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ABSTRACT5

Thermodynamic neutral density — denoted γT — is proposed as a new quasi-neutral and6

quasi-material density variable superior to Jackett and McDougall (1997) empirical γn vari-7

able. γT is the difference between the potential density of the fluid parcel referenced to the8

pressure it would have in the reference state of minimum potential energy entering Lorenz9

theory of available potential energy and a correction for pressure that is empirically chosen10

here to minimise differences between γT and γn for the WOCE dataset, but which could be11

physically-based if desired.12

Thermodynamic neutral density possesses the following advantages over empirical neutral13

density: 1) it is fully justified from first principles and has a precise and rigorous mathemat-14

ical definition; 2) its physical basis is the same as that used to rigorously quantify turbulent15

diapycnal mixing by the turbulent mixing community over the past 20 years; 3) it is materi-16

ally conserved, and therefore more suited to quantifying ocean mixing; 4) it can be computed17

accurately and efficiently, making it possible in principle to compute it on the fly in numer-18

ical ocean models; 5) density inversions are very rare and confined to very weakly stratified19

regions, making it suitable as a vertical coordinate for use in isopycnal models.20
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1. Introduction21

The problem of how best to construct a density variable suitably corrected for pressure22

is a longstanding fundamental issue in oceanography whose answer is vital for many key23

applications ranging from the study of mixing to ocean climate studies. These include but24

are not limited to: the separation of mixing into “isopycnal” and “diapycnal” components25

necessary for the construction of rotated diffusion tensors in numerical ocean models (Redi26

1982; Griffies 2004), the construction of climatological datasets for temperature and salinity27

devoid of spurious water masses (Lozier et al. 1994), the construction of inverse models of the28

ocean circulation (Wunsch 1996), the tracking and analysis of water masses (Montgomery29

1938; Walin 1982), the construction of isopycnal models of the ocean based on generalised30

coordinate system (Griffies et al. 2000; de Szoeke 2000), the study of the residual circulation31

(Wolfe 2014), and the parameterisation of meso-scale eddy induced mass fluxes (Gent et al.32

1995).33

Physically, it is generally agreed that a suitable density variable γ should possess the34

desirable dual thermodynamic and dynamic attributes of defining adiabatic surfaces along35

which fluid parcels experience no net buoyancy force, e.g., McDougall (1987); de Szoeke36

and Springer (2000); Huang (2014). The first attribute, which is equivalent to material37

conservation, poses no difficulty as it can always be enforced by requiring γ to be a function of38

potential temperature θ and salinity S only. The second attribute — usually referred to as the39

neutral property — is problematic, however, as it can only be satisfied in special circumstances40

not usually encountered in the ocean. To satisfy exact neutrality, ∇γ would need to be41

parallel at every point to the local neutral vector d = g[α∇θ − β∇S] = −(g/ρ)[∇ρ −42

c2s∇p], where α and β are the thermal expansion and haline contraction coefficients, g is43

the acceleration of gravity, c2s is the squared speed of sound, ρ is in-situ density and p is44

pressure. To understand why the latter property cannot be satisfied in general, it is useful45

2



to decompose ∇γ into components parallel and orthogonal to d as follows:46

∇γ = b

(
∇ρ− 1

c2s
∇p
)

+R = bρ(β∇S − α∇θ) +R = −ρbd
g

+R, (1)

where b is an integrating factor, and R a residual term perpendicular to d. Taking the curl47

of (1) and multiplying the result by d gets rid of ∇γ and yields an equation for the residual48

R, viz.,49

−bH
g

+ ρd · [∇×R] = 0, (2)

where the term H = d · (∇ × d) is the helicity of the neutral vector d, which shows that50

exact neutrality can only be achieved when H = 0, a well known result (McDougall 1987;51

de Szoeke and Springer 2000; Huang 2014), with Eden and Willebrand (1999) discussing52

some of the conditions necessary for the helicity to vanish. In practice, achieving H = 053

in the ocean would either require the ocean to be at rest — as ρ would then be a function54

of pressure p alone — or in absence of density-compensated temperature/salinity variations55

along surfaces γ = const, which is equivalent to say that the ocean would then have a well56

defined temperature/salinity relationship of the form θ = θ(γ) and S = S(γ). In the ocean,57

however, the existence of density-compensated θ/S anomalies conspire with thermobaricity58

