading to
Υ ≈ ×10−2 � 1. Since B must balance the overall viscous
dissipation

∫
V ρεK dV in a steady-state, it follows immedi-

ately that the term B2 must be negligible compared to the
other two terms. Obviously, the term B1 is the only one that
can be compared with Paparella and Young [17] expression,
since it is the only one depending on molecular diffusion. By
integrating by parts, this term can be rewritten:

B1 =
∫

∂V
Υκρcp∇T · n dS−

∫

V

∂Υ

∂T
κρcp‖∇T‖2dV

−
∫

V

∂Υ

∂P
κρcp∇T · ∇P dV.

(68)

Note here that Paparella and Young [17] result can be
recovered by assuming ρ, cp, κ to be constant, and the
pressure to be approximated by the hydrostatic pressure P ≈
−ρ0gz, as in that case, ∂Υ/∂T = 0, while ∂Υ/∂P = α/(ρcp),
and the boundary term vanishes owing to the assumption
that

∫
∂V κρcp∇T · n dS = 0 required by the steady-state

assumption. Ultimately, however, such a direct approach
appears to be impractical, because it is unclear how to
estimate the term B3.

5.2.2. Approach Based on the Budget of Total Available Energy.
A significant breakthrough in understanding how to get
around the difficulty posed by the term B3 above is due
to McIntyre [19] and Nycander [9], which both showed
that it could be circumvented by focusing on the budget
of the total available energy v2/2 + h‡ discussed above. The
following briefly summarises the key steps of their approach,
which were derived for a Boussinesq ocean with a nonlinear
equation of state. Here, we extend their discussion to the
more general BA system discussed previously. To that end,
let us first recall that in the BA system, the local evolution
equation for the kinetic energy takes the form:

ρ0
D

Dt

v2

2
+∇ · [δPv − ρ0Fke

] = ρ0b
DZ

Dt
− ρ0εK . (69)

In their derivation, both McIntyre [19] and Nycander [9]
assumed the buoyancy b = b(S,Θ,Z) to be a given function
of salinity S, conservative temperature Θ, and geopotential
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height Z. Moreover, Θ and S were assumed to satisfy evo-
lution equations of the form:

ρ0
DΘ

Dt
= −∇ · (ρ0FΘ

)
+ ρ0Θ̇irr,

ρ0
DS

Dt
= −∇ · (ρ0FS

)
,

(70)

with FΘ and FS being linear functions of the molecular
diffusive fluxes of heat and salt, whose forms are traditionally
constrained by the second law of thermodynamics, as
discussed in de Groot and Mazur [20], for instance. The
specific form of these fluxes is not important for what
follows, and is therefore not further detailed. The term Θ̇irr

represents the nonconservative production/destruction of
the conservative temperature, which McDougall [21] argued
is small enough to be regarded as negligible. As a result, this
term was neglected by both McIntyre [19] and Nycander [9].
As discussed by Tailleux [22], however, this introduces some
inconsistency in the discussion, as the resulting equations are
no longer energetically consistent. This is a minor difficulty,
however, which could easily be corrected by retaining Θ̇irr.
To proceed, McIntyre [19] and Nycander [9] introduced the
following function:

h‡(S,Θ,Z) = −
∫ Z

Z0

b(S,Θ,Z′)dZ′, (71)

which was coined “dynamic enthalpy” by Young [8]. Differ-
entiating with respect to time yields

Dh‡

Dt
= −bDZ

Dt
+ CS

DS

Dt
+ CΘ

DΘ

Dt
, (72)

where

CS = −
∫ Z

Z0

∂b

∂S
(S,Θ,Z′)dZ′,

CΘ = −
∫ Z

Z0

∂b

∂Θ
(S,Θ,Z′)dZ′.

(73)

As a result, summing (69) and (72) yields

ρ0
D

Dt

(
v2

2
+ h‡

)
+∇ · (δPv − ρ0Fke

)

= ρ0

(
CS

DS

Dt
+ CΘ

DΘ

Dt
− εK

)
.

