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Abstract. Although it plays a key role in the theory of stratified turbulence, the

concept of available potential energy (APE) dissipation has remained until now a

rather mysterious quantity, owing to the lack of rigorous result about its irreversible

character or energy conversion type. Here, we show by using rigorous energetics

considerations rooted in the analysis of the Navier-Stokes for a fully compressible

fluid with a nonlinear equation of state that the APE dissipation is an irreversible

energy conversion that dissipates kinetic energy into internal energy, exactly as viscous

dissipation. These results are established by showing that APE dissipation contributes

to the irreversible production of entropy, and by showing that it is a part of the work

of expansion/contraction. Our results provide a new interpretation of the entropy

budget, that leads to a new exact definition of turbulent effective diffusivity, which

generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work

of expansion/contraction into reversible and irreversible components. In the context

of turbulent mixing associated with parallel shear flow instability, our results suggests

that there is no irreversible transfer of horizontal momentum into vertical momentum,

as seems to be required when compressible effects are neglected, with potential

consequences for the parameterisations of momentum dissipation in the coarse-grained

Navier-Stokes equations.
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1. Introduction

It has long been known that in the presence of stratification, part of the kinetic

energy may ultimately be dissipated as a the result of work against vertical buoyancy

forces. The physical mechanism that is traditionally evoked is that the conversion

of kinetic energy into gravitational potential energy causes vertical displacements of

the isentropic surfaces from a notional horizontal reference position, thus causing

temperature fluctuations that are dissipated by molecular diffusion, e.g., [11, 1]. The

rate at which kinetic energy is removed via work against buoyancy forces is usually

denoted by εP and called the available potential energy dissipation rate. Until now, the

concept of APE dissipation rate has been primarily defined in the context of a Boussinesq

fluid with a linear equation of state, in which case εP is related to the dissipation of

temperature variance χT = ‖∇θ′‖2, where θ′ are potential temperature anomalies via

εP = αg0χT , where α and g0 are the (constant) thermal expansion coefficient and

acceleration of gravity respectively. The concept of APE dissipation plays a central role

in the theory of stratified turbulence, as it serves as the basis for the definition of the

turbulent diapycnal diffusivity Kv in the Osborn-Cox model [8, 9] via the relationship:

Kv =
εP

N2
=

ΓεK

N2
(1)

where Γ = εP/εK is often called the mixed efficiency or dissipation ratio, e.g., [7], while

N2 is the squared buoyancy frequency.

Despite its central role in the theory of stratified turbulence, the concept of APE

dissipation remains nevertheless somewhat mysterious. For instance, in the evolution

equation for turbulent kinetic energy, the term εP + εK appears as a form of total

dissipation. As is well known, the viscous dissipation rate εK is an irreversible conversion

of kinetic energy into internal energy; however, we are not aware of any proof establishing

the irreversible character of εP , although this is expected owing to the link between εP

and χT . Moreover, it has usually been assumed that εP is a conversion of available

potential energy into background gravitational potential energy, e.g., [21]. Physically,

this would make the total dissipation εP + εK a rather strange quantity, as it seems

awkward that two quantities that seem to so naturally combine would be each associated

with different types of energy conversions.

The purpose of this paper is to further develop and extend some previous results

of [13], with the aim of fully elucidating the nature of the concept of APE dissipation,

which can only be done in the context of the fully compressible Navier-Stokes equations,

in order to avoid any potential misunderstanding or misinterpretation that so naturally

arise in approximate systems of equations, most notably in the incompressible system

owing to the often unclear role played by internal energy. Section 2 recalls some results

about the energetics of a turbulent mixing. Section 3 provides the main theoretical

results. Section 4 shows how to decompose the pressure work into reversible and

irreversible components. Section 5 offers a summary of the results and a discussion.
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2. Energetics of a turbulent mixing event

2.1. Compressible Navier-Stokes equations

We seek to revisit the energetics of turbulent mixing, with the aim of uncovering the

physical origin of APE dissipation, in the context of the fully compressible Navier-Stokes

equations. As in [13], we assume the equation of state to be nonlinear and to depend

on temperature and pressure. The relevant equations can be written under the form:

ρ
Dv

Dt
+ ∇P = −ρg0z + ∇ · S, (2)

Dρ

Dt
+ ρ∇ · v = 0, (3)

ρ
Dη

Dt
=

∇ · (κρcp∇T )

T
+

ρεK

T
=

ρQ̇

T
, (4)

e = e(η, υ), (5)

T =
∂e

∂η
, P = −

∂e

∂υ
, (6)

where v = (u, v, w) is the three-dimensional Eulerian velocity field, υ = 1/ρ is the

specific volume (ρ is the density), g0 the (constant) acceleration of gravity, z the normal

unit vector parallel to the gravity field pointing upwards, and κ the molecular diffusivity.

The thermodynamics of the fluid is described by the specification of an equation of state

for the specific internal energy e = e(η, υ), where η is the specific entropy, from which

the in-situ temperature T and thermodynamic pressure P can be diagnosed, while cp is

the specific heat capacity at constant pressure. The quantity S denotes the deviatoric

stress tensor, whose components are given by:

Sij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+
(

λ −
2µ

3

)

δij

∂uℓ

∂xℓ

, (7)

in the classical tensorial notation, where Einstein’s summation convention for repeated

indices has been adopted and δij is the Kronecker delta. The parameters µ and λ are

the shear and bulk (or volume) viscosity respectively. The viscous dissipation rate εK

is therefore given by:

ρεK = µ

(

∂ui

∂xj

+
∂uj

∂xi

−
2

3
δij

∂uℓ

∂xℓ

)2

+ λ (∇ · v)2 (8)

where again the summation convention for repeated indices has been used.

2.2. Standard energetics analysis of a turbulent mixing event

As in [13], we discuss the energetics of turbulent mixing by considering the specific

case of a turbulent mixing event arising from shear flow instability, a popular topic of

investigation, which so far has been mostly investigated in the context of a Boussinesq

fluid with a linear equation of state, e.g., [21, 12, 2]. Physically, the phenomenology
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considered is that of a shear flow that is initially in a laminar state with no APE, which

then becomes unstable and associated with intense turbulent mixing, before returning

to a laminar state with no APE. With regard to configuration, the fluid is assumed to

lie between a horizontal solid boundary located at z = 0 and a horizontal free surface

located at z = D, at which the constant external pressure P0 is applied. All boundaries

are insulated, so that no heat exchange occurs between the fluid and its surroundings

at any time. The assumption of free surface allows for volume changes to take place

upon irreversible mixing and therfore for the compressible work by the atmosphere to

be performed on the fluid;

The standard energetic analysis of turbulent mixing traditionally relies on a

description involving only three energy reservoirs, namely the total kinetic energy KE,

the gravitational potential energy GPE, and the internal energy IE, whose mathematical

expressions are:

KE =
∫

V

v2

2
dm, GPE =

∫

V
g0zdm, IE =

∫

V
e(η, υ)dm (9)

where dm = ρdV is the elementary mass of a fluid element. Standard manipulations

allows one to write evolution equations for each energy reservoir as follows:

dKE

dt
= −

∫

V
g0w dm

︸ ︷︷ ︸

W

+
∫

V
(P − P0)

Dυ

Dt
dm

︸ ︷︷ ︸

B′

−
∫

V
εK dm

︸ ︷︷ ︸

DKE

, (10)

dGPE

dt
=
∫

V
g0w dm

︸ ︷︷ ︸

W

, (11)

dIE

dt
=
∫

V
Q̇ dm −

∫

V
(P − P0)

Dυ

Dt
dm

︸ ︷︷ ︸

B′

−P0

∫

V

Dυ

Dt
dm

︸ ︷︷ ︸

B0

, (12)

e.g., see [13] an example of derivation. The main fundamental difference between the

present energetic analysis for a fully compressible fluid and that for a Boussinesq fluid

with a linear equation of state, e.g., [21], lies in the presence in the KE equation (10)

of the thermodynamic work of expansion B′ by the anomalous (or gauge) pressure

P ′ = P − P0.

Next, the above equations are time averaged over the duration of the turbulent

mixing event, denoted by an overbar, which yields the following budget equations:

∆KE = −W + B′ − DKE = −DAPE − DKE, (13)

∆GPE = W, (14)

∆IE = DKE − B′ − B0, (15)

where in the IE budget equation (15), the volume integral of Q̇ is only due to the Joule

heating by viscous dissipation owing to the assumption of no heat exchange with the

environment. The KE budget equation (13) reflects the well established result that over
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a turbulent mixing event, kinetic energy appears to be dissipated (∆KE < 0) both by

viscous dissipation DKE, as well as by work against gravity via the density flux W ,

which are the only two terms appearing in the standard KE budget of a Boussinesq

fluid with a linear equation of state, e.g., [21]. In a compressible fluid, however, there

is also a contribution from the work of expansion/contraction B
′

, which has been so

far traditionally regarded as negligible for Boussinesq fluids. A key point of the present

paper is to argue that such an assumption is at best misleading, as previously argued

in [13], and that B
′

is actually a key energy conversion in turbulent stratified fluids.

Leaving this point aside for the moment, we posit here that the term DAPE = W − B
′

should be regarded as the natural generalisation to a compressible fluid of the well-

known concept of APE dissipation. The rest of the paper is devoted to establishing that

this is indeed justified, by demonstrating that the expression for DAPE thus defined is

similar at leading order with its classical Boussinesq counterpart.

2.3. Analysis in terms of available energetics

In turbulence theory, the traditional approach to obtaining an explicit expression for

APE dissipation has usually relied on the consideration of an evolution equation for

the APE density Ea = N2ζ2/2, which is valid only for small displacements ζ from a

horizontally uniform reference state. This approach was generalised by [21] by using

[5]’s exact APE framework, valid for arbitrarily large displacements from the reference

state, to the case of a Boussinesq fluid with a linear equation of state, which [13] further

generalised to the case of a fully compressible fluid with a nonlinear equation of state. By

construction, [5]’s reference state is the state of minimum potential energy obtainable

in an isentropic re-arrangement of mass, as illustrated in Fig. 1. As a result, the

reference state can only evolve as the result of diabatic effects, so that in absence of

heat exchange with the environment, the time evolution of the reference state will be a

direct measure of the amount of irreversible mixing taking place in the fluid. Physically,

the isentropic re-arrangement leading to [5]’s reference state can be a regarded as a

rigorous and exact procedure for separating the mostly adiabatic stirring from the

diabatic irreversible mixing. Mathematically, the isentropic re-arrangement assumes

the existence of a mapping taking a parcel located at (x, t) in the actual state to its

vertical position zr = zr(x, t) in the reference state. By construction, the isentropic

re-arrangement of mass conserves the parcels’ mass and entropy, and the reference state

is in exact hydrostatic balance, which can be mathematically expressed by:

η(x, t) = ηr(zr, t), (16)

ρ(x, t)dV = ρr(zr, t)dVr, (17)

∂Pr

∂zr

= −ρr(zr, t)g0. (18)

In order to obtain an explicit expression for the APE dissipation, we need to derive

evolution equations for the potential energy of the actual and reference states. For a
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Figure 1. The isentropic and mass-conserving re-arrangement underlying the

construction of Lorenz’s reference state of minimum potential energy.

compressible fluid, the total potential energy PE is the sum of the gravitational potential

energy GPE, internal energy IE, and P0Vol, where Vol is the total volume of the fluid,