(the pressure dependence of the thermal expansion coefficient) to make H non-zero and59

hence forbid the construction of exactly neutral density variables.60

If so, what then are the physical principles determining the degree of non-neutrality that γ61

should have? In particular, should material conservation be retained, or sacrificed to improve62

neutrality? For lack of clear physical basis about how to address the above questions, most63

attempts at constructing density variables so far seem to originate in the concept of potential64

density. Most likely, this is because in absence of salinity or thermobaricity, potential density65

referenced to any arbitrary fixed reference pressure pr (referred to as σr) would be both66

materially conserved and neutral. In the ocean, however, the neutrality of potential density67

σr deteriorates proportionally to the the pressure difference p − pr times the thermobaric68

parameter (McDougall 1987) as one moves away from pr. In order to achieve better neutral69
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properties, Lynn and Reid (1968) introduced the concept of patched potential density (PPD),70

that is, potential density referenced to a piecewise constant reference pressure pr depending71

on the depth range considered, with some studies using up to 10 different reference pressures,72

e.g., Reid (1994). However, while this makes PPD more neutral than σr, this is done at the73

expenses of continuous behaviour and material conservation, which both break down near74

the depthd at which the reference pressured change discontinuously.75

The unsatisfactory discontinuous character of PPD prompted Jackett and McDougall76

(1997) (JMD97 thereafter) and de Szoeke and Springer (2000) (SS00 thereafter) to propose77

empirical neutral density γn and orthobaric density respectively as continuous analogues of78

PPD. The way in which each variable can be regarded as an extension of PPD is somewhat79

subtle, however. With regard to γn, its connection to PPD appears to rely on the assumption80

that any nonzero angle between ∇(PPD) and the local neutral vector d would ultimately81

vanish in the asymptotic limit of an infinite number of reference pressures 1, thus prompting82

JMD97 to define γn as the density variable minimising the residual R in (1) in some sense 2.83

In contrast, orthobaric density’s connection to PPD appears to stem from the possibility to84

integrate (1) exactly whenever a well defined θ/S relationshp exists, thus motivating SS0085

to define orthobaric density as as the function of in-situ density ρ and pressure p solving (1)86

for a θ/S relationship that best approximates the present day θ/S properties of the ocean.87

1It is important to note that the mathematical validity of the procedure is questionable, since increasing

the number of reference pressures towards infinity seems to result in the reference pressure converging towards

pr = pr(z) a function of z only. This in turn seems to result in PPD converging towards a form of Boussinesq

in-situ density, which is physically unacceptable. This mathematical difficulty seems to have been overlooked

so far, yet it is central for making sense of the concept of ’locally referenced potential density’, as further

discussed in the text.
2In JMD97, the minimisation of R is not formally defined and appears to be done subjectively through

a trial and error procedure, but it could presumably be made more rigorous by defining a minimising cost

function

Cost Function =

∫
V

W (x)‖R‖2dV, (3)

for some weighting function W (x), similarly as in Eden and Willebrand (1999).
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Although orthobaric density appears to be somewhat less neutral than γn, e.g., McDougall88

and Jackett (2005), orthobaric density possesses nevertheless several attractive advantages89

over γn, such as an exact geostrophic streamfunction and well defined formal properties,90

making it more suited to theoretical studies or as a generalised vertical coordinate, e.g.,91

de Szoeke (2000). Neither JMD97 nor SS00 advocates material conservation as essential,92

yet both McDougall and Jackett (2005) and de Szoeke and Springer (2009) seem to agree93

that non-material conservation is undesirable; meanwhile, Eden and Willebrand (1999) have94

advocated that γ should minimise non-neutrality while retaining material conservation, an95

approach that they illustrated only for the Atlantic ocean case.96

From a fundamental viewpoint, none of the above approaches is really satisfactory, how-97

ever, for they all rely to varying degrees on ad-hoc assumptions having no clear physical98

justification. In this paper, we introduce a new quasi-neutral pressure-corrected density99

variable — called thermodynamic neutral density γT — which in contrast to previous ap-100

proaches can entirely be constructed from first physical principles. Moreover, its physical101

basis is remarkably simple: in order for two fluid parcels to have the same γT label (in JMD97102

speak), they need to belong to the same density surface in Lorenz reference state, that is,103

the notional state of rest that can in principle be obtained by means of an adiabatic and104

isohaline re-arrangement of the actual state, first defined in the theory of available poten-105

tial energy (Lorenz 1955; Tailleux 2013a). Contrary to what is often assumed, e.g., Roquet106

