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ABSTRACT4

In a series of papers, Killworth and Blundell (2004,2005,2007) have proposed to study the5

effects of a background mean flow and topography on Rossby wave propagation by means of6

a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a7

linearization of the primitive equations of motion. However, it has been known for a number8

of years that this eigenvalue problem contains an error, which Peter Killworth was prevented9

from correcting himself by his unfortunate passing, and whose correction is therefore taken10

up in this note. Here, we show in the context of quasi- geostrophic (QG) theory that11

the error can ultimately be traced to the fact that the eigenvalue problem for the vertical12

velocity is fundamentally a nonlinear one (the eigenvalue appears both in the numerator and13

denominator), unlike that for the pressure. The reason that this nonlinear term is lacking14

in Killworth and Blundell’s theory comes from neglecting the depth-dependence of a depth-15

dependent term. This nonlinear term is shown on idealized examples to alter significantly the16

Rossby wave dispersion relation in the high-wavenumber regime, but is otherwise irrelevant17

in the long wave limit, in which case the eigenvalue problems for the vertical velocity and18

pressure are both linear. In the general dispersive case, however, one should first solve the19

generalized eigenvalue problem for the pressure vertical structure, and if needed, diagnose20

the vertical velocity vertical structure from the latter.21

1. Introduction22

A central question in the theory of ocean variability is how the barotropic and baroclinic23

normal modes of the standard linear theory (SLT), e.g. Gill (1982), are modified by the pres-24

ence of a background mean flow and variable topography? To address this issue, progress25

over the past decades has principally come from investigating the nature of the solutions of26

the equations of motion linearized around a background mean flow, most often in the context27

of quasi-geostrophic (QG) theory. Under the WKB approximation, which assumes that the28
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scales over which the background mean flow and topography vary are large compared to that29

of the waves considered, approximately separable wave solutions still exist, whose vertical30

structure can be obtained as the eigenmodes of a non-self adjoint eigenvalue problem. When31

the problem is formulated by linearizing the quasi-geostrophic potential vorticity evolution32

equation around a background zonal mean flow for instance, the generalised eigenvalue prob-33

lem thus obtained is generally naturally formulated in terms of the vertical structure for the34

pressure, e.g., see Fu and Chelton (2001) and Aoki et al. (2009) for recent examples.35

In the classical SLT, i.e., in absence of mean flow and topography, it has long been known36

that the eigenvalue problem defining the standard barotropic and baroclinic modes can be37

indifferently formulated in terms of the vertical structure for either the pressure or vertical38

velocity. Yet, we were unable to find any published derivation of the generalised eigenvalue39

problem (i.e., accounting for mean flow and topography) for the vertical structure of the ver-40

tical velocity in the context of QG theory. Motivated by the fact that boundary conditions41

are generally simpler for the vertical velocity, Killworth and Blundell (2004, 2005, 2007)42

(KB04,KB05,KB07 thereafter) sought to formulate a generalized eigenvalue problem for the43

vertical structure of the vertical velocity from directly linearizing the primitive equations.44

Using QG scaling, they first obtained linearized equations for the horizontal velocity com-45

ponents in terms of Welander (1959)’s M function, which once inserted into the continuity46

equation led to the following expression for the vertical derivative of w:47

wz =
ikMz

2Ωa2 sin2 θ
−

iRMz

a2f 2

(

k2

cos2 θ
+ l2

)

+ small (1)48

where R = kdim ·u− ω is minus the Doppler-shifted frequency ω, u is the zonal background49

mean flow, kdim = (kx, ky) is the dimensional wave vector, (k, l) are the angular zonal and50

meridional wavenumbers, which are related to the dimensional wavenumbers (kx, ky) by51

kx = k/(a cos θ) and l = ky/a, a is the Earth radius, θ is the latitude, Ω is Earth’s rotation52

rate, and f = 2Ω sin θ is the local Coriolis parameter. At this point, KB04 sought to derive53
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an expression for w by vertically integrating Eq. (1), which they took to be given by:54

w =
ikM

2Ωa2 sin2 θ
−

iRM

a2f 2

(

k2

cos2 θ
+ l2

)

. (2)55

Such a derivation is valid, however, only if R can be assumed to be independent of z, but as56

noted earlier, R is given by:57

R = kdim · u− ω (3)58

and in general will depend on z because the background mean flow depends on z.59

The above error was first identified by Roger Samelson (Samelson, 2007, personal com-60

munication) who had pointed it out to Peter Killworth at the time. But despite his best61

efforts, Peter Killworth passed away before he could find a cure to the problem. The main62

objective of this paper is twofold: 1) to clarify the nature of the error and show how to63

redress it; 2) understand how the error affects some of KB04’s conclusions regarding the64

nature of the dispersion relation of Rossby waves in presence of a background mean flow and65

topography. The issue is important to clarify, because it also affects KB05’s results, KB07’s66

discussion of forced modes and baroclinic instability, and is expected to alter some of the67

conclusions of the comparison of KB04’s theoretical dispersion relations against observations68

recently carried out by Maharaj et al. (2007, 2009).69

In this paper, we note that KB04’s theory appears to rely on the same scaling arguments70

as those underlying the construction of QG theory, and hence seek to derive a generalised71

eigenvalue problem for the vertical velocity directly from QG theory, which is done in Section72