(74)

The final step consists in integrating the latter equation over
the whole ocean domain. In a steady-state, this leads to the
following budget:
∫

V
ρ0εK dV = B = −

∫

V

(
CS∇ ·

(
ρ0FS

)
+ CΘ∇ ·

(
ρ0FΘ

))
dV

= −
∫

∂V
ρ0(CSFS + CΘFΘ) · n dS

︸ ︷︷ ︸
=0

+
∫

V
ρ0(FS · ∇CS + FΘ · ∇CΘ)dV ,

(75)

where the first term in the second line of (75) relates to
the surface fluxes of FΘ and FS, which vanishes because by
construction, CΘ = CS = 0 at the ocean surface where
Z = Z0. In McIntyre [19] and Nycander [9], the focus is on
deriving upper bounds for

∫
V ρ0εKdV , but clearly the method

also provides a way to discuss the magnitude of B, since the
two quantities must be equal in a steady state. The important
point to be noted here is that (75) provides an expression
for B that only involves the molecular diffusive fluxes, with
no term proportional to DP/Dt, similarly as in Paparella and
Young [17] study.

5.2.3. Approach Based on the Budget of Potential Enthalpy. In
this section, we aim to further clarify the above issues, by
showing how the above results can be extended to a fully
compressible ocean by considering the budget of potential
enthalpy. To simplify the discussion, the effects of salinity are
discarded. The potential enthalpy, introduced in the ocean-
ographic context by McDougall [21], is defined as the en-
thalpy that a fluid parcel would have if brought adiabatically
to the reference pressure P0, usually taken as the standard
atmospheric pressure. As a result, the potential enthalpy,
denoted by hθ thereafter, can be regarded as being implicitly
defined by hθ(η,P;P0) = h(η,P0), with h being the specific
enthalpy. From the definition of its total differential dh =
Tdη + υdP, it follows that

Dhθ
Dt

= θ
Dη

Dt
= θ

T

[
∇ ·

(
κρcp∇T

)
+ ρεK

]
, (76)

where θ is the potential temperature, that is, the temperature
that a parcel would have if brought adiabatically to the
ocean surface, and hence defined as the implicit solution
of η(T ,P) = η(θ, P0) or as the solution of η(T , S,P) =
η(θ, S,P0) if salinity was to be retained. Now, if we take the
overall budget in a steady state, we have the result:

∫

∂V
κρcp∇T · n dS

︸ ︷︷ ︸
=0

−
∫

V
κρcp∇T · ∇

(
θ

T

)
dV

︸ ︷︷ ︸
ḣirr

+
∫

V

θ

T
ρεKdV = 0,

(77)

which was obtained by noting that θ = T at the reference
pressure P = P0. Here, it is useful to introduce the quantity:

s =
∫
V ((T − θ)/T)ρεKdV∫

V ρεKdV
. (78)

Physically, θ never differs more than of a few degrees Celsius
from the in-situ temperature, which implies s � 1. As a
result, it follows that (77) implies

∫
V ρεKdV = ḣirr/(1 − s) ≈

ḣirr, which in turn implies

B ≈ ḣirr =
∫

V
κρcp∇T · ∇

(
θ

T

)
dV. (79)

To make progress, note that from the definition of po-
tential temperature η(T ,P) = η(θ,P0), we may regard θ as
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a function of temperature and pressure. In particular, using
the result that dη = (cp/T)dT − (α/ρ)dP, it follows that

cp
T

dT − α

ρ
dP = cp(θ,P0)

θ
dθ, (80)

which implies

∂θ

∂T
= cpθ

crpT
,

∂θ

∂P
= − αθ

ρcrp
, (81)

where for simplicity, we defined cp(θ,P0) = crp. Now, using
(81) leads to

∇
(
θ

T

)
= T∇θ − θ∇T

T2

= 1
T

[
∂θ

∂T
∇T +

∂θ

∂P
∇P
]
− θ∇T

T2

= 1
T

[
cpθ

crpT
∇T − αθ

ρcrp
∇P
]
− θ∇T

T2

=
(
cp − crp
crp

)
θ∇T
T2

− αθ

ρcrpT
∇P,

(82)

which in turn allows one to express ḣirr as follows:

ḣirr =
∫

V
θ

(
cp − crp
crp

)
κρcp‖∇T‖2

T2
dV

︸ ︷︷ ︸
H1

−
∫

V

αcpθ

crpT
κ∇P · ∇T dV

︸ ︷︷ ︸
H2

.

(83)

Equation (83) is a key result, as it currently represents the
most general extension of Paparella and Young [17] result
that is valid for a compressible ocean with a nonlinear
equation of state. Although salinity was not considered, the
result could be easily extended to include it as well. As
in Paparella and Young [17], McIntyre [19], and Nycander
[9], the expression obtained only involves terms related to
molecular diffusive processes. It is composed of mainly two
terms H1 and H2. The first term involves the quantity R =
θ(cp − crp)/crp, which can be shown to be in general negative
for most conditions encountered in the oceans. It is zero
at the surface, and increase with pressure. By invoking the
intermediate value theorem, it follows that there exists a
value R∗ so that H1 can be written as follows:

H1 = R∗
∫

V

κρcp‖∇T‖2

T2
dV < 0. (84)

Interestingly, under this form, H1 appears as being propor-
tional to the irreversible entropy production by molecular
diffusive heat fluxes. Since H1 is negative, H2 must also be
negative in order for B to positive in order to balance the

overall viscous dissipation. Some insight into H2 can be
obtained by rewriting it as follows:

H2 =
∫

V

(
cpθ

crpT

)
ακ∇P · ∇T dV

=
∫

V

cpθ

crpT
ακ∇hP · ∇hT dV +

∫

V

cpθ

crpT
ακ

∂P

∂z

∂T

∂z
dV.

(85)

Interestingly, it is the last term in (85) that allows one to make
the connection with Paparella and Young [17] result, as seen
by the following manipulation:

∫

V

cpθ

crpT
ακ

∂P

∂z

∂T

∂z
dV ≈ −

∫

V
αρg0κ

∂T

∂z
dV

=
∫

V
κg

∂ρ

∂z
dV = −Wlaminar

(86)

by approximating cpθ/(crpT) ≈ 1 and using the hydrostatic
approximation ∂P/∂z ≈ −ρg0. It is more difficult, however,
to quantity the correlation between the horizontal pressure
and temperature gradients ∇hP · ∇hT ; presently, even the
sign of the later, let alone its magnitude, is challenging to
estimate, because the correlation between the two gradients
is likely to occur at the molecular diffusive scales. Somehow,
understanding how to quantify this term is equivalent to
understanding the characteristics of the turbulent pressure
and temperature fluctuations at such small diffusive scales.
More research is needed to clarify this issue.

5.3. General Remarks on Deriving Expressions for B. Reflect-
ing in hindsight on the different ideas that have been
developed over the past decade to generalise Paparella and
Young [17] result to a fully compressible ocean with a
nonlinear equation of state, it appears that the most general
approach to estimating the viscous dissipation and hence the
overall work of expansion/contraction is ultimately rooted in
the steady-state budget for some function F(η) of the specific
entropy. Indeed, if we consider the evolution equation for
such a function, it is given by

ρ
DF
(
η
)

Dt
= ρF′

(
η
)Dη
Dt
= F′

(
η
)∇ ·

(
κρcp∇T

)
+ ρεK

T
.

(87)

Integrating this equation over the ocean volume and assum-
ing a steady state thus yield

∫

V

F′
(
η
)∇ ·

(
κρcp∇T

)

T
dV +

∫

V

F′
(
η
)
ρεK

T
dV = 0.

(88)

Now, if F(η) is chosen as an increasing function of η so that
F′(η) > 0, then the theorem of intermediate values implies
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that there must exist some value η∗ and T∗ allowing to
rewrite the above formula as follows:

∫

V
ρεK dV = − T∗

F′
(
η∗
)
∫

V

F′
(
η
)∇ ·

(
κρcp∇T

)

T
dV

= − T∗

F′
(
η∗
)
{∫

∂V

F′
(
η
)
κρcp∇T · n

T
dS

−
∫

V
κρcp∇T · ∇

(
F′
(
η
)

T

)
dV

}
.