(2013), Lorenz reference state is well defined even for an ocean with a realistic nonlinear107

equation of state (Saenz et al. 2015; Hieronymus and Nycander 2015).108

Specifically, we define γT as the difference between Lorenz reference density and an em-109

pirical pressure correction term. Physically, Lorenz reference density ρ(S, θ, pr) is potential110

density referenced to Lorenz reference pressure. If the time-dependence of Lorenz reference111

state is neglected — which is sufficient for the present purposes — Lorenz reference pressure112

pr = pr(S, θ) is then materially conserved, e.g., Tailleux (2013b), and so is γT . The empirical113

pressure correction is a function of pr only, and can either be constructed from first phyiscal114
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principles or calibrated to make γT traceable to γn, which is the approach explored here.115

Traceability, as defined in Huber et al. (2015), aims to make one quantity behave as much as116

a given target quantity via some calibration process, in order to facilitate the interpretation117

of the differences between the two quantities directly in terms of differences in methodolo-118

gies, rather than due to some of the arbitrary choices usually entering the construction of119

such quantities. The motivation here is that if the procedure succeeds in making γT and120

γn virtually indistinguishable from each other in most of θ/S space or on oceanographic121

sections, which appears to be the case, one will be able to argue that γn might actually122

represent a previously unrecognised attempt at approximating γT . The present approach123

is very different to that previously pursued by SS00 for instance, who did not attempt to124

make orthobaric density traceable to γn (for instance, by constructing it based on a T/S125

relationship that would minimise its differences with γn, rather that by minimising some126

ad-hoc cost function). Although both group of investigators insist that orthobaric density127

and neutral density should be regarded as distinct concepts, we argue that this can only un-128

ambiguously established by comparing γn with a traceable form of orthobaric density, which129

remains to be done. Indeed, since there is no unique way to construct orthobaric density,130

the differences discussed by McDougall and Jackett (2005) or de Szoeke and Springer (2009)131

lack fundamental significance.132

This paper’s original aim was to test JMD97’s claim that neutral density is best inter-133

preted as a form of ‘locally referenced potential density’ (LRPD). Indeed, it would seem that134

a key underlying assumption of JMD97 is that if γn is initialised at some point A to behave135

as potential density referenced to the local pressure pA (as done at JMD97’s Pacific reference136

cast), then γn will also behave as potential density referenced to the local pressure pB at137

some distant point B if B is linked to A via a succession of neutral paths, regardless of the138

distance separating B from A. The refutation of this idea is given in Section 3, and is based139

on the empirical finding that γn appears to behave much more like Lorenz reference density140

than a LRPD, thus motivating the construction of thermodynamic neutral density γT pre-141
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sented here. The paper first reviews some theoretical background on quasi-neutral density142

variables in Section 2, then proceeds on constructing a general form of Patched Potential143

Density as a preliminary step to the construction of γT in Section 3, and concludes with a144

discussion of some of the implications of the present results in Section 4.145

2. Theoretical background146

a. What physical basis for quasi-neutral pressure-corrected density variables?147

The various density variables discussed above tend to rely on distinct physical principles,148

which it is hence important to review in order to identify which one(s) should be regarded as149

the most rigorous and likely to provide the most systematic construction. Perhaps the most150

widely used framework (especially in papers by McDougall and co-authors) is to pose the151

problem in physical space via Eq. (1). How to obtain the latter from a systematic analysis152

of the primitive equations is unclear, however, since (1) is defined in terms of mean variables,153

thus suggesting that it is to be obtained from some averaging process, yet possesses no eddy-154

correlation terms. The main alternative, which underlies SS00’s construction of orthobaric155

density, takes as its starting point the evolution equation for density written in the form156

Dρ

Dt
− 1

c2s(S, θ, p)