PE =
∫

V
ρ [e(η, υ) + g0z] dV + P0Vol. (19)

By definition, the potential energy of the background reference state and the available

potential energy are given by the following expressions:

PEr =
∫

V
ρ [e(ηr, υr) + g0zr] dV + P0Vol,r, (20)

APE = PE − PEr, (21)

where Vol,r is the volume of the fluid in the reference state. As the evolution equation for

PE is known from standard energetics, the key step to obtaining an evolution equation

for APE is to first obtain one for the background PE. To that end, it is useful to first

establish the following result:

dGPEr

dt
=
∫

V
ρgwr dV =

∫

V
ρP ′

r

Dυr

Dt
dV = B′

r, (22)

which states that the change in the background GPE can be expressed in terms of the

thermodynamic work of expansion/contraction done by the pressure in the reference

state, where wr = Dzr/Dt is the vertical velocity of the parcels in the reference state,
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while P ′

r = Pr − P0 is the gauge pressure. The proof follows from the result:

∫

V
P ′

r

Dυr

Dt
dm =

∫

Vr

[

D[P ′

rυr]

Dt
− υr

DP ′

r

Dt

]

ρrdVr =
d

dt

∫

Vr

P ′

r dVr−
∫

Vr

[

∂P ′

r

∂t
− ρrg0wr

]

dVr

=
∫

Vr

ρrg0wrdVr =
∫

V
ρg0wrdV =

dGPEr

dt
, (23)

where in order to arrive at Eq. (23), we used mass conservation dm = ρdV = ρrdVr

between the actual and reference states; moreover, the fact that P ′

r = 0 at the free

surface implies:

d

dt

∫

Vr

P ′

rdVr =
∫

Vr

∂P ′

r

∂t
dVr. (24)

By using Eq. (22), and the fact that the differential of reference internal energy is

der = Trdηr − Prdυr, it is easy to show that evolution equation for PEr is:

dPEr

dt
=
∫

V
ρ
[

Tr

Dηr

Dt
− P ′

r

Dυr

Dt
+ g0wr

]

dV =
∫

V
ρ
[

Tr

Dη

Dt
− P ′

r

Dυr

Dt
+ g0wr

]

dV

=
∫

V

Tr

T
[∇ · (κρcp∇T ) + ρεk] dV. (25)

By summing the evolution equations for GPE and IE written above, the evolution

equation for the total potential energy can be written as:

dPE

dt
=
∫

V
ρ
[

T
Dη

Dt
− P ′

Dυ

Dt
+ g0w

]

dV

=
∫

V
[∇ · (κρcp∇T ) + ρεK ] dV − B′ + W. (26)

Given the fact that APE = PE − PEr, the evolution equation for APE is:

dAPE

dt
=
∫

V

(
T − Tr

T

)

∇ · (κρcp∇T ) dV +
∫

V

(
T − Tr

T

)

ρεK dV + W − B′

= −
∫

V
κρcp∇T · ∇

(
T − Tr

T

)

dV +
∫

V

(
T − Tr

T

)

εK dm + W − B′. (27)

Finally, it is also useful to produce an evolution equation for AGPE = GPE − GPEr,

which is given by:

dAGPE

dt
= W − Wr = W − B′

r. (28)

All the above results were previously derived in [13], but have been obtained more simply

here. We can now return to the problem of elucidating the nature of APE dissipation.

To that end, we take advantage of the fact that APE and AGPE are both zero in the

laminar states preceding and following a turbulent mixing event. Thus, by using Eqs.

(22) and (23), it follows from the AGPE budget that:

W = W r = B′
r, (29)
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Figure 2. (Left panel) Traditional interpretation of the energetics of turbulent mixing

according to Winters et al. (1995). (Right panel) New interpretation based on the

rigorous analysis of the energetics of the fully compressible Navier-Stokes equations

initially proposed by Tailleux (2009a).

which establishes that the net change in GPE (GPEr) actually occurs at the expenses

of internal energy, exactly as in the purely laminar case, not at all at the expenses of

the kinetic energy of the initial shear flow as is often thought to be the case based on

[21]’s analysis. Similarly, by using Eqs. (27) and (29), it follows from the APE budget

that:

B′ = B′
r −

∫

V
κρcp∇T · ∇

(
T − Tr

T

)

dV +
∫

V

(
T − Tr

T

)

ρεk dV. (30)

By combining the above results, it follows that the expression for the total APE

dissipation averaged over the turbulent mixing event must be given by

DAPE = W − B′ = B
′

r − B
′

=
∫

V
κρcp∇T · ∇

(
T − Tr

T

)

dV −
∫

V

(
T − Tr

T

)

ρεk dV. (31)

This important result states that the APE dissipation can be expressed as DAPE =

B
′

r − B and hence as the part of the thermodynamic work of expansion/contraction

not involved in the change of the background GPEr; as a part of the work of

expansion/contraction, the APE dissipation appears as a conversion between kinetic

energy and internal energy, similarly as the viscous dissipation. The rest of the paper

is devoted to further elucidating the properties of DAPE.

3. Theoretical results on the nature of APE dissipation and irreversible

mixing in compressible stratified fluids

3.1. Proof of the irreversible character of APE dissipation

We established earlier (Eq. (13)) that the total change in kinetic energy over a turbulent

mixing event is given by:

∆KE = −(DAPE + DKE), (32)
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which states that both the viscous dissipation DKE and APE dissipation DAPE

contribute to dissipate the kinetic energy of the unstable parallel shear flow. Given that

DAPE and DKE appear to both convert dissipate kinetic energy into internal energy, it

is important from a thermodynamic viewpoint to establish whether DAPE can also be

regarded as an irreversible energy conversion. Indeed, while the irreversible character

of viscous dissipation is well established, we are not aware of any such result for APE

dissipation.

In order to prove the irreversible character of DAPE, we find it necessary to introduce

the locally-defined APE dissipation rate εP as follows:

ρεp = κρcp∇T · ∇
(

T − Tr

T

)

−
(

T − Tr

T

)

ρεK , (33)

which is such that DAPE =
∫

V ρεK dV . From a thermodynamic viewpoint, the

irreversible character of a particular process follows from such a process contributing to

the irreversible production of entropy. To show that this is the case for εP , recall that

in the present context, the specific entropy is governed by the following equation:

ρ
Dη

Dt
=

Q̇

T
= ∇ ·

(
κρcp∇T

T

)

− ρκcp∇T · ∇
(

1

T

)

+
ρεK

T
(34)

where the irreversible entropy production is made up of the last two terms in the above

expression. While εK explicitly appears in the latter, this is less obvious for εP . We

find that it is possible to uncover the presence of εP in Eq. (34) by writing the term

∇(1/T ) as follows:

∇
(

1

T

)

= ∇
(

Tr

T

1

Tr

)

=
1

Tr

∇
(

Tr

T

)

+
Tr

T
∇
(

1

Tr

)

which allows one to rewrite Eq. (34) as follows:

ρ
dη

dt
= ∇ ·

(
κρcp∇T

T

)

+ κρcp

∇T · ∇Tr

T Tr

dV +
ρ(εP + εK)

Tr

. (35)

Eq. (35) is an important new result, which provides new insight into the nature of

irreversible entropy production. Specifically, it shows that the latter can be regarded

as the sum of a term measuring the amount of ‘work’ (= εP + εK) being dissipated

irreversibly in the system, plus a ‘heat’ term (the term proportional to ∇T · ∇Tr) that

arises from the irreversible character of heat transfer among fluid parcels with different

transfer. In the following paragraph, we use the latter term as our starting point for

introducing a new definition of the turbulent effective diffusivity and heat flux.

3.2. Generalisation of the Osborn-Cox model to fully compressible stratified fluids and

definition of turbulent effective diffusivity

Given that the very concept of irreversible process takes its origin in the entropy budget,

it is not a surprise that the latter often constitutes the starting point for the definition
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of turbulent diapycnal mixing, e.g., [8, 4, 3]. Here, we show that if we locally define the

turbulent effective diffusivity Keff by:

Keff = κ
cpTr

cr
pT

(

∂Tr

∂zr

)
−1

∇T · ∇zr = κ
cpTr

cr
pT

(

∂Tr

∂zr

)
−2

∇T · ∇Tr, (36)

then it is possible to rewrite the irreversible entropy production term in Eq. (35) due to

the irreversible heat transfer entirely in terms of Keff and the background temperature

profile Tr as follows:

κρcp

∇T · ∇Tr

T Tr

= Keffρcr
p

1

T 2
r

(

∂Tr

∂zr

)2

, (37)

which makes it possible to write the total entropy production as follows:

dΣ

dt
=
∫

V
Keffρcr

p

1

T 2
r

(

∂Tr

∂zr

)2

dV +
∫

V

ρ(εP + εK)

Tr

dV. (38)

It appears also possible to rewrite the latter expression in terms of the following locally-

defined effective turbulent heating rate:

Q̇eff =
∂

∂zr

{

Keffρcr
p

∂Tr

∂zr

}

(39)

as follows:

dΣ

dt
=
∫

V

Q̇eff

Tr

dV +
∫

V

ρ(εP + εK)

Tr

dV. (40)

so that locally, the net heating can be express as Q̇net = Q̇eff + ρ(εP + εK), noting here

that the APE dissipation can therefore be regarded as a form of Joule heating, similarly

as viscous dissipation. Note, however, that as far as we can judge:

∂

∂zr

(

Keffρcpr

Tr

∂Tr

∂zr

)

6= ∇ ·
(

κρcp∇T

T

)

. (41)

The above results are interesting, because they suggest that the effective turbulent heat

flux should be down the gradient of Tr, rather than down the gradient of potential

temperature θ, as is often assumed. We note from Eq. (36) that the turbulent effective

diffusivity is only well defined as long as Tr remains a monotonic function of zr, i.e., as

long as ∂Tr/∂zr > 0, and therefore ceases to make sense if Tr were to become uniform.

In contrast, it is also seen that Keff remains well defined in the limit of uniform in-situ

temperature, which in general will differ from a state of uniform Tr as long as the fluid

remains stirred to ensure that isotherms remain different from isentropes.

3.3. Evolution of the background GPE due to turbulent mixing

An important result of turbulent mixing theory is that turbulent mixing causes a net

increase in a centre of gravity of the fluid, which can be expressed in terms of the

turbulent diapycnal diffusivity Kv and squared buoyancy frequency N2 as follows:

dGPE

dt

∣
∣
∣
∣
∣
mixing

=
∫

V
ρKvN

2dV. (42)
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The possibility to characterise turbulent diapycnal mixing in terms of its energy

signature in the GPE budget is important, for it is at the origin of the proposal by

[6] that energetics considerations might be useful to constrain the mechanical sources

of stirring by the wind and tides in the oceans, see [15, 16, 18] for a review of salient

points. It is important to realize, however, that Eq. (42) has been established only for a

Boussinesq fluid with a linear equation of state. We now seek the relevant generalisation

of Eq. (42) to the case of a fully compressible fluid with a nonlinear equation of state

by seeking an evolution equation for the background GPE. As previously shown in [13],

one possible expression is as follows:

dGPEr

dt
= B′

r =
∫

V
P ′

r

Dυr

Dt
ρ dV =

∫

V
Pr

[

∂υr

∂ηr

Dηr

Dt
+

∂υr

∂Pr

DPr

Dt

]

dV

=
∫

V

P ′

rαrTr

ρrcpr

{

∇ · (κρcp∇T ) + ρεK

T

}

dV, (43)

which uses the result that ∂υr/∂ηr = αrTr/(ρrcpr) is the adiabatic lapse rate, and the

fact that the term dependent upon pressure should vanish (see also [10] for a general

demonstration of this point). It is useful to introduce the thermodynamic efficiency-like

parameter Υr, defined by:

Υr =
αr(Pr − P0)

ρrcpr

=
αrP

′

r

ρrcpr

(44)

in which case, the above expression can be rewritten as follows:

dGPEr

dt
= −

∫

V
κρcp∇T · ∇

(
ΥrTr

T

)

dV +
∫

V

ΥrTr

T
ρεKdV

= −
∫

V

κρcpTr

T
∇T · ∇Υr dV

︸ ︷︷ ︸

Wr,mixing

+
∫

V
Υrρ(εP + εK) dV

︸ ︷︷ ︸

Wr,joule

. (45)

Eq. (45) states that the net increase in GPE over a turbulent mixing event is due to

the irreversible mixing by turbulent molecular diffusion (the term Wr,mixing), as well as

to the increase in the centre of gravity caused by the Joule heating due to the total

dissipation εP + εK (the term Wr,joule) and the associated fluid expansion. As the latter

effect is usually neglected in the literature, it is the first term Wr,mixing that needs to be

expressed in terms of the effective diffusivity Keff defined above.

dGPEr

dt

∣
∣
∣
∣
∣
mixing

= −
∫

V

κρcpTr

T
∇T · ∇zr

∂Υr

∂zr

dV = −
∫

V
Keffρcpr

∂Υr

∂zr

∂Tr

∂zr

dV

=
∫

V
ρKeffαrg0

∂Tr

∂zr

dV
︸ ︷︷ ︸

linear

−
∫

V
KeffρcprP

′

r

∂

∂zr

(

αr

ρrcpr

)

∂Tr

∂zr

dV

︸ ︷︷ ︸

nonlinear

. (46)

Eq. (46) states that the change in background GPE due to turbulent mixing can be

expressed as the sum of a ‘linear’ and ‘nonlinear’ terms, where the nonlinearity involved
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stems from the nonlinearity of the equation of state. As a result, it is the linear term

that is directly comparable with the Boussinesq expression Eq. (42). To clarify the link,

note that one possible expression for the squared buoyancy frequency in a compressible

fluid is: N2 = g0ρΓ∂η/∂z = αg0T/cp∂η/∂z, where Γ = αT/(ρcp) is the adiabatic lapse

rate. By using the result that dη = (cp/T )dT − (α/ρ)dP , it follows that:

αrg0
∂Tr

∂zr

= αrg0

[

Tr

cpr

∂ηr

∂zr

− ρrg0Γr

]

= N2
r −

α2
rg

2
0Tr

cpr

=

(

1 −
α2

rg
2
0Tr

cprN2
r

)

N2
r .

This shows, therefore, that it appears to be inaccurate to use N2 in the Boussinesq

expression Eq. (42), which appears to involve the pseudo squared buoyancy frequency

αrg0∂Tr/∂zr instead. Note also that the examination of the nonlinear term indicates

that a linear equation of state implies that the parameter α/(ρcp) be treated as constant,

not just α. This will be the case if ρ and cp are also treated as constant.

3.4. Link between background GPE changes and APE dissipation

As shown by [21], the case of a Boussinesq fluid with a linear equation of state has the

interesting property that the net increase in background GPE to be directly linked to

the rate of APE dissipation as follows:

dGPEr

dt

∣
∣
∣
∣
∣
mixing

= DAPE +
dGPEr

dt

∣
∣
∣
∣
∣
laminar

(47)

where the laminar contribution refers to the background rate of background GPE

increase that would occur in absence of turbulence. It is such a property that led [21] to

(erroneously) assume that turbulent mixing causes the irreversible conversion of AGPE

into background GPE, as illustrated in the left panel of Fig. 2. This interpretation was

challenged by [13], who showed that in general the net increase in background GPE is

not as simply linked to DAPE in the general case of a compressible fluid with a nonlinear

equation of state.

In [13], the differences between the change in background GPE and APE dissipation

were only investigated by means of numerical experiments. Here, we seek to clarify

these differences by seeking a clearer analytical expression for DAPE, which we had not

been able to obtain in [13]. To make analytical progress, what is needed is an explicit

understanding of the differences between the in-situ and background temperature

gradients ∇T and ∇Tr, in order to understand the physical parameters controlling

the term ∇(T/Tr) entering the definition of APE dissipation. To that end, we regard

specific entropy as a function of temperature and pressure, and use the following well

known relationships:

dη =
cp

T
dT −

α

ρ
dP → dT =

T

cp

dη + ΓdP

where Γ = αT/(ρcp) is the adiabatic lapse rate. This in turn implies:

∇T =
T

cp

∇η + Γ∇P, (48)
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∇TR =

[

TR

cpr

+ ΓR

dPR

dη

]

∇η =
Tr

cpr

∇η − ρrg0Γr∇zr, (49)

by recalling the fact that by definition, the reference temperature profile Tr =

T (η, Pr(η, t)) can be regarded as a function of entropy at each particular time t, as

well as by using the results that dPr/dη = dPr/dzr × (dηr/dzr)
−1 and hence that

(dηr/dzr)
−1∇η(dη/dzr)

−1∇ηr(zr) = ∇zr. From Eqs. (48) and (49), it follows that

∇(T/Tr) can be written as:

∇
(

Tr

T

)

=
∇Tr

T
−

Tr

T 2
∇T =

1

T

[

Tr

cpr

+ Γr

dPr

dη

]

∇η −
Tr

T 2

[

T

cp

∇η + Γ∇P

]

=
Tr

T

(

cp − cpr

cpcpr

)

∇η +
Γr

T

dPr

dη
∇η −

ΓTr

T 2
∇P

=
Tr

T

(

cp − cpr

cpcpr

)

∇η −
αrTrg0

cprT
∇zr −

ΓTr

T 2
∇P (50)

As seen previously, the APE dissipation is made up of a diffusive part as well as a small

viscous part. Here, we decompose the diffusive part as the sum of three terms:

Ddiffusive
APE = −

∫

V
κρcp∇T · ∇

(
Tr

T

)

dV = D
(1)
APE + D

(2)
APE + D

(3)
APE, (51)

where all the components D
(i)
APE are such that they individually vanish when the actual

state coincides with the reference state. These are defined by:

D
(1)
APE =

∫

V
κρcp

αrTrg0

cprT
∇T · ∇zr dV +

∫

V

καTr

T
∇T · ∇Pr(z, t) dV

=
∫

V
ρKeffαrg0

∂Tr

∂zr

dV −
∫

V

καρrg0Tr

T

∂T

∂z
dV,

D
(2)
APE =

∫

V
κρcp

Tr

T

(

cpr − cp

cpcpr

)

∇T · ∇η dV =
∫

V

(

cpr − cp

cp

)

ρKeff
∂Tr

∂zr

∂ηr

∂zr

dV,

D
(3)
APE =

∫

V

καTr

T
∇T · ∇(P − Pr(z, t)) dV.

For a fluid of limited vertical extent typical, |(cpr − cp)/cpr| ≪ 1; also, because of

closeness to hydrostatic equilibrium, P ≈ Pr(z, t), so that it seems clear that both

D
(2)
APE and D

(3)
APE must be small in general, and hence that the APE dissipation is

dominated by the first term, i.e., DAPE ≈ D
(1)
APE. Interestingly, the latter is very close

to the expression derived in the context of a fluid with a linear equation of state by [21],

to which it reduces to in the limit T = Tr and ρ = ρr. Unlike the expression Eq. (46) for

the change in background GPE, the expression for DAPE is seen to be largely unaffected

by the nonlinearities of the equation of state, which only affect the above expressions

by making T − Tr as well as cp − cpr differ from zero. The conclusion that DAPE is

largely insensitive to the nonlinearities of the equation of state was previously arrived

at in [14] by means of numerical experimentation, which is confirmed here analytically.
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Based on the structure of the D
(i)
APE, it is clear that when the flow is turbulent, DAPE

is controlled at leading order by:

DAPE ≈
∫

V
ρKeffαrg0

∂Tr

∂zr

dV ≥ 0, (52)

which is identical to the linear term controlling the rate of change of the background

GPE in Eq. (46). We can clarify the difference between the net change in background

GPE and APE dissipation by writing down the difference B′

r − DAPE, viz.,

B′

r − DAPE = −
∫

V
KeffρcprP

′

r

∂

∂zr

(

αr

ρrcpr

)

∂Tr

∂zr

dV

−
∫

V

(

cpr − cp

cp

)

ρKeff
∂Tr

∂zr

∂ηr

∂zr

dV −
∫

V

καTr

T
∇T · ∇P dV. (53)

For a linear equation of state α/(ρcp) = constant, we see that B′

r and DAPE nearly

cancel out. For a nonlinear equation of state, however, we see that this is no longer the

case. Interestingly, we recover the result of [14] arguing that DAPE, unlike B′

r, is very

little affected by the nonlinearities of the equation of state. We concluded in [14] that

the dissipation ration εP/εK (which is a measure of the mixing efficiency, e.g., [7]), was

largely insensitive to the nonlinearities of the equation of state. Although the leading

order term Eq. (52) is positive definite, the other contributions to DAPE do not appear

to be sign definite, so that although we concluded in an earlier paragraph that DAPE

is an irreversible conversion, it does not appear possible from the expressions D
(i)
APE

to ascertain that the exact expression for DAPE is also necessarily positive definite in

all circumstances. Note that this does not violate the second law of thermodynamics,

because the irreversible production of entropy remains positive definite even in the

occasional instances where εP would be negative.

3.5. Link between turbulent effective diffusivity and APE dissipation

In the classical theory of stratified turbulence, the turbulent diffusivity is traditionally

defined in the two equivalent ways:

Kv =
〈‖∇θ′‖2〉

(dθ/dz)2
=

εP

N2
, (54)

that is either in terms of the dissipation of temperature variance χT = ‖∇θ′‖2 or in terms

of the APE dissipation rate εP . For a Boussinesq fluid with a linear equation of state,

these two approaches are strictly equivalent, as εP is equal to χT up to a multiplicative

constant involve α and g0. Here, note that the turbulent effective diffusivity Keff → κ

when the actual state collapses to the reference state. Since εP vanishes when the actual

state coincides with the reference state, we may try to define an εP effective diffusivity

from:

Kεp
=

εP

αrg0∂Tr/∂zr

. (55)
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By using the integrands for the different D
(i)
APE, we have:

Kεp
= Keff +

Keff

αrg0

(

cpr − cp

cp

)

∂ηr

∂zr

+
καTr

ρg0αrT

∇T · ∇P

∂Tr/∂zr

6= Keff − κ. (56)

As far as exact results are concerned, it appears from the above calculations that the

χT and ǫP definition of turbulent diapycnal diffusivity are no longer simply related for

a compressible fluid with a nonlinear equation of state, unless we overlooked a non-

straightforward link between the two approaches. Based on our current understanding

of the problem, we believe that the entropy production-based approach seems to be the

most natural and and fundamental to define a turbulent effective diffusivity.

4. Reversible and irreversible pressure work, and the role of the divergent

velocity field

Our result that the APE dissipation should be regarded as an irreversible energy

conversion that is part of the thermodynamic work of expansion/contraction has

important implications for our understanding of the role of the divergent velocity field,

which appears to be important even in the context of Boussinesq fluids. To that end,

we now discuss the issue of how to isolate the reversible and irreversible components

of the pressure work, which is the second term in the right-hand side of the following

evolution equation for the kinetic energy:

ρ
D

Dt

v2

2
= −ρ

DΦ

Dt
− v · ∇P + v · ∇ · S. (57)

As is well known, the pressure work is one out of three effects that can alter the

kinetic energy, the two others being conversion with gravitational potential energy and

work against viscous stresses. In order to understand the reversible and irreversible

effects controlling the pressure work, let us first recall that the classical approach to

decomposing the viscous work in such a way is by decomposing it as follows:

v · ∇ · S = ∇ · Fke − ρεK (58)

where the components Fj of Fke are given by Fj = viSij . From a thermodynamic

viewpoint, the term ∇ · Fke is reversible for it is the one that allows the external

mechanical forcing (such as boundary stress) to be communicated within the interior of

the fluid, in contrast to the irreversible viscous dissipation term ρεK , which is associated

with the local destruction of kinetic energy with a corresponding increase in entropy

production. We now turn to the pressure work term, which is often written as:

−v · ∇P = −∇ · (Pv) + P∇ · vd = −∇ · (Pv) + ρP
Dυ

Dt
(59)

where vd is the divergent part of the velocity field. From a thermodynamic viewpoint,

the term ∇ · (Pv) is reversible, for it is responsible for transmitting the information

about the externally applied pressure within the interior of the fluid, while the reversible

or irreversible character of the work of expansion/contraction PDυ/Dt cannot be

immediately determined and hence needs further discussion. Note that the work of
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expansion/contraction is neglected in the traditional incompressible approximation,

which is equivalent to assuming that at leading order, only the reversible part of the

pressure work is important and that only viscous effects contribute to the irreversible

dissipation of horizontal momentum. It is important to realize, however, that from a

thermodynamic viewpoint, the divergent velocity field is the only source of irreversibility

in the pressure work term, so that its contribution cannot be discarded solely on the basis

of its assumed smallness, given that it can potentially cause additional dissipation of

horizonal momentum – an important point in the context of turbulent parameterisations

of momentum dissipation.

In order to elucidate the reversible and irreversible aspects of the work of

expansion/contraction, let us regard the specific volume υ as a function of specific

entropy η and pressure P , so that we can write:

ρP
Dυ

Dt
= ρP

[

∂υ

∂η

Dη

Dt
+

∂υ

∂P

DP

Dt

]

where ∂υ/∂η = αT/(ρcp) = Γ is the adiabatic lapse rate and ∂υ/∂P = −1/(ρ2c2
s), where

cs is the speed of sound. We first focus on the pressure term, which can be manipulated

as follows:

ρPυP

DP

Dt
= ρ

D

Dt

∫ P

Pr

P̃ υP (η, P̃ ) dP̃ + ρ

{

PrυPη(η, Pr)
DPr

Dt
−
∫ P

Pr

P̃ υηP (η, P̃ ) dP̃
Dη

Dt

}

= −ρ
Daee

Dt
+ ρPrυPη(η, Pr)

DPr

Dt
− ρ

{

[PΓ − PrΓr] −
∫ P

Pr

Γ(η, P̃ )dP̃

}

Dη

Dt

where the thermodynamic quantity aee is defined by:

aae(η, P ; Pr) = −
∫ P

Pr

P ′
∂υ

∂P
(η, P̃ )dP̃ =

∫ P

Pr

P̃

ρ2c2
s

dP̃ .

By noting that the background work of expansion PrDυr/Dt and temperature T − Tr

can be written as follows:

Br = ρPr

Dυr

Dt
= ρPr

[

Γr

Dη

Dt
+

∂υ

∂η∂P
(η, Pr)

DPr

Dt

]

,

∫ P

Pr

Γ(η, P ′) dP ′ = T − Tr,

it follows that the work of expansion/contraction can eventually be written in the

following form:

ρP
Dυ

Dt
= −ρ

Daee

Dt
+ ρPr

Dυr

Dt
+ (T − Tr)ρ

Dη

Dt

= −ρ
Daee

Dt
+ ρP ′

r

Dυr

Dt
+ ρ0P0

Dυr

Dt
+ ∇ ·

[(
T − Tr

T

)

κρcp∇T
]

− ρεP . (60)
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Eq. (60) is a key result of this paper, which makes it clear that the APE dissipation

rate εp can be regarded to be part of the overall expression for the thermodynamic work

of expansion/contraction. Integrating Eq. (60) thus yields the following expression:

B =
∫

V
ρP

Dυ

Dt
dV = −

d

dt
AEE +

d

dt
GPEr + P0

d

dt
Vol,r − DAPE. (61)

Eq. (61) makes it clearer that B is made up of mostly reversible components, except for

the irreversible APE dissipation term. Note that integrating Eq. (61) over a turbulent

mixing event allows one to recover our earlier result that:

B
′

= ∆GPEr − DAPE = B
′

r − DAPE, (62)

which we obtained previously from the consideration of the APE and AGPE budget, and

which we discussed in relation to Eq. (53). Eqs. (60) and (61) are important new results

in the context of the thermodynamic understanding of turbulent fluids, given that as far

as we are aware, exact fundamental results on the work of expansion/contraction have

been lacking. The present results greatly improve on the results by [15], who attempted

the first discussion of how to split B into reversible and irreversible components.

5. Summary of results and conclusions

5.1. Summary of results

In this paper, we re-examined and further extended several recent results by [13], with

the primary aim of elucidating the nature of “APE dissipation”, which although a key

quantity in the theory of stratified turbulence, has nevertheless remained quite obscure

until now. Our approach relies on the use of [5]’s theory of available potential energy,

which enables an exact separation of the adiabatic process of stirring from that of

irreversible mixing, as first demonstrated by [21]. As in [13], the approach was extended

here to a fully compressible fluid with an arbitrary nonlinear equation of state in pressure

and temperature, for which we showed that the exact definition of εP should be:

εP = κcp∇T · ∇
(

T − Tr

T

)

−
(

T − Tr

T

)

εK , (63)

where Tr = T (η, Pr(η, t)) is the reference temperature profile, a function of entropy

(and time when diabatic effects modify the reference profile). The definition Eq. (63)

is local in space and time; by expressing T and Tr in terms of pressure and entropy, an

alternative expression for the diffusive part of εP is:

εdiff
P = κcp∇T ·

[

Tr

T

(

cpr − cp

cp

)

+
αrTrg0

cprT
∇zr +

ΓTr

T
∇P

]

, (64)

where Γ = αT/(ρcp) is the adiabatic lapse rate. Both the diffusive and viscous parts of

εP vanish when the actual state coincides with the laminar reference state, so that to

some degree, εP can be regarded as a “turbulent” quantity.

The introduction of [5]’s reference state of minimum potential energy allows one

to show that averaged over a turbulent mixing event, the density flux W represents
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the net change in background GPE, which can be expressed in terms of the work of

expansion/contraction in the reference state, so that W = W r = B
′

r. As a result, it is

possible to show that averaged over a turbulent mixing event, we have:

DAPE = Br − B (65)

which states that the APE dissipation is the part of the work of expansion/contraction

that is not associated with modifying the background GPE. We showed that it is possible

to rewrite the irreversible entropy production as follows:

dΣ

dt
=
∫

V

κρcp∇T · ∇Tr

TTr

dV +
∫

V

ρ(εP + εK)

Tr

dV, (66)

which demonstrates that εP should be interpreted as an irreversible conversion of

kinetic energy into internal energy, similarly as the viscous dissipation εK , and hence

that molecular diffusion contributes to the irreversible destruction of kinetic energy.

Alternatively, the result means that the integrated expansion work B can be written

as B = Breversible + Birreversible, where Breversible = Br and Birreversible = −DAPE,

where the reversible character of Br comes from the fact that Br = dIEr/dt is an exact

differential, and that although it is controlled by molecular diffusion, it has no signature

in the irreversible entropy production.

Eq. (66) expresses the irreversible entropy production as the sum of ‘heat’ and

‘work’ terms, where the work term is the one proportional to the sum εP + εK , which

measures the amount of kinetic energy dissipated by irreversible processes. The heat

term can be used to locally define a turbulent effective diffusivity as follows:

Keff = κ
cpTr

cprT

(

∂Tr

∂zr

)
−2

∇T · ∇Tr = κ
cpTr

cprT

(

∂Tr

∂zr

)
−1

∇T · ∇zr, (67)

which is the generalisation of the Osborn-Cox model for the diapycnal diffusivity to a

compressible stratified fluid. This makes it possible to write the ‘heat’ component of

irreversible entropy production as follows:

dΣ

dt

∣
∣
∣
∣
∣
heat

=
∫

V
ρcprKeffTr

2

(

∂Tr

∂zr

)2

dV. (68)

This definition is associated with a turbulent heat flux

Fturb = −ρKeffcpr

∂Tr

∂zr

, Q̇turb = −
∂Fturb

∂zr

(69)

which allows to write the heat part of the irreversible entropy production as:

dΣ

dt

∣
∣
∣
∣
∣
heat

=
∫

V

Q̇turb

Tr

dV =
∫

V

1

Tr

∂Fturb

∂zr

dV. (70)

The definition of the turbulent effective diffusivity allows one to write the change in

background GPE as the sum of a Boussinesq, non-Boussinesq and Joule heating terms

that are respectively defined by:

dGPEr

dt

∣
∣
∣
∣
∣
bouss

=
∫

V
ρKeffαrg0

∂Tr

∂zr

dV, (71)
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dGPEr

dt

∣
∣
∣
∣
∣
non−bouss

=
∫

V
ρKeffP ′

r

∂

∂zr

(

αr

ρrcpr

)

∂Tr

∂zr

dV, (72)

dGPEr

dt

∣
∣
∣
∣
∣
joule

=
∫

V
Υrρ (εP + εK) dV. (73)

Likewise, it is also possible to rewrite the local APE dissipation rate in terms of the

effective diffusivity as follows:

εP = Keffαrg0
∂Tr

∂zr

+

(

cpr − cp

cp

)

Keff
∂Tr

∂zr

∂ηr

∂zr

+
καTr

ρT
∇T · ∇P. (74)

These results confirm that at leading order, the leading order terms determining the

net change in background GPE and APE dissipation are equal for a fluid with a linear

equation of state, as previously shown by [21]. The results also confirm that the formula

for DAPE and the net change in background GPE are otherwise fundamentally different,

as first shown by [13], and hence that it cannot be correct to regard turbulent mixing

as converti ng the AGPE into background GPE, in contrast to what what suggested by

[21] and illustrated in the left panel of Fig. 2. Instead, what appears to be the correct

interpretation is illustrated in the right panel of Fig. 2.

5.2. Discussion and conclusions

In this paper, we fully elucidated the physical origin of the concept of APE dissipation,

which although a key quantity in the theory of stratified turbulence, has remained

quite mysterious so far. Specifically, we showed that the APE dissipation can be

regarded as the irreversible part of the work of expansion/contraction, the reversible

part of the latter being involved in transferring the internal energy to the background

gravitational potential energy, and is therefore ultimately caused by the divergent

velