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Abstract

A key idea in the study of the Atlantic meridional overturgiairculation
(AMOC) is that its strength is proportional to the meridibdensity gradient, or
more precisely, to the strength of the meridional pressuadignt. A physical
basis that would tell us how to estimate the relevant menalipressure gradi-
ent locally from the density distribution in numerical ongaodels to test such
an idea, has been lacking however. Recently, studies ohogeergetics have
suggested that the AMOC is driven by the release of availatential energy
(APE) into kinetic energy (KE), and that such a conversitesgplace primarily
in the deep western boundary currents. In this paper, wel@zam analytical
description linking the western boundary current cirdolabelow the interface
separating the North Atlantic Deep Water (NADW) and Antartttermediate
Water (AAIW) to the shape of this interface. The simple atieff model also
shows how available potential energy is converted intoticrenergy at each lo-
cation, and that the strength of the transport within thet@reboundary current
is proportional to the local meridional pressure gradigribw latitudes. The
present results suggest, therefore, that the conversterofgotential energy
may provide the necessary physical basis for linking thengfth of the AMOC
to the meridional pressure gradient, and that this coulccheged by a detailed

study of the APE to KE conversion in the western boundaryesurr
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1. Introduction

The Atlantic Meridional Overturning Circulation (AMOC)ansports heat poleward, and so
has a significant role in high-latitude climate (e.g. Manahd Stouffer 1988, 1999; Vel-
linga and Wood 2002). It is increasingly recognised thatensthnding its variability and
propensity to change requires understanding the linksdmiwhe sinking rate, the surface
density distribution and the thermal structure of the oseg§@nanadesikan et al. 2007). Of
particular interest is the relationship between some measuthe Atlantic meridional den-
sity gradient and the AMOC strength, which many studies lemsimed to be linear (e.g.
Robinson and Stommel 1959; Rahmstorf 1996). This geneiraltylves the use of an un-
constrained scaling constant, or “fudge factor”. A centtgkective of this paper is to seek a

more physical basis for this constant.

Classical scaling (Robinson and Stommel 1959; Robinso0)1@€es the geostrophic ther-

mal wind equation to give a relationship=

= %%BLE whereV is a scale for the meridional

velocity, f the Coriolis parameter),p the zonal density gradient across the bagip,a
zonal length scalefd a characteristic depth of the meridional velocities in tpper flow
and py an average ocean density. This approach relates to the tippeof the AMOC,
with V' located there. To arrive at a relationship involvifigp, Robinson (1960) linka\, p
to A,p via an ad-hoc assumed proportionality « U. Marotzke (1997) lists plausible
assumptions to justify this type of link. Wright and Stock&991) introduce an ad-hoc pa-
rameterisation of the zonal pressure gradients in termseofiteridional pressure gradient in

their two dimensional latitude-depth ocean model, whileghtret al. (1995) solve this issue
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with zonally averaged models by using a dynamical link betweorticity dissipation in the

western boundary layer and the meridional overturningutatoon.

Classical scaling/ o gH?A,p for the overturning strength/ = H'V yields a linear scaling
in A,p whenH remains constant. This is found in simulations with ocearega circulation
models (OGCMs) where surface fresh water fluxes change bynBtainf (1996) and others
(e.g. Hughes and Weaver 1994; Thorpe et al. 2001; LevermaairGaiesel 2004; Griesel
and Morales-Maqueda 2006; Dijkstra 2008). In theories whbe return flow is linked
to H by diffusion (Bryan 1987) or by SO eddies (Gnanadesikan ), 9®4lifferent scaling
is found. In particular, Gnanadesikan (1999) kegpg fixed, and a cubic equation i

is found by closing the mass balance. Levermann and Fuér$0jZonduct an extensive
range of OGCM simulations, and find that bdihandA , p are free to change, depending on
the nature of the applied perturbation. Park and Whiteh&889q) show a quadratic scaling
between flow and an idealised density difference in laboyaggperiments, extending the

evidence for scaling laws beyond the realm of numerical sode

Instead of using geostrophy, Gnanadesikan (1999) baseschlgg law on the balance
AH% = %g—z in the (upper) western boundary current (WBC). Note thathiumses)\ p to
remain fixed for his purposes, and leavédree to evolve. Heredy is the horizontal vis-
cosity, gradients in pressugearise from sea surface height gradients ansldensity. This
procedure avoids the need to link the zonal and meridioredqure gradients, but a free

constant representing the effects of geometry and bouridgey structure now enters the

scaling. This factor is chosen to obtain the overturning dthis numerical ocean model.
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Schewe and Levermann (2010) use essentially this scaliagit@ at a linear scaling for the
relationship between the meridional density gradient 8011 depth and the North Atlantic
Deep Water (NADW) outflow rate. This viscous western boupdarrent approach appears
distinct from the approach based on geostrophy, and theamship between the various

approaches is unclear.

Appropriate to their stated purposes, scaling studies rgakeral statements about power-
laws between diagnostics, and so tend to involve an undetedhscaling constant. This
“fudge factor” can be chosen relatively arbitrarily to geriat the desired overturning rate. In
the present study, we wish to obtain its value explicitlyrirdensity properties that appear
in the local momentum balance in the numerical model. Héxe neridional slope of the
Antarctic Intermediate Water (AAIW)-NADW interface at thgestern Atlantic boundary

turns out to be key.

In addition to examining the nature of the scaling constamther insight into the rela-
tionship between the meridional (frictional) argumeng)(€nanadesikan 1999; Schewe and
Levermann 2010) and the geostrophic argument (e.g. Rabih860; Marotzke 1997) is
given via the shape of the interface between the NADW and AAlsYer masses. Our ap-
proach is related to the scaling study of Schewe and Levern2®l0), and we build on
their approach by relating the meridional pressure gradiethe NADW depth range to the
overlying interfacial surfacé between NADW and AAIW locally. Furthermore, we find
a formula for the overturning rate in terms of basic modehpaeters (e.g. viscosity), the

depth of the flow and the meridional slope of the AAIW-NADWanacial isopycnal in the
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western boundary (WB) and the meridional density gradient.

2. The Model and Experimental Design

We use Version 2.8 of the intermediate complexity globahelie model described in detail
in Weaver et al. (2001). This consists of an ocean genemlleition model (GFDL MOM
Version 2.2 Pacanowski 1995) coupled to a simplified onedanergy-moisture balance
model for the atmosphere and a dynamic-thermodynamicceemodel of global domain
and horizontal resolution 1°8ongitude by 1.8 latitude (note that the zonal resolution is
greater than in the standard configuration). The numbermite¢levels has been increased
from the standard 19 levels to 51 levels, with enhanced uésal in the upper 200m. This
is to better resolve isopycnal slopes, a quantity discugseiis paper. We implemented
the turbulent kinetic energy scheme of Blanke and Deledi883) based on Gaspar et al.
(1990) to achieve vertical mixing due to wind and verticdbegty shear. A rigid lid approx-
imation is used. The bathymetry consists of a flat bottom @05bdeep with a 2500m deep
sill at “Drake Passage”, and incorporates two idealisethsaand a circumpolar “Southern
Ocean”, as shown in Figure 3. Heat and moisture transpogstplace via advection and
Fickian diffusion. We employ a latitudinally varying atnpdgeric moisture diffusivity, as
described in Saenko and Weaver (2003). Air-sea heat ankvfegsr fluxes evolve freely
in the model, yet a non-interactive wind field is employed.eWind forcing consists of
zonal averages of the NCEP/NCAR reanalysis fields (Kalnay. 4996), averaged over the

period 1958-1997 to form a seasonal cycle from the monthlgifieOceanic vertical mix-
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ing in the control case is represented using a diffusivigt thcreases with depth, taking a
value of 0.1cm?/s at the surface and increasing to @42 /s at the bottom. The effect of
sub-grid scale ocean eddies on tracer transport is modglléte parameterizations of Gent
and McWilliams (1990), using identical thickness and isomf diffusivity of 500m?/s.
Neutral physics in regions of steeply sloping isopycnalsasdled by quadratic tapering as
described by Gerdes et al. (1991), using a maximum slope @fima hundred. We will
refer to this model as “the numerical model” or the “Generat@ation Model” (GCM) to

distinguish it from our analytical model. The model has begegrated for 5500 years.

3. Results

GCM circulation and water masses.

Figure 1 shows the Atlantic meridional streamfunction. Athern sinking cell overlies an
Antarctic Bottom Water (AABW) cell of about 3 Sv, separatediand 2500m depth. The
NADW outflow of 10.5 Sv and deep sinking of 18 Sv is similar tattfiound for instance
in the realistic bathymetry configuration of the UVic mod&alissed in Sijp and England
(2004). Most of the NADW recirculation occurs at high north&titudes (north of 45N),
and equatorial upwelling is limited. The lower limb of the AMC consists of a narrow deep
WB current at low latitudes, as shown for 2160m depth in FigN@ significant horizontal

recirculation occurs inside the basin interior, and flowdafmed to the WB.

The NADW and AAIW water masses in the Atlantic are moving ipogite directions (see
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Fig. 1), and it is of interest to examine an interfacial isopsl i between the two, shown
in Figure 3. Along the western boundary,exhibits shoaling north of the equator, and
deepening to the south. The low-latitude interiohas relatively horizontal, whilé deepens
and then shoals at higher latitude as one moves to the noiteaindary. These features are
absent in the Pacific basin, where deep sinking is absentihemefore are likely to be a
signature of deep water formation in the Atlantic. The miendl slope in the interior ok
away from the Equator is associated with significant zonal feml by deep sinking along the
northern boundary and the Antarctic Circumpolar Currer@CA at the southern boundary,
as can be seen for the northern hemisphere in Figure 2. Hergyilimit discussion to
the low latitudes, where the slope bfin the interior is relatively weak, and deep flow is

generally meridional along the WB.
Conceptual model and relationship between the interface g#h and the circulation

Figure 4 shows a schematic side-on view of the AMOC lower lifinére the southward
flow of NADW) and the overlying AAIW in the Atlantic at low latides, where the fluid
is divided into two homogenous layers. The idealised flowriagined to take place in the
central (narrowest) basin shown in Fig. 3, where the foromadif NADW is located, and this
basin is referred to as the Atlantic. We take a two dimengdiscelarh such that = h(x,y)
coincides with an isopycnal on the water mass interface, @ésoted by:. Note that we
choosez to increase upwards with = 0 at the surface. In the ocean interior away from
the WB, the surfacé has negligible zonal slopgg and meridional slop% (dashed line),

whereash has a positive meridional slor% at the WB (solid line). Note that this implies
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that the surface has a finigg there.

We will see that% has an approximately constant valgigalong the western boundary,

where we defines, = 2—2’ . with the changeA taken between 10S and 10°N. For

w
convenience, we take = 0 at the WB, so that|,;,; = 1(0,y). The general flatness &f
away from the WB at low latitudes in the Atlantic (Fig. 3) meahath remains very close
to its average valug (at low Atlantic latitudes) almost everywhere except in tBC. We
see from Fig. 3 thak(0,0) ~ h (that ish attains its low latitude (e.g. between 28 and 20
°N) basin-average value ~ 1250m at the equator). Namely,(0, y) is shallower than this
average north of the equator and deeper to the south (thisennhore clearly visible in Fig. 7
and Fig. 8). This will be a feature of our analytical solusdrelow, and is presently indicated
by the intersection of the dashed and solid lines at the Bguathe diagram (Fig. 4). As a

result, we can determintefrom the GCM either vigh = 1(0, 0), or as the low latitude basin

average of: (e.g. between 10S and 10°N).

We assume that the interfa¢eresides inside a vertical range of no motion and vanish-
ing pressure gradients. It separates the northward-floAislyv and southward-flowing
NADW layers. On the interface, ocean surface pressure@mgglare balanced by baroclinic
gradients (assumption 1 below). Howevk(),y) > h (i.e. is more shallow than) for

y > 0, and vice versa foy < 0. As a result, below the interface, horizontal pressure gra-
dients arise, where a taller (where the top i%)athan average column of water at the WB
north of the Equator leads to a westward pressure gradierg #ind a lighter column south

of the Equator leads to an eastward pressure gradient, @sted by the arrows going into
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and out of the page. The AMOC lower limb, indicated by a honmoges field of identical
southward velocities, is subject to a Coriolis force thabasanced by the zonal pressure
gradient. The bulk of the AMOC lower limb takes place over ptaangeD, defined as

the vertical thickness of the AMOC lower limb.

Assumptions and approximations

We use the following assumptions and approximations foAtitentic at low latitudes:

1. Pressure gradients and velocities become small on thaoerh, as explained above.

2. The AMOC lower limb is contained within a zonally narrowigtalong the WB, and
u << v So thatu =~ 0. As a result, viscous effects are only due to gradients ine neglect

the second order spatial derivativesiofWe also neglecg—g.

3. We approximate the weakly stratified NADW between 1200624 depth by a homoge-

neous water mass.

4. Vertical NADW recirculation inside the Atlantic basinssall relative to AMOC lower

limb.
5. Variations ink are small compared to the total outflow depth

6. Finally, this is not an assumption but a definition, we tiour focus to the AMOC lower
limb. This depth range is located above the zero-streanditieeating the AABW and the

NADW in the meridional stream function (Fig. 1). Velocitieglow the zero contour are
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considered 0 in the analytical model, as they are not couag@dADW flow.

Assumption 1 is trivial in the ocean interior away from the Wihere pressure gradients and
velocities are generally small. Assumption 3 implies adaggnsity transition of negligible
thickness across the level of no motion between the AAIW aA®W flows. The veracity
of assumption 2 can also be judged from Fig. 2, assumptioo fig. 1 and assumption 6

from Fig. 3.
Solutions to the equations of motion

The opposite moving Atlantic NADW and AAIW water masses (Hiyjare separated by a
surface of no motion and negligible horizontal pressureigras (assumption 1). Neglecting
stratification inside the NADW column (Assumption 3) anduwmsg cancellation of the

ocean surface gradients by the intervening baroclinicigrasl ath (Assumption 1), we can

_ gApVpgh _

/ I — gAp ;
0 g'Vh, whereg' = L s the

express the horizontal pressure gradi@ﬁ@
reduced gravity, and\p the density difference between the NADW and AAIW angdis
an average ocean density. The gradient denotes the horizontal gradie(rg%, a%, 0). In
our experimentg, = 1035kg/m?* and in our standard experimeftp = 0.33kg/m?3. A

more complete discussion can be found in Appendix 1, whezeutiderlying assumptions

are specified and a mathematical derivation is given.

We now seek to relate the flow in the deep western boundargmtuselow the interface to the
horizontal gradient of. The southward NADW flow is contained within a WBC of relative

small width, in which the meridional velocitydominates the zonal velocity (Assumption 2)

10
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and the meridional velocity has only weak meridional vaoiag. Neglecting the stratification
inside the NADW column underneath(Assumption 3) leads to an approximation of the
flow by a vertically constant velocity there. Our focus is be tow latitudes, so we make
the beta plane approximation. Omitting momentum advedimhassuming a steady state,

the equations of motion for the horizontal velocities atredepth in the NADW depth range

are then:
(1) 0=3 =Byv—g'5
@  0=2=Ay2%— fyu—g2

where( denotes the value (% at the equator, andlis the Coriolis parameter, now approx-
imated by3y. Note that we assume = 0, so that the viscous term balances the meridional

pressure gradient in Eq. 2.

A detailed derivation of solutions fdw, v) andh to the equations of motion (Egs. 1, 2) are
given in Appendix 2. The equations of motion suggest a claseespondence between

andh, and trying a separable solution fbgives:

(3) h(z,y) =h +y sye_m(ésin(ﬁa:c) + cos(v/3ax))
4) v(z,y) = —%sya % e~ sin(v/3ar)
(5) M = 22s,Ap

wherea = ¢ % (see Appendix 2) and/ denotes the NADW outflow. Note that this

11
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solution requires. = 0. If Ay is known, the surface is fully determined by specifying the
average depth ands,. Note thath is linear iny whenz is held constant, as, is a constant.
Note also thail/ is also expressed in terms of quantities that can be easdyrdmed from
the GCM. We will later determine how well these equationsrapimate our numerical
model. The damped oscillation inin Eq. 3 is reminiscent of the-dependence of pressure
in the analytical solution for a zonal section of the Pacigepl western boundary current
of Warren (1976). However, he examined only one latitudehsd the meridional density
structure and the role of the meridional pressure gradiealidcnot be incorporated in that

study.

Comparison of analytical solutions with the GCM

To give a general impression of the approximations we us#étkianalytic model, Figure 5a
shows a vertical profile of velocity at 8°N for the western-most Atlanticin the GCM. This
idealised profile, taking the form of a rectangular (stepition, arises from the idealisation
of the density field at the western boundary (Fig. 5b) showkigq 5¢ (Assumption 3).
The density contours are more tightly packed around thefage’ than inside the NADW
water mass (Fig. 5b). Note that we omit density contourserugbper (light) part of Fig. 5b,
as they are too tightly packed to be legible. The non-zerociéés below the rectangular
function generally belong to the AABW cell underlying the AMC lower limb (Fig. 1),
and are subject to different dynamics than those describ#us paper (e.g. Kamenkovich
and Goodman 2000). In model configurations where AABW is ahdke space below the

rectangular function could be regarded as the ocean flodiingrautside the scope of our

12
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analysis, no density is assigned to it in Fig. 5¢ (Assumpéipn

In the analytic model, we calculatefrom Equation 4, taking from the numerical model
Sy = ﬁ—’; E with the change\ taken between 165 and 10°N andh = h(0,0). Equation

1 implies that, in the y-direction, the velocity equals tle®strophic velocityp = vyeos. TO
examine how welb = v, holds in the numerical model, Figure 6a shows the quotient
Ugeos/ v at the Atlantic western-most Atlantic grid cell (where thieagest deviation from
geostrophy might be expected, as viscous interaction Wwgh/¥/B is strongest here). This
guotient is mostly very close to 1, indicating an excellegteement. However, there is
some discrepancy betweep,; andv immediately south of the equator, although also there
the discrepancy is smallest at the core of the AMOC lower I{uith a maximal value
around 10-15 percent). This could be related tbeing small near the Equator, leading to
an inaccurate calculation. Note that the discrepanciegamerally smallest in the NADW
core, where most of the kinetic energy is dissipated (Fig.c6see below). In conclusion,

U = Vge0s NOIds well in the GCM at the WB. As a result, only the longitualivariations of

v can significantly contribute to viscous dissipation (Eq. 2)

The solution forv shown in Equation 4 is independentigfwith v constant along the WBC
and small in the interior. For this to be the case in the GCMgragipated by the analytic
model, the dashed curve in Fig. 7, representirgjong a latitudinal section away from the
WB (5 °to the east in this case), is horizontally flat, whilet the WBA(0, y) is approxi-
mately linear with positive slope (solid curve). The ingeéh lies inside a vertical interval

of low velocities (Fig. 7a) and pressure gradients (Fig, Wbaccordance with Assumption

13
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The twisted interfacé is associated with a relatively homogeneous southward fedombit
(Fig. 7a). The Coriolis force on this flow is balanced by thegsure gradient beloiwshown
in Fig. 7b. Importantly, the western boundary sectigf, y) of h crosses the average depth
value (approximated by the shown isopycnal aE=f the western boundary) at the Equator
y = 0, leading to a zonal pressure gradient reversal undernéath7b). These elements are

also indicated in the cartoon diagram in Fig. 4.

To examine whethe?p%p = ¢’V yh is an appropriate approximation to the GCM, Figure 8
shows the interfacial isopycnal deptlin the GCM, zonal pressure gradient obtained directly
from the GCM and the zonal pressure gradient calculated frofAts said, here we us&p =
0.33kg/m3, diagnosed by taking the density difference between 2008pthd NADW) and
1000m depth (AAIW) at the Equator. There is a good agreenmetmtden the GCM pressure

gradient (Fig. 8c) and that calculated \o;ioa% = g’% (Fig. 8d).

The analytical interfacé obtained from Eq. 3 shown in Fig. 8a compares favourably with
h obtained from the GCM (Fig. 8b). In both casésshoals north of the Equator in the
WBC region, and deepens to the south, and values closete attained near the Equator.
The interior away from the WB remains relatively horizortampared to the WBC region
in both cases, with smaller undulations. Deepening associated with zonal flow further
away from the Equator is present in the GCM, especially imitr¢h-east corner, but absent

in the analytical solution, indicating the limited valigiof our approach there.
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To further compare the analytically determinednd the underlying with the GCM, Fig-
ures 9 and 10 show zonal profiles near the WBQ:@ndv at 3 different latitudes and 2
depths. Again, the analytical solutions do not yigldso this value has to be specified. As
done aboveh has been taken as the valuehoft the western boundary at the Equator. We
checked that similar results to those shown here are oltéimelternative definitions of

, where we chosgé inside the ocean interior away from the WB at the latitudehefzonal
profile (figure not shown), ak is close to its average value also there. Also as above, the
value ofs, has been determined ag= ﬁ—’;, where the change in quantitigy, &) is taken
between 10S and 10N in latitude. Again, similar results are obtained for végas of this
latitudinal domain, provided it remains contained inside low latitudes. There is a very
good agreement between the numerical model and the ardiytadel for the zonal profile

of h andv at 8.1°N (Fig. 9 left column) and 8.1S (Fig. 10a,b,c), although velocity agrees
somewhat less at the deeper levet —2100m in the southern case (Fig. 10b). Reasonable
yet reduced agreement is found further away from the Eqaat®®.7°N (Fig. 9b,d,f), indi-
cating that the approximation works best near the Equatoe. vEry good agreement of the
width of the profile near the Equator lends credence to thadtaa = ¢ (%) there. The
overshoot to positive values in(GCM) away from the western boundary is also present in
both the numerical model and the analytical solution (eig. ¥¢). The slop% become9

at the western boundary in the analytical solution to allow 0 there. This feature is absent
in the numerical result, as it falls below the model resolutiNonetheless, the western-most
v attains a similar value to thg-component of the geostrophic velocity in the numerical

model (see above).
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AMOC under varying forcing.

Figure 11 shows the NADW outflow (at 3%5), M, for eight other experiments with the
GCM where we have changed the atmospheric moisture diffugsee Section 2) so as to
achieve different overturning rates in response to altéremyancy fluxes, in order to test
the general applicability of the analytic description. kick experiment, the model was
integrated for more than 6000 years in order to attain a gtetade. The hydrological cycle
is meridionally asymmetric in our model, and enhancing mooesdiffusivity leads to greater
freshwater transport to the Southern Ocean (see Saenko eaneEY\W2003; Sijp and England
2008). Increases in the produgiAp (via increasing moisture diffusivity) leads to increased
NADW outflow M in the numerical model (Fig. 11b), and a generally good agess is
maintained between the numerical model avidcalculated from Equation (5). In each
instance the same procedure was followed to obtgairwwe usedD=1200m for the NADW
outflow depth, instead of the full 1500m, to account for thetigal ramping ofv at the
water mass boundary. This procedure may need to be moreld@embder extreme changes
in the model as\/ depends on botihp ands,. Both factors contribute to the increase in
M (Fig. 11a). Included in the eight experiments are two whieeenhoisture diffusivity field
has been replaced by a spatially constant field (as in SijpEangland 2008). These are
the two experiments with lowest ratég (the two left-most points in Fig. 11b), where a
spatially constant moisture diffusivity afo®m?/s leads toM = 7.8Sv and a diffusivity
of 0.8 x 10°m?/s to M = 6.8Sv. Interestingly, the difference in/ between these two

experiments arises almost solely from a difference in skgpe
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Energetics

The equations of motion yield the time evolution of kinetieegy density,;,, via multipli-
cation byw, giving 2%is = pv2 = pov k2% —pog'v L = po A2 (v2) — poA(L)? -
pog'v 52 . The first term of the last expression is a divergence and eaedognised as the
zonal transport of kinetic energy by viscous forces. Theatis KE transmission is mostly
zonal and confined inside the western boundary (and so e@sislhe zonal integral), and
the advection of KE is negligible (as in Gregory and Taill211). The second term,
—poAn(5L)? = —dpgApviale 2 sin®(v3ax + 27), is the rate of viscous dissipation of
energy per unit volume. The third term is the rate of potérmtieergy conversion derived
from the sloped overlying surfade This term is the rate of work done by the pressure gra-
dient inside the NADW water column. In steady stgw = 0, yielding a budget for the

conversion of potential energy into kinetic energy and tiném heat by viscous dissipation.

Zonal integration over the WBC domain leaves only the irdegof the viscous dissipation
rate termpoAH(g—) and the potential energy conversion ra-tﬁog'v , as the transport
term vanishes. This means that although the companémit not the vector (u,v)) satisfies
the geostrophic equation, the strong zonal gradientriear the western boundary allows for
the conversion of potential energy derived from the menédity sloped surfacé into heat
via viscous dissipation. Locally, the two processes ateelirvia zonal viscous energy trans-
port. This situation is shown in Figure 10d, where the eneatg terms are shown. Potential
energy is converted into kinetic energy near the core of theeat, while viscous zonal en-

ergy transport allows this energy to be dissipated visgocisise to the western boundary,
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where the gradient im is the largest. A small amount of this energy is also trarnsgloio
the opposite shoulder away from the western boundary, whergradient inv is also large.
Gregory and Tailleux (2011) describe the conversion of vamke by the pressure gradient
into kinetic energy and then heat via viscous dissipatiothe\HADCM3 and FAMOUS
models. Their Figure 4 shows that work done by the presswadigmt is balanced by vis-
cous dissipation, and that dissipation via horizontalugitbn dominates wherever pressure
gradient work is positive. This is in agreement with our tesuAs in Gregory and Tailleux
(2011), the pressure gradient is allowed to do work as it tsentirely perpendicular to the
velocity due to vanishing. In the present analytical model, deviation from geostyoigh
only due to viscous effects allowing= 0, a small effect. Gregory and Tailleux (2011) argue
that even though departure from geostrophy is usually sihadl nevertheless essential for
the energy budget of the oceans, as it is the term resporisittiee conversion of potential

energy into kinetic energy all the way along the western ldauoy

Interestingly, the potential energy is converted from theridional slope. Although one
can determine from the zonal slop% , this tells us little about what physical processes
determine or limit. In contrast, the fact that potential energy is convertethfthe merid-
ional slope ofh (and due to the\p across it) allows a statement about what global factors
determinev, namely a portion of the rate of potential energy generaticnoss the basin.
Although this is consistent with the view recently advoddtg Tailleux (2009) and Hughes
et al. (2009), itis difficult to infer overturning strengttom global energy budgets here. We
make no attempt to determine this portion from the globatgnéudgets, and only state

that once available,, andAp are such that the rate is proportional(t9Ap)?, and therefore
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always positive. Interestingly, the latter quantity is ganto the expression for the available
potential energy in a two-layer model separated by a hotatlyrsloping interface, yielding
a further connection to APE theory. We therefore find thattieeidional gradient of. and
the density difference across it is a more fundamental aet@nt ofv than the zonal gradi-
ent, while the zonal pressure gradient adjusts in respargeayields no information about

what sets).

We can express the zonally integrated energy dissipatiendensity (“energy dissipation”
for short) in terms of the velocity. Recall from Appendix 2ath/(y,z) = [Tvdx =
% (where we taker = 0 at the western basin margin). Then, the energy dissipasion i
Wy, 2) = [ poAn(82)?de = dpoAna®vd [ e 2 sin®(V3ax + 2m) dz = 3poAyavt.

Here, we have usef]“e2*"sin?(v/3ax + 27) dz = 2.

Substitutingy, and recalling (Appendix 2)3 = we obtain:

8A’

2
I T e I

Y

The energy dissipation calculated from model data usingsg(&hown in Figure 6c, and
compares reasonably well with the energy dissipation tatied via the rate of work done
by the pressure gradient;Vp - v (Fig. 6b). This lends support to our energy analysis.
The energy dissipation is confined to the low latitudes wioereapproximation works best,
rendering our framework a good tool for calculating the ltetaergy dissipation associated

with the lower limb of the AMOC. Equation 6 also suggests fliatx 1/2. Note thatiV’

depends oy, suggesting that energy dissipation depends on the rotedte, and its local
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rate of change with latitude.

Undulations inh are associated with available potential energy that coaeldeteased by
pressure work arising from the ensuing pressure gradiéhtke a non-rotating case, the
meridional slope of. near the WB is the only slope from which the available potdetnergy
can be released in this manner. This work is done in the lowdy bf the AMOC mostly
at the latitudes where our approximation is most valid,dired an estimate of the energy
dissipation rate associated with this flow. The creatiorhefdvailable potential energy is
associated with diapycnal mixing, wind stress and surfamséncy forcing (Hughes et al.
2009). The precise energy pathways leading to the potesrtiagy tied up in the merid-
ional slope ofh at the WB are diverse and beyond the scope of this study,uthwe can
already say that buoyancy forcing changes that incrégsevould also increase the work
done by the meridional pressure gradient field, and so theygmissipation rate. This is
then associated with a stronger AMOC. Also, a deépepuld likely yield a largers,, ash
remains constrained by its outcrop region in the north,itegath a higher energy dissipation
rate and stronger flow. The available potential energyedl&bh in the Atlantic is related
to its average depth, which in turn is strongly related to the depth/ofat 32°S, a value
that is influenced by the SH westerlies. Local wind stress edsistrains the shapeat the
northern outcrop regions by steepening isopycnals theggesting an role for both basin-
scale wind stress and buoyancy forcing in determiningAlso, the steepening of near
its outcrop region suggests that the average detbtermines an upper bourf}** to s,
namelyS;* = h/LY, whereL" is the distance between the equator and the latitude of the

North Atlantic outcrop region ok. This also yields an upper bound fof and the potential
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energy that can be converted fram(via pressure work), providedp remains constant.
Finally, eddies remove potential energy by flatteningia the GM parameterisation. This
effect is strongest in the SO, and less important inside dlsenl{Kamenkovich and Sarachik

2004).

4. Summary and Conclusions

We have proposed a new analytical description of the AAIWENW interfaceh and the
underlying DWBC at low latitudes. This has allowed us to ustind the processes limiting
the NADW outflow rate, and the mechanisms that make the floallppdependent on the
AAIW-NADW density difference. Our approach works best nder Equator (e.g. between
10°S and 10N), and becomes somewhat less accurate at high northetdkdiand around
30°S. Nonetheless, the low latitude validity of the descriptadlows us to obtain a more
general scaling for the NADW outflow rafe, as the flow must pass the low latitudes to exit
the basin. Our approximation to the vertical profileva$ a Heaviside function, whereas the
GCM exhibits a more gradual profile sculpted by further said#nsity transitions inside the
NADW column. Despite the simplicity of this approximatianfunction forM in terms of
s,Ap is obtained that compares very favourably to the GCM. Wer ofbeprecise description
of how buoyancy forcing affects the density field, althoulgis will be needed in a future
study to link the overturning to surface forcing. Finallyrapproach does not capture the
underlying AABW cell and does not yield an expression for B&EDW column thickness

D. Instead, this must be estimated from the GCM output. Furibee, no description is
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offered of the upper branch of the AMOC.

A brief energy analysis shows that potential energy arigiioig the meridional slope df is

converted into kinetic energy and then viscously dissighaféhis yields a constraint on the
flow, namely the rate of basin-wide potential energy proauctia this slope. In contrast,
the zonal slope is a passive response arising from a gebstragjustment mechanism,
perhaps similar in essence to that described in Johnson amshi&ll (2002). Indeed, the
deep meridional velocity can be derived from the zonal presgradient via a thermal wind
balance, but this procedure yields no information aboutitheng mechanisms maintaining
this dissipative flow. Gregory and Tailleux (2011) also eagike the role of this energy
conversion process in limiting the NADW overturning ratdeTanalytical expression fér

(Eq. 3) provides a relationship between the zonal and noeradipressure gradient.

Scaling of the upper limb of the AMOC generally involves limg zonal to meridional pres-
sure gradients and velocities, and employ basin-wide zoaés (see De Boer et al. 2010,
for a discussion). In contrast, we show here that the zorsésof these quantities are the
WBC width for the AMOC lower limb. Here, the AMOC is describasla dissipative system
largely confined to the western boundary region, where abvilpotential energy associated
with local density structure is converted into kinetic ggyielding a constant velocity sub-
ject to viscous drag at each latitude. This suggests theriaupce of future investigation
of the relationship between this study and the studies byhdsi@t al. (2009) and Tailleux
(2009), who stress the importance of available potentiatggnin facilitating the transfer of

kinetic energy to the background potential energy in maimg the AMOC, and that the
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rate of transfer between different energy reservoirs issmmaportant than the total available

potential energy.

Our deep circulation differs from that proposed by Stommnel Arons (1960), who assume
a uniform abyssal upwelling across the Atlantic thermaelrase. In contrast, we assume
little or no low-latitude Atlantic upwelling, as in obseti@ns (Talley et al. 2003) and our
numerical model (see Section 2). Also, the horizontal addyeirculation characteristic of
the Stommel and Arons (1960) model is absent in our numenodel (Fig. 2) and analytical
model. The Stommel and Arons (1960) approach regards the ©A#Ba passive response
to the introduction of a mass source (deep sinking) in the deger located in the North
Atlantic. In contrast, in our approach the DWBC is coupledhe overlying interfacial

surfaceh, and both interact to evolve to a steady state.

Our experiments take place in a flat bottom idealised nuralemodel below eddy permitting
resolution, yielding a relatively quiescent deep ciraolataway from the western boundary.
In contrast, several recent observational studies findghlsurface floats injected within
the DWBC of the Labrador Sea are commonly advected into thehN&tlantic deep in-
terior, in apparent contrast to the view that the deep watenéd in the North Atlantic
predominantly follows the DWBC (e.g. Bower et al. 2009; Lleyz2010). Indeed, in the
ocean eddy-permitting model of Spence et al. (2011), aggoaf NADW separates from the
western boundary and enters the low-latitude Atlantic ntarior pathways distinct from the
DWBC, with a the total southward transport off shore of the B@Vof about 5Sv at 35N.

However, unlike the model used in the present study, thdystmploys also a detailed ocean
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bathymetry while the present study seeks to isolate the AMEd&ling factors in a simple
setting. Furthermore, the NADW recirculation describe&pence et al. (2011) takes place
at or to the north of our domain of interest while, as in oudgtsouthward flow is the norm
within most of the low latitudes also in their model. Alsoy@pproach assumes a dominant
role for the viscous dissipation of momentum in the horiabdirection, whereas in the real
system bottom pressure torques may play a significant raligliels and de Cuevas 2001).
However, the results discussed here apply to non-eddywagahodels, and provide a better
understanding of their behaviour. Furthermore, the detdithe energy dissipation can be

adjusted in our framework.

De Boer et al. (2010) find that the AMOC scale depth is set bydémh of the maximal
AMOC streamfunction, instead of the pycnocline depth, amgleasise that these depths
differ. This is in agreement with our experiments jagpresents this scale depth. However,
although the meridional slopg of 1 at the western boundary is relateditbecause: must
outcrop near the northern boundary, we find no direct or gmaly to links, to h. This

is because the slor% is only constant along the boundary at low latitudes, anceases
sharply north of 5°N. There is an indirect link, as deepening /ofwould yield greater
isopycnal slopes near the northern boundary, and therefore available potential energy.
The availability of this extra potential energy to the AMO@h determines howy, increases
with h. Processes influencirigtake place in the Southern Ocean (e.g. Gnanadesikan 1999)
as well as via diapycnal mixing and the horizontal distiidmitof buoyancy at the ocean
surface, thus supplying energy to the deep WBC and detemqautflow rates. Furthermore,

AABW constrains the vertical exterf? of the AMOC lower limb as well as influencinig,
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providing a further constraint.

We determine the constants needed infduscaling more directly from our numerical model
so that we can verify our formula against numerical modalltesvithout tuning the result
to fit the overturning rate or deep velocities, yielding a da@lidation of our analytical
model. Nonetheless, our basin-geometry is rectanguldroan approach may require the
introduction of further geometrical factors in models wétimore realistic and irregular ge-
ometry. Furthermore, geometrical factors enter our c@raitbns via the choice of location
where we conduct our analysis (low latitudes) and the degrtigeD of the NADW outflow.
Nonetheless, we provide further insight into the originggebmetrical constants and pro-
vide a scaling where factors can be obtained from GCM outpgt 6). We link this to the
local mechanisms at play in driving the NADW outflow. The dept the NADW outflow,
the density difference between the stacked water massethamderidional slope of their

interface at the western boundary need to be determineelid tyie NADW outflow rate.

Appendix 1. Vanishing pressure gradient on interface:

We examine an isopycnal surfageof densityp, situated between the tongues of AAIW
and NADW moving in opposite directions. These flows are dssgnpressure-driven (see
also Gnanadesikan 1999), ahdesides inside a depth range where velocities and pressure

gradients are small (see Fig. 7b). We assume the ocean igimgdtgtic balance |.e% =

N

—gp for z increasing in the upward direction and zero at the sdase; where is pressure,
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g gravity andp ocean density. Therefor@%%’ = —gVyp, yieldingVyp(z) = Vgpo +
gf Vup(Z)dz, whereV gp, is the rigid lid pressure gradient at the lid surface- 0. The

gradientVy denotes the horizontal grad|e(“§ . We will only be concerned with

1 3y 0
horizontal pressure gradients and velocities, as isopwtoges are very small in our region
of interest, and the horizontal velocity scale generallgeexis the vertical velocity scale by
a factor of10*. The interface depth is simply such tha¥’ zp = 0 atz = h (Assumption 1),
so foranyz < h, Vyp(z) = VHpo+gthHp dz+gf Vap(2)dz = gf Vaup(2)dz.
Hence the geostrophic velocityz) = 1/fpodp/0x = g/ fpo f: Op/0x dz, and similarly

for u(z).

Now, along an isopycnal surfacg of densityp, we have: apdx + dy + apdz = 0, so

== —%%, wherez, denotes the depth of the isopycnal of dengityrhen

hapz)azp ~
- pof f oz dz

0z

We now approximate the density distribution overc [—oo,h] asp(z) = pyapw —
(pnvapw — paarw)H(z — h), where H is the Heaviside function. Note that we gener-
ally take py4pw to be the density at the western boundary, the Equator andni 8@pth
(the core of the outflow)p 44w is defined at the same horizontal location at 1000m depth.
This crude approximation to the density field amounts togaésg a single uniform density

to the NADW water masgy 4pw, and assuming a relatively rapid density transition from
paarw tO pyapw acrossh (Assumption 3). Then% = —(pNapw — paarw)d(z — h),
where is the Dirac delta function, and substituting this in thentegral givesv(z) =

/ A . .
L (pNapw — paarw )t = 97% for z < h, whereg’ = 23 is the reduced gravity. We
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generally assume the beta plane approximafior (y. We estimate an effective thick-
nessD of about 1200m for the NADW outflow, leading to a maximal NADWtitow depth
h+1200 ~ 2400m. This choice can be regarded as a “geometrical factor” fseeduction),
and visual inspection of Fig. 1 suggests it is a reasonaldiEehWe ignore the contribution
to the NADW outflow below this depth, as by definition the NADWWI resides above the
zero contour (Fig. 1). We define = 0 there for our purposes. In reality, further density
gradients give rise to a reduction in flow below the NADW. Thaa maxima of the analyt-
ically determined meridional velocity generally coincigih v at the western-most Atlantic

grid cell in the GCM (Fig. 9 and Fig. 10).

Appendix 2. Derivation of solution to equations of motion.

Here we derive useful solutions to the equations of motion E¢P. We restate the equations
in the more general form using and without the beta plane approximation used in the main

text (the approximation will be introduced below):
(1) 0=9%=fo—g§

(2) 0=20=AyTt — fu—g'2

Recall thatu =~ 0, which will be used below. We cross differentiate the equragiof motion

to obtain the vorticity equationAH% + Bv + f(% + g—;) = 0. Near the equator, where

f goes to zero, the vorticity balance is well approximatecgiiy: f—:. Note also that the
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weak NADW recirculation in our model (Fig. 1, Assumption éphders the horizontal flow
largely divergence-free inside the NADW depth range, atsalering the 3rd term small.
Interestingly, this equation can be recognised as thatrgowgthe boundary-layer solution
in Munk (1950)’s model of wind-driven circulation. The phgally acceptable solution along
the western boundary is simply given by= vy (y)e™**sin(v/3ax) % , Whereuv,(y) is an
undetermined function of, anda = r,/2 = %(%)1/3. Note thatv appears separable in
r andy. This motivates writingh = h + F(z)G(y). F represents a longitudinal profile
while GG is the latitudinal amplification of this profile to satisfy@gtrophy in Eq. (1), where
G(0) = 0. As we are only discussing the dynamics for the low latitydes shall now
assume g-plane approximation, and take forits value at the Equator. Equations (1)

and (2) indicates a close correspondence between-ttependence of andh, and trying

h(z,y) =h +y sye*‘”(§sm(\/§a:p) + cos(V/3ax)) givesy, = —2\/?;;’]&2 = —%sya %
wheres, is simply the constant slope 6fat the western boundary. Itis likely determined by
non-local factors. Alsoy = 0 (—Ayu is the only y-dependent term in Eq. 2). The integrated

transport in the boundary layer is therefore

V =uwo(y) [, e *"sin(v3ax) dz = 7”0(33\/5 — __9/5%‘/3

which is independent of 5, as in Munk (1950). Note that here we take- 0 at the western

basin margin.

Multiplying V' by the vertical extent of the NADW columi yields the NADW outflow. We
thus assume that the variationsiirare small compared td. This yields Equations 3, 4 and

5.
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Atlantic Meridional Stream Function (Sv)
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Figure 1: Atlantic meridional overturning streamfunctidi® year average. Obtained via
vertical integration of the basin-wide zonal integrakofPositive values indicate clockwise

flow. Values are givenin Sv (1 Sv = 4@n® sec?).
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Velocity at 2160m depth
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Figure 2: Direction of NADW flow at 2160m depth in the Atlanti& typical velocity in the

WBC is 3 cm/s. Taken from 10 year average.
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Depth of AAIW-NADW interface h
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Figure 3: Depth of isopycnal that lies between the AAIW and NADW tongues in the
Atlantic (depth in m). The narrow basin displayed near thareeof the figure is identified
with the Atlantic basin. We generally take = 0 at the western boundary of this basin.

Taken from 10 year average.
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Figure 4: Schematic representation of AMOC lower limb arel AAIW-NADW interface

h. The interface h assumes its average depth and has a vdtyatinalinal (y) slope in the
interior away from the western boundary (dashed), and hasstantant positive latitudinal
slope at the boundary (solid), where it attains its averageevonly at the equator (where
the solid and dashed lines intersect). The vertical digphent of h from its average depth at
the western boundary leads to a zonal pressure gradient medidional flow v, where the
direction into the page is indicated by a cross inside aeifx] on the right) and out of the

page by a very small + inside a circle (on the left).
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Figure 5: Values at the Atlantic western boundary grid céth)the meridional velocity
(m/s) at 8.1°N where values from the numerical model are black and valoes the ana-
lytical theory are red, by (kg/m?) with p referenced to 1200m depth and c) an idealization
of the density at the western boundary. The interfacgindicated by a bold contour in (b).
The idealization in (c) approximatesin the NADW depth range by 4pyw ando aboveh

by o 441w . Taken from 10 year average.
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Figure 6: a) Atlantic western boundary grid cell values obgteophic meridional velocity
Vgeos divided by the actual meridional velocityin the model~<2. b) The zonal total of the
energy dissipation rate densifi§’{/m?*) calculated over the western boundary layer via work
done by the pressure gradient, and calculated as the zdegtahofVp - v. c) Same as (b),
but calculated vig p,5V?, whereV = [ *v(x)dz. Note that we omit equatorial values of

Ugeos/V IN (&), asf vanishes there.
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Figure 7: Values at western Atlantic boundary of a) meridiorelocityv (m/s) and b) zonal
pressure gradient (Pa/m). Overlaid are the depth of the ANADW interfacial isopycnal

at the western boundary (solid) andléngitude east of the western boundary (dashed).
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{ajh analytical {bih from GCM
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Figure 8: a) Depth of AAIW-NADW interfacé (m) calculated from Eq. 3, b) Depth of
AAIW-NADW interface h (m) obtained from annual average GCM output, ¢c) zonal pressu
gradient (Pa/m) obtained from annual average GCM outputtrabnal pressure gradient
(Pa/m) obtained from the zonal slope of the interfadé obtained from GCM). Note that

the western boundary of the idealized Atlantic is aPROngitude.
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Figure 9: Longitudinal section at the western Atlantic bdany at 8.1°N (left column)
and 20.7°N (right column) of a,b) the depth of AAIW-NADW interfack (m), c,d) the

meridional velocityy (m/s) at 1700m depth and e,f) the meridional veloci{yn/s) at 2100m

depth. The values obtained from the numerical model are showiack, and the analytical

m/s

m/s

values are in red. We choose the average dejtithe western boundary at the equator, and

the slopes,, as the average slope between 10 degrees North and Souththiiotiee western

boundary of the idealized Atlantic is at 9Dongitude.
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(a) AAIW-NADW interface depth h

(b) meridional velocity v at 2100m depth
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Figure 10: Longitudinal section at the western Atlantic hdary at 8.1°S (not to be con-

fused with previous Figure showing 8'N) of a) the depth of AAIW-NADW interface:

(m), b) the meridional velocity (m/s) at 2100m depth, c) the meridional velocitym/s)

at 1700m depth and d) the rate of energy conversion teth$'{l’/m?): potential energy

(blue), viscous dissipation (black) and viscous trangfed); The values obtained from the

numerical model in (a), (b) and (c) are shown in black, andathedytical values are in red.

h ands, are chosen as in the previous figure.
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(@) Apy vs. y-slope h with NADW outflow contours (b) NADW outflow vs product syApy
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Figure 11. Experiments where atmospheric moisture difftysis varied to accomplish
oceanic surface buoyancy flux changes. a) NADW outflow fdt€Sv) as a function of
the meridional slops, = 3—2 of h and the AAIW-NADW density differencé\p (kg/m?).

Numerical experiment values are marked by a *. b) NADW outftate M (Sv) vs. the

products,Ap (kg/m?) for the numerical model (red) and analytical model (black)
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