(89)

Clearly, this method appears to systematically provide an
expression for the viscous dissipation as the sum of one
term involving the surface heat fluxes and one term linked
to the irreversible molecular diffusive fluxes. Clearly, the
method based on potential enthalpy derived above is based
on the particular choice F(η) = hθ(η,P;P0) and has
the particularity that the term involving the surface fluxes
identically vanish. Two different particular choices corre-
sponding to F(η) = η and to F(η) = h(η,Pr(η)) for some
reference pressure Pr(η) related to Lorenz [15] reference
profile were considered by Tailleux [2] as part of a discussion
on the nature of the work of expansion/contraction. The
current challenge consists in identifying the most sensible
choices of F(η), and to determine what kind of information
can be extracted from making such choices. To that end,
however, the main difficulties is in understanding how to
quantify the kind of correlation between the pressure and
temperature gradients that enter such expressions, which
requires understanding the nature of such gradients at the
molecular diffusive scales that are likely to control the overall
value of such a correlation.

6. Summary and Conclusions

For over a century, the coupling between the dynamics and
thermodynamics has been overwhelmingly regarded as being
of little or no relevance to the understanding of stratified
turbulence in weakly compressible fluids such as water or
seawater. As a result, the study of such fluids has been nearly
systematically been carried out in the context of dynamical
approximations, such as the Boussinesq approximation or
anelastic approximation, that decouples the dynamics and
thermodynamics at leading order. It is not necessarily fully
realized, however, that such a decoupling is achieved only in
absence of diabatic effects and for a linear equation of state.
Indeed, coupling is unavoidably reintroduced whenever any
one of the latter effects is retained. If so, a key issue is what
can we say about the nature of such a coupling in that case?
How does it compare with that of the fully compressible
Navier-Stokes equations?

In order to address these questions, the present paper first
showed that the particular anelastic approximation derived
by Pauluis [6], which admits the Boussinesq approximation
as a particular case, can be endowed with a fully consistent
energetics and thermodynamics, even for a binary fluid with
an arbitrary nonlinear equation of state. As showed in more

details by Tailleux [10], it is not only possible to show that
the energetics of such a system possesses a term that can
be directly interpreted as the approximation to the work
of expansion/contraction, it is also possible to construct
explicitly the full range of thermodynamic potentials for such
a fluid. This is an important result, because it permits for
the first time to clarify the role played by internal energy in
the Boussinesq/Anelastic system, which has been previously
a large source of confusion, owing to the “incompressible”
label attached to the Boussinesq approximation, or to the
notion that such approximations filter out sound waves,
which is often interpreted as the lack of a coupling with
internal energy. In particular, the clarification allows one
to confirm the previous results by Tailleux [1], who argued
that the dissipation of available potential energy, previously
interpreted by Winters et al. [14] as an irreversible conversion
of APE into background gravitational potential energy,
should in fact be regarded as an irreversible conversion of
APE into internal energy, in the same way that viscous
dissipation is irreversible dissipation of mechanical energy
into internal energy. Finally, we also determined how to
extend the derivation of so-called ε-theorems for horizontal
convection to the case of a fully compressible fluid with an
arbitrary nonlinear equation of state.

An important feature of the energetics of the BA system
is that there is a priori no physical mechanism to prevent
the conversion term between internal energy and mechanical
energy to become potentially very large. In other words, even
though the BA system is constructed under the premises
that compressibility effects are small, it is now clear that
the BA compressible effects will in general increase with the
strength of the stratification and turbulence. In principle, the
magnitude of the compressibility effects can be diagnosed a
posteriori by estimating the divergent velocity field vd from
solving the equation ∇ · vd = −ρ−1Dρ/Dt. For instance, in
the case of the Boussinesq model with a diffusive model for
the density, this would consist in solving∇ · vd = −κ∇2ρ/ρ,
which makes it clear that vd can become large if the local
values of diffusion κ∇2ρ become large, which is expected to
be the case as the degree of turbulence and strength of the
stratification increase. Further work is needed to determine
whether it may become possible for vd to become sufficiently
large as to become locally important in the advection of
momentum and tracers. If so, this would also potentially
suggest the importance of sound waves. As is well known,
acoustic waves can induce mean flows, as in the case of
acoustic streaming. Whether such effects may be identified
in stratified turbulence opens up an exciting new terrain of
investigation.
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