2. The main result is that the eigenproblem thus obtained only differ from that of KB0473

by a term that makes the QG eigenvalue problem for the vertical velocity nonlinear, and74

hence intractable. Section 3 illustrates on some idealised examples that such a term affects75

KB04’s dispersion relations mostly in the high wave numbers regime. Section 4 summarizes76

the results and discusses some of its consequences.77
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2. Generalized eigenvalue problem for w in QG theory78

The standard starting point for generalising the SLT to account for the effects of a back-79

ground mean flow and topography is the QG evolution equation for the potential vorticity80

(PV) equation:81

Dgq

Dt
= 0, (4)82

where Dg/Dt = ∂t + J(Ψ, ·) is advection by the geostrophic velocity (ug, vg) = −Ψy, Ψx,83

with Ψ being the geostrophic streamfunction, and q is the potential vorticity:84

q = f0 + βy +
∂2Ψ

∂x2
+

∂2Ψ

∂y2
+

∂

∂z

(

f 2
0

N2

∂Ψ

∂z

)

. (5)85

The geostrophic stream function Ψ is related to the buoyancy b, pressure p, and vertical86

velocity w through the following relations:87

b = f0
∂Ψ

∂z
, p = ρ0f0Ψ, (6)88

89

w = −
Dg

Dt

(

f0

N2

∂Ψ

∂z

)

, (7)90

e.g., Vallis (2007). As shown by several authors, e.g., Fu and Chelton (2001), Aoki et al.91

(2009), the QG evolution equation linearized around a zonal background mean flow u = u(z)92

[neglecting uyy relative to β] admits separable wave-like solutions Ψ ∝ F (z)ei(kxx+kyy−ωt),93

whose vertical structure F can be regarded as the eigenmodes of the following eigenval-94

ueproblem:95

(u − c)

[

d

dz

(

f 2
0

N2

dF

dz

)

− K2F

]

+

[

β −
d

dz

(

f 2
0

N2

du

dz

)]

F = 0, (8)96

where K2 = k2
x + k2

y, with suitable boundary conditions whose precise form depends on97

whether a variable or flat bottom topography is considered, where c = ω/kx is the zonal98

phase speed.99

Our objective is to obtain the corresponding eigenvalue problem for the vertical velocity100

w. To that end, linearizing Eq. (7) yields the following linearized expression for w:101

w = −

(

∂

∂t
+ u

∂

∂x

)

f0

N2

∂Ψ′

∂z
+

f0

N2

du

dz

∂Ψ′

∂x
. (9)102
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This implies for the vertical structure of wave-like solutions w = W (z)ei(kxx+kyy−ωt) that it103

is related to the pressure vertical structure F through:104

W = −if0kx

[

(u − c)

N2

dF

dz
−

1

N2

du

dz
F

]

. (10)105

In order to arrive at the eigenvalue problem satisfied by W , we successively differentiate106

the latter expression with respect to z, by making use of the links between F and W to107

successively eliminate terms involving F and its derivatives. Thus, differentiating the latter108

equation a first time yields:109

dW

dz
= −if0kx

{

(u − c)
d

dz

(

1

N2

dF

dz

)

−
d

dz

(

1

N2

du

dz

)

F

}

(11)110

By taking advantage of the fact that F satisfies the eigenvalue problem Eq. (8), it is possible111

to remove the second-order term in F to simplify this expression as follows:112

dW

dz
= −

ikx

f0

{

(u − c)K2 − β
}

F =
ikx

f0

{

β − K2 (u − c)
}

F, (12)113

in which all first and second derivatives in F have been eliminated. Taking the vertical114

derivative a second time yields this time,115

d2W

dz2
=

ikx

f0

[

β − K2(u − c)
] dF

dz
−

ikxK
2

f0

du

dz
F. (13)116

By using Eq. (10), it is possible to express dF/dz in terms of F and W as follows:117

dF

dz
=

1

u − c

∂u

∂z
F +

iN2

f0kx(u − c)
W, (14)118

and then, by using Eq. (12), it is possible to express F in terms of dW/dz. As a result, the119

following eigenproblem is obtained:120

(u − c)
d2W

dz2
−

[

1 −
K2(u − c)

β − K2(u − c)

]

du

dz

dW

dz
+

[β − K2(u − c)]N2

f 2
0

W = 0 (15)121

The surprising result here is that Eq. (15) is a nonlinear eigenvalue problem because of the122

term K2(u− c)/[β −K2(u− c)], which involves the eigenvalue c both in the numerator and123
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denominator. In contrast, the eigenvalue problem derived by KB04 (in absence of meridional124

mean flow) is given by:125

(u − c)
d2WKB

dz2
−

du

dz

dWKB

dz
+

[β − (u − c)K2] N2

f 2
0

WKB = 0. (16)126

The two eigenproblems are identical but for the missing nonlinear term in Eq. (16). In127

the long wave limit studied by many authors, e.g., P. D. Killworth and de Szoeke (1997);128

Tailleux (2004); de Verdière and Tailleux (2005), however, the nonlinear term vanishes and129

the eigenvalue problems for the pressure and vertical velocity are equally simple and linear.130

In some other instances, such as in the case of the internal waves in the traditional f -plane131

approximation, it is in terms of the vertical velocity that the problem is most conveniently132

formulated, as it is the problem in terms of pressure that becomes nonlinear, e.g., Gill (1982)133

(Eq. 8.4.10).134

3. Particular example of the differences135

As mentioned above, the nonlinear term K2(u − c)/[β − K2(u − c)] responsible for the136

difference between the two eigenproblems given by Eqs. (15) and (16) clearly vanishes in137

the long wave limit K → 0, so that we expect it to affect the eigensolutions only at large138

wave numbers. That this is indeed the case is illustrated here in the particular case of the139

following idealized mean flow and stratification:140

u(z) = umin + ∆u0 exp
{

(z − z0)
2/δ2

}

, (17)141

142

N2(z) = N0 + ∆N exp
{

(z − z0)
2/δ2

}

, (18)143

which are displayed in Fig. 1. The consideration of an idealized example is sufficient for the144

present purposes of illustrating that the error made in KB’s papers is not innocuous. A more145

complete investigation of the consequences of the error made in KB04 on the conclusions of146

all the papers that rely on KB’s papers is beyond the scope of this paper. The dispersion147
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relations for the QG and KB eigenproblems were computed by solving the discretized versions148

of the QG eigenvalue problem for pressure and KB04 eigenproblem for the vertical velocity149

by using Matlab’s standard eigenvalue routines. In order to compare the vertical velocity in150

each theory, the vertical velocity modal structure was diagnosed using the pressure modal151

structure by using the discretized version of Eq. (10).152

153

In absence of a background mean flow, both QG and KB’s theories should be strictly154

equivalent. This is found to be the case, as illustrated in the left panels of Figs. 2 and 3,155

corresponding respectively to the use of the standard flat-bottom boundary condition and156

that of bottom-pressure compensation theory of Tailleux and McWilliams (2001), which can157

be regarded as a limiting case of the effect of bottom topography in the infinitely-steep slope158

limit, e.g., Tailleux (2003). As discussed above, we expect the two theories to yield dissimilar159

results in presence of mean flow primarily at large wavenumbers. This is illustrated in the160

right panels of Figs. 2 and 3, which show that for wavenumbers larger than the Rossby161

radius of deformation, the two theories may start to differ dramatically, demonstrating the162

importance of the corrective term overlooked by KB04 in such a region of the wavenumbers163

space, both for a flat bottom and the bottom pressure compensation boundary conditions.164

Note that in the asymptotic limit kx → −∞, the dispersion relationship becomes quasi-165

nondispersive, and given by ω = −uminkx, where umin is the absolute minimum value of u(z)166

in the vertical, as demonstrated by Gnevyshev and Shrira (1989). Although KB’s dispersion167

relationship also appears to be quasi-nondispersive at high wavenumbers, its behavior ap-168

pears nevertheless quite different from that of the QG case. Moreover, we failed to obtain an169

analytical result for the asymptotic behavior of KB’s dispersion relationship for kx → −∞.170

171

172
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4. Summary and conclusions173

In this paper, we derived the generalised QG eigenvalue problem for the vertical ve-174

locity normal mode structure of Rossby waves in presence of a background mean flow and175

topography. Previously, such an eigenproblem had been formulated only for the pressure.176

Surprisingly, the vertical velocity eigenproblem appears to be nonlinear (the eigenvalue ap-177

pears both in the numerator and denominator), which is very uncommon and not easily178

anticipated given that the eigenproblem for the pressure is linear. Such a result shows how179

KB04’s derivation might be corrected; at the same time, it also shows that the actual eigen-180

problem for the vertical velocity is not easily tractable, and that the investigation of the181

propagation properties of Rossby waves in presence of mean flow and topography is more182

easily addressed by solving the pressure eigenvalue problem. Whenever the vertical velocity183

structure W is needed, it is most conveniently diagnosed a posteriori from the knowledge of184

the pressure vertical structure F by using (the discretized version of ) Eq. (10).185

The results also show that the error made by KB04 is in fact equivalent to neglecting the186

term making the QG eigenproblem for the vertical velocity nonlinear. Such a term is small in187

the long wave limit K → 0, so that the error is mostly of consequence for understanding the188

behaviour of the Rossby wave dispersion relation at high wave numbers. The study of the189

latter regime is an old problem, which was investigated in significant details by Gnevyshev190

and Shrira (1989), and is therefore not discussed in more details here.191
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List of Figures237

1 Idealized profiles for the squared buoyancy frequency N2 (right panel, in s−1)238

and zonal velocity profile (left panel, in m/s). 13239

2 Comparison of QG (solid line) and KB (crosses) flat-bottom theories. (Left240

panel) Dispersion relation in absence of mean flow as predicted by classical QG241

theory (solid line) and KB theory (crosses). (Right panel) Dispersion relation242

for Rossby waves affected by the idealized Gaussian mean flow illustrated243

in Fig. 1, as predicted by the classical QG theory (continuous line) and by244

KB theory (crosses). The dashed-dotted line represents the nondispersive245

dispersion relationship ω = −uminkx, while the dashed line represents the246

nondispersive relationship tangent at kx = 0, i.e., ω = c(kx = 0)k, where umin247

is the absolute minimum of the horizontal zonal velocity along the vertical248

(which is strictly negative and located at z = −500 m, according to Fig. 1).249

Frequency is normalized by the maximum frequency of the flat-bottom, no250

mean flow standard linear theory, while the zonal wavenumber is normalized251

by the inverse of the Rossby radius of deformation. 14252
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3 Comparison of QG (solid line) and KB (crosses) theories using the bottom253

boundary condition of the bottom-pressure compensation (BPC) theory of254

Tailleux and McWilliams (2001). (Left panel) Dispersion relation in absence255

of mean flow as predicted by classical QG theory (solid line) and KB theory256

(crosses). (Right panel) Dispersion relation for Rossby waves affected by the257

idealized Gaussian mean flow illustrated in Fig. 1 as predicted by the classical258

QG theory (continuous line) and by KB theory (crosses). The dashed-dotted259

line represents the nondispersive dispersion relationship ω = −uminkx, as260

in Fig. 2, while the dashed line represents the nondispersive relationship261

tangent at kx = 0, i.e., ω = c(kx = 0)kx. Frequency is normalized by the262

maximum frequency of the flat-bottom, no mean flow theory, while the zonal263

wavenumber is normalized by the inverse of the Rossby radius of deformation. 15264
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Fig. 1. Idealized profiles for the squared buoyancy frequency N2 (right panel, in s−1) and
zonal velocity profile (left panel, in m/s).
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Fig. 2. Comparison of QG (solid line) and KB (crosses) flat-bottom theories. (Left panel)
Dispersion relation in absence of mean flow as predicted by classical QG theory (solid line)
and KB theory (crosses). (Right panel) Dispersion relation for Rossby waves affected by
the idealized Gaussian mean flow illustrated in Fig. 1, as predicted by the classical QG
theory (continuous line) and by KB theory (crosses). The dashed-dotted line represents
the nondispersive dispersion relationship ω = −uminkx, while the dashed line represents
the nondispersive relationship tangent at kx = 0, i.e., ω = c(kx = 0)k, where umin is
the absolute minimum of the horizontal zonal velocity along the vertical (which is strictly
negative and located at z = −500 m, according to Fig. 1). Frequency is normalized by the
maximum frequency of the flat-bottom, no mean flow standard linear theory, while the zonal
wavenumber is normalized by the inverse of the Rossby radius of deformation.
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Fig. 3. Comparison of QG (solid line) and KB (crosses) theories using the bottom boundary
condition of the bottom-pressure compensation (BPC) theory of Tailleux and McWilliams
(2001). (Left panel) Dispersion relation in absence of mean flow as predicted by classical QG
theory (solid line) and KB theory (crosses). (Right panel) Dispersion relation for Rossby
waves affected by the idealized Gaussian mean flow illustrated in Fig. 1 as predicted by the
classical QG theory (continuous line) and by KB theory (crosses). The dashed-dotted line
represents the nondispersive dispersion relationship ω = −uminkx, as in Fig. 2, while the
dashed line represents the nondispersive relationship tangent at kx = 0, i.e., ω = c(kx = 0)kx.
Frequency is normalized by the maximum frequency of the flat-bottom, no mean flow theory,
while the zonal wavenumber is normalized by the inverse of the Rossby radius of deformation.
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