Dp

Dt
= q, (4)

where c2s is the squared speed of sound, while q represents diabatic effects due to irreversible157

molecular diffusive processes. The left-hand side of (4) defines the differential form δ$ =158

dρ − c−2s dp, which in general is not perfect and hence not integrable because of the non-159

zero helicity of the neutral vector; otherwise, it is well accepted that $ would define the160

most natural choice of quasi-neutral pressure-corrected density variable. Mathematically,161

this is equivalent to state that the total differential dγ of any mathematically well-defined162
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quasi-neutral density variable γ can at best be written in the form163

dγ = b

(
dρ− 1

c2s
dp

)
︸ ︷︷ ︸

δ$

+δw = −ρb [αdθ − βdS] + δw, (5)

and involves a non-vanishing residual imperfect differential form δw, with b an integrating164

factor. Eq. (5) seems to be the basis for (1), as it is easily seen that the latter can be obtained165

from the former upon making the following substitutions dγ → ∇γ, dθ → ∇θ, dS → ∇S,166

δw → R/π, as well as by interpreting S and θ as their climatological values rather than their167

instantaneous ones. The main advantage of (1) is that it defines the problem in standard168

Euclidean vector space, which makes it easy to define the ‘smallness’ of the residual R or its169

orthogonality with the neutral vector d. In the space of differential forms, however, there is170

no natural way to define the distance or orthogonality between two differential forms. The171

mathematical analysis of (5) must therefore proceed differently, and rely on identifying the172

precise conditions that would make $ an exact differential and hence δw vanish, such as173

the existence of a well-defined θ/S relationship of the form θ = θ(γ) and S = S(γ). Such174

a discussion, however, is not needed for what follows, and hence beyond the scope of this175

paper.176

b. Potential density and its generalisation(s)177

SS00’s orthobaric density represents one possible way to construct a density variable

based on (4) or (5), but this is by no means the only possible approach. A different approach,

which leads to the concept of potential density as a particular case, consists in integrating

(5) by parts as follows:

Dρ

Dt
− 1

c2s

Dp

Dt
=

D

Dt

[
ρ−

∫ p

pr

dp′

c2s(S, θ, p
′)

]
178

− 1

c2s(S, θ, pr)

Dpr
Dt

+

∫ p

pr

ρpSdp
′DS

Dt
+

∫ p

pr

ρpθdp
′Dθ

Dt
. (6)

The quantity within square brackets can be recognised as ρ(S, θ, pr), that is, the potential179

density referenced to the reference pressure pr. So far, only the cases of a constant or piece-180
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wise constant reference pressure pr appear to have been discussed in the literature, so the181

novelty here is in extending the discussion to the case where pr = pr(x) is a continuous182

function of space (time dependence can also be included if desired but discarded here for183

simplicity). Doing so, however, introduces the additional term c−2s (S, θ, pr)∇pr in the gradi-184

ent of ρ(S, θ, pr), as well as the term proportional to Dpr/Dt in (6). Unless pr can be defined185

so that ∇pr is aligned or closely aligned with the neutral vector d, the potential density thus186

defined is likely to suffer from the same undesirable compressibility dependence as in-situ187

density. To make progress, there seems only be two choices: either giving up on the concept188

of potential density referenced to a continuous reference pressure field altogether, or find a189

way to correct for the compressibility effects introduced by retaining the spatial variations190

of pr. We explore the second of these choices by subtracting from ρ(S, θ, pr) a density offset191

of the form σr = σr(x), which leads to the following density variable192

γ = σ(S, θ, pr(x))− σr(x), (7)

where σ(S, θ, p) = ρ(S, θ, p) − 1000 kg.m−3, while pr(x) and σr(x) are a priori spatially193

variable reference pressure and density offset fields whose specification is the key focus of194

this paper. Physically, (7) can be interpreted as a form of potential density referenced to a195

continuously varying reference pressure field pr(x) (the first term), empirically corrected for196

pressure (the second term).197

It is easily seen that (7) includes PPD as a special case for the particular choices σr = 0198

and piecewise constant pr, and hence that it represents a continuous analog of PPD. Since199

JMD97 have made the same claim for γn, does that mean that (7) could be a suitable200

mathematical descriptor of γn? If so, this would be of considerable interest, for one of201

the main drawback of γn is its lack of explicit mathematical expression, which has so far202

prevented the systematic analysis of its formal properties. As it turns out, the answer is203

positive, but this is not in fact surprising, as the form of (7) is in fact so general that it is204

always possible to find a continuous pr(x) and σr(x) so that γ(x) = γn(x) at every point in205
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the ocean 3. In other words, the possibility of writing γn in the form (7) does not in itself206

shed any light on the problem, unless one is able to further constrain the form of the density207

offset σr(x). That this is in fact possible is established in next section, which suggests that208

the density offset can in fact be constrained to be of the form σr(x) = σr1d(pr(x)), that is,209

as a function of pr alone, allowing one to rewrite γn as210

γn = σ(S, θ, pr(x))− σr1d(pr(x)) = γn(S, θ, pr). (8)

If ∂γn/∂pr 6= 0, the problem of computing γn is then equivalent to that of computing pr211

(assuming that σr1d(p) has been determined in some way, which is discussed below), as212

it is then possible to compute pr from the knowledge of γn and conversely. In fact, we213

hypothesise that all quasi-neutral density variables can be written in the form (8), with214

differences between different density variables arising from differences in the continuous215

reference pressure field pr they implicitly rely on.216

It is useful to note that (8) can also be interpreted as a classical density anomaly217

γn = σ(S, θ, p)− σr3d(x), (9)

defined relative to some background density field σr3d related to σr1d via218

σr3d(x) = σr1d(pr(x)) +

∫ p

pr

dp′

c2s(S, θ, p
′)
, (10)

as it is under the form (9) that JMD97 initialises the vertical profile of γn at the central219

Pacific cast located at xpc = (16◦S, 188◦E) that is the starting point for their method. At220

this cast, JMD97 set b = 1 and constrains γn to satisfy the following equation exactly221

γnref(z) = σ0(0) +

∫ 0

z

ρN2

g
dz., (11)

which is easily integrated, using the definition of N2 = −(g/ρ)[∂σ/∂z + ρgc−2s ], as follows222

γnref(z) = σ(S, θ, p)−
∫ 0

z

ρg

c2s
dz′. (12)

3For instance, take pr = p0 = constant, and define σr(x) = σ(S(x), θ(x), p0)− γn(x).
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This implies that at x = xpc,223

σr3d(xpc, z) =

∫ 0

z

ρg

c2s
dz′ > 0, (13)

which in turn imposes a constraint on σr1d through (10). The question, of course, is how224

to formulate mathematical equations for determining the reference fields pr(x) and density225

offset σr3d(x) (or σr1d(p)) in practice? This issue is addressed next.226

3. Physical basis for pr(x) and connection with Lorenz227

theory of available potential energy228

a. Neutral density and generalised patched potential density229

In order to test our hypothesis that (7) is a useful mathematical descriptor of γn, we230

need to understand the physical principles governing the continuous reference pressure pr231

and density offset σr that enter it. Because as mentioned earlier, the problem appears to232

be under-determined, we seek insights into the issue by first considering a simpler problem233

aiming to restrict the range of possible pr and σr by introducing the following discrete version234

of (7), called generalised patched potential density (GPPD),235

γGPPD = σ(S, θ, pijk)− σijk (14)

where both pijk and σijk are piecewise constant fields, based on a partition V =
⋃
Vijk of the236

total ocean volume, which in principle can be taken to vary in all three spatial directions,237

even if in what follows a two-dimensional latitude/depth partition Vjk is used for simplicity.238

Using the γn field supplied as part of Gouretski and Koltermann (2004) WOCE dataset,239

we then seek to compute the 2D fields pjk and σjk that minimise the misfit between γn and240

γGPPD for a given partition Vjk of the ocean. This is done here in the particular case of241

the two-dimensional partition of the ocean volume depicted in the top panel of Fig. 2, with242

∆z = 500 m and ∆y ≈ 40◦, using a least-square approach to find the optimal values of pjk243
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and σjk in each subdomain. The results are illustrated in the top panels of Figs. 2 and 3244

respectively; interestingly, they strongly suggest that σjk is a function of pjk only, which is245

confirmed by a standard regression analysis, and which we use as the basis for constraining246

σr in (7) be a function of pr alone in the rest of the paper. The associated plot for γGPPD is247

given in the top panel of Fig. 1 for the 30◦W latitude/depth section in the Atlantic ocean,248

which can be compared with the corresponding section for γn in the middle panel. The strong249

similarity between the two figures is striking, given that the ability of γGPPD to reproduce250

the main features of γn is achieved with only 7 × 11 = 77 discrete reference pressures pjk;251

the visual agreement is further confirmed by the scatter plot of γn against γGPPD depicted252

in the top panel of Fig. 4, which shows a near perfect correlation between the two quantities253

(the outliers seemingly originating from somewhat strange values of WOCE γn in enclosed254

seas). An histogram of the differences γGPPD − γn (blue bars in bottom panel of Fig. 4)255

shows that γGPPD approximates γn to better than 0.01 kg.m−3 in most of the ocean, which256

is remarkable.257

In addition to provide a crucial constraint on the form of the density offset, the above258

procedure is also useful for suggesting that the reference pressure ‘seen’ by γn is a function259

of both depth and latitude. This result is important, because it conflicts with JMD97’s260

claim that γn can be interpreted as a continuous analog of PPD (recall that the piecewise261

constant pressures used by PPD vary only with depth), or that γn can be interpreted as262

a form of ‘locally referenced potential density (LRPD)’, since some of the pjk’s appear to263

occasionally depart significantly from the local box mean pressure. As it turns out, the264

structure of the pjk’s is in fact much more reminiscent of that of the reference pressures that265

fluid parcels would have in their reference state of minimum potential energy that have been266

recently described in some recent advances in APE theory by Tailleux (2013b) and Saenz267

et al. (2015). The possibility to use APE theory to provide a physical basis for pr is discussed268

next.269
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b. APE theory as a physical basis for pr(x)270

Motivated by the results of the previous section, we introduce a new quasi-neutral density271

variable, called thermodynamic neutral density γT , defined as272

γT (S, θ) = σ(S, θ, pLZr (S, θ))− σr1d(pLZr (S, θ)), (15)

where pLZr (S, θ) is the reference pressure that a parcel would have if brought in a notional273

reference state of rest obtained by means of an adiabatic and isohaline re-arrangement of the274

actual state. As shown recently by Tailleux (2013b) and Saenz et al. (2015), the reference275

pressure pLZr that fluid parcels would have in Lorenz reference state of minimum potential276

energy ρLZr (z) is the solution of the level of neutral buoyancy (LNB) equation277

ρ(S, θ, pLZr (zr)) = ρLZr (zr), (16)

where the possible time-dependence of the reference state, e.g., Tailleux (2013a), is neglected278

for simplicity. Importantly, the LNB equation (16) implies that the reference depth of fluid279

parcels zr = zr(S, θ) is a materially conserved quantity; solving (16) at all points in the280

ocean provides the following explicit construction for the continuous reference pressure field281

pr(x), namely282

pr(x) = pLZr (zr(S(x), θ(x))). (17)

The reference density profile ρLZr (z) was estimated for the WOCE dataset following the283

methodology detailed in Saenz et al. (2015), with an example of the resulting pr(x) field at284

30◦W in the Atlantic ocean being illustrated in the bottom panel of Fig. 2).285

c. Comparison between γT and γn286

In order to compare γT with γn, one first needs to find a way to define the pressure-287

dependent density offset σr1d(p). This was done here by means of a joint pdf analysis of the288

respective distributions of ρ(S, θ, pLZr ) and γn, with σr1d(p) constructed so as to minimise289
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the misfit between γT and γn. The distribution for γT obtained from such a procedure is290

depicted in the bottom of Fig. 1 for the same Atlantic ocean section at 30◦W previously291

used. Clearly, γT appears to capture all the main features of γn except in the upper region292

of the ACC where γT displays some inversions not seen in γn. At the same time, it seems293

important to point out that as explained in JMD97, the values of γn in the Southern Ocean294

are not obtained from the actual Levitus data, but from modified ones, an approach that295

is avoided here. Indeed, JMD97 found it necessary to modify the Levitus data owing to296

the difficulty of neutrally connecting southern ocean values with values further north with297

the original Levitus data. It seems plausible, therefore, that this is the main reason for the298

observed differences between γT and γn in this region. Apart from this issue, Fig. 4) (top299

panel) shows that γT and γn are otherwise extremely well correlated. The bottom panel300

shows an histogram of the differences between the two variables, which reveal that γT does301

in general better than γGPPD at approximating γn, although it also reveals a few instances302

of rather large differences between γT and γn that do not exist for γGPPD.303

Another way to compare γT and γS is directly in (θ, S) space. Although γn is not mate-304

rially conserved, it is nevertheless possible to write it as a sum of a materially conserved part305

γnmaterial(S, θ) plus some residual δγ. For the present purposes, we estimated γnmaterial(S, θ)306

as the bin-average of γn in (θ, S) space, using ∆S = 0.1 psu and ∆θ = 0.1◦C for the binning,307

which is equivalent to defining γnmaterial as the materially conserved function of θ and S that308

best approximates γn in a least-square sense (see also McDougall and Jackett (2005) for an309

alternative take on the same issue). Fig. 5 top, middle and bottom panels show γnmaterial,310

γT and their residual respectively. Remarkably, γT and γnmaterial appear to exhibit the same311

functional dependence on S and θ for most of the ocean water masses, suggesting that the312

non-materiality of γn might be the primary cause for the observed differences between γT313

and γn, even though the residual γT − γn appears to have a rather complex structure. Since314

the estimation of the non-materiality of γn has proven so far technically complex and contro-315

versial (see de Szoeke and Springer (2009) versus McDougall and Jackett (2005)), the present316
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results are interesting as they might point to a potentially much simpler way to quantify the317

non-materiality of γn, which is beyond the scope of this study.318

To conclude this paragraph, it is important to point out that the structure of the differ-319

ences between γT and γn is somewhat sensitive to the way — by no means unique — that the320

function σr1d(pr) is constructed, and hence that these differences should not be interpreted321

literally or as being definitive, as there might be alternative ways to construct σr1d(pr) that322

would result in an even better agreement between γn and γT . On the other hand, it is also323

important to recognise that rather than constructing σr1d(pr) to minimise the differences324

between γT and γn, one might prefer to define it based in physical arguments. The most325

natural approach would be in terms of a globally-defined θ/S relationship parameterised in326

terms of pr, that is of the form Sr(pr) and θr(pr), which would yield327

σr1d(pr) =
1

c2s(Sr(pr), θr(pr), pr)
. (18)

This approach, however, is beyond the scope of the present paper, and will be discussed in328

a subsequent study.329

d. A posteriori rationalisation of the relevance of Lorenz reference state to the theory of330

quasi-neutral density variables331

The strong agreement found between γn and γT suggests that Lorenz APE theory is332

key to the theoretical understanding of neutral density variables; can this be rationalised333

a posteriori? To see that this is indeed the case, it seems sufficient to remark that the334

construction of neutral density as proposed by JMD97 would be trivial for a resting ocean, as335

neutral surfaces would then coincide with Lorenz reference density surfaces. Now, if neutral336

density γn had been constrained to be materially conserved, neutral surfaces would still have337

to coincide with Lorenz reference density surfaces in the actual state, since Lorenz reference338

density is a materially conserved variable by construction. It follows that differences between339

γn surfaces and γT surfaces can only come from the non-material conservation of γn, which340
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is generally considered to be small, establishing a posteriori that γn and γT should indeed341

be expected to be strongly correlated. This also establishes a posteriori that γT should be342

regarded as the most natural definition of quasi-neutral density if material conservation is343

retained, which seems essential for studying ocean mixing. QED.344

4. Discussion345

In this paper, we have revisited the theory of neutral density by establishing that con-346

trary to what is commonly assumed, JMD97’s empirical neutral density γn does not behave347

as a locally referenced potential density (LRPD), but as the potential density referenced to348

its Lorenz reference state pressure. This was established by introducing a new materially-349

conserved neutral density variable — called thermodynamic neutral density γT — a function350

of Lorenz reference density only, which was calibrated to minimise its misfit with γn. The351

close agreement between the two variables, and the fact that they are often virtually in-352

distinguishable from each other when plotted on oceanographic sections or in (θ/S) space,353

suggest that JMD97 neutral surfaces actually represent a previously unrecognised attempt354

at recovering Lorenz reference density surfaces.355

This is an important result, for it makes it possible to reconcile the theory of neutral356

density — which so far has been the basis for thinking about how to define isopycnal and357

diapycnal directions — with at least two important developments over the past 20 years or so,358

all pointing to the key role of Lorenz reference state for studying turbulent diapycnal mixing359

and meso-scale ocean eddies, namely: Winters et al. (1995)’s proposal to use Lorenz reference360

state to rigorously quantify turbulent diapycnal mixing and Gent et al. (1995)’s proposal to361

parameterise the effect of meso-scale ocean eddies as net sinks of available potential energy.362

Moving towards defining isopycnal and diapycnal mixing based on γT rather than in terms363

of γn or local neutral tangent planes would help putting the study of ocean mixing on a364

more rigorous footing that has been the case so far, as APE theory already benefits from a365
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considerable body of literature while currently undergoing rapid and exciting developments.366

Moreover, it would also allows the study of ocean mixing in terms of a strictly materially367

conserved quantity, also defining it in terms of a strictly materially conserved quantity, and368

therefore make it more easily applied to Walin (1982)-type water mass analysis for instance.369

From a practical viewpoint, there are also considerable advantages in using γT in place370

of γn. Indeed, investigators currently willing to use γn have no choice but to use the compu-371

tational software made available to the community by JMD97. This software — which most372

investigators use as a black box — is known to be computationally expensive and restricted373

to the analysis of present-day climatologies of temperature and salinity (and pre-TEOS10)374

(which does not stop its use for different kinds of climatology). In contrast, the construction375

of Lorenz reference state proposed by Saenz et al. (2015) is straightforward and computa-376

tionally cheap, and physically amounts to map water masses volume in thermohaline (θ/S)377

space onto physical space, a much simpler and cleaner approach than sorting previously used378

by Huang (2005). It therefore does not require integration along characterestics, which is ar-379

guably mathematically ill-suited to the construction of a density variable in the ocean owing380

to the presence of orographic features and surface boundaries, e.g., Klocker et al. (2009).381

In conclusion, we believe that the above arguments represent overwhelming evidence that382

γT represents the elusive quasi-neutral pressure-corrected density variable that oceanogra-383

phers have been seeking since Montgomery (1938) pioneering analysis, which we hope to384

demonstrate further in subsequent studies.385
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List of Figures469

1 (Top) Generalised patched potential density (GPPD) based on the GPPD470

reference pressure depicted in the top of Fig. 2 and GPPD density offset471

depicted in Fig. 3 at 30◦W in the Atlantic ocean. (Middle) Neutral density472

γn at the same longitude. (Bottom) Lorenz neutral density based on the473

reference pressure depicted in the bottom of Fig. 2. 24474

2 (Top) The latitude-depth dependent reference pressure seen by the Gener-475

alised Patched Potential Density depicted in the top panel of Fig. 1, as ob-476

tained through regression against neutral density in the discrete domains in-477

dicated by the grid. (Bottom) The reference pressure associated with Lorenz478

reference state underlying the Lorenz neutral density depicted in the bottom479

of Fig. 1. 25480

3 (Top) The density offset used in the construction of the GPPD depicted in481

the top Fig. 1. (Bottom) Scatter plot of the GPPD density offset against482

the GPPD reference pressure, with the straight line being the best fit linear483

regression. 26484

4 (Top) Scatter plot of Neutral density against GPPD (blue dots) and of neutral485

density against Lorenz neutral density (red dots), with the magenta line being486

the straight line of equation y = x. (Bottom) Histogram of the decimal487

logarithm of the absolute value of the differences between neutral density and488

GPPD (blue bars) and between neutral density and Lorenz neutral density489

(red bars). 27490

5 (Top) Materially-conserved part of γn obtained by bin-averaging γn in (θ, S)491

space. (Middle) The quasi-material Lorenz neutral density bin-averaged in492

the same way as γn. (Bottom) difference between the top and middle panels. 28493
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Fig. 1. (Top) Generalised patched potential density (GPPD) based on the GPPD reference
pressure depicted in the top of Fig. 2 and GPPD density offset depicted in Fig. 3 at 30◦W
in the Atlantic ocean. (Middle) Neutral density γn at the same longitude. (Bottom) Lorenz
neutral density based on the reference pressure depicted in the bottom of Fig. 2.
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Fig. 2. (Top) The latitude-depth dependent reference pressure seen by the Generalised
Patched Potential Density depicted in the top panel of Fig. 1, as obtained through re-
gression against neutral density in the discrete domains indicated by the grid. (Bottom)
The reference pressure associated with Lorenz reference state underlying the Lorenz neutral
density depicted in the bottom of Fig. 1.
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Fig. 3. (Top) The density offset used in the construction of the GPPD depicted in the
top Fig. 1. (Bottom) Scatter plot of the GPPD density offset against the GPPD reference
pressure, with the straight line being the best fit linear regression.
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the differences between neutral density and GPPD (blue bars) and between neutral density
and Lorenz neutral density (red bars).
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Fig. 5. (Top) Materially-conserved part of γn obtained by bin-averaging γn in (θ, S) space.
(Middle) The quasi-material Lorenz neutral density bin-averaged in the same way as γn.
(Bottom) difference between the top and middle panels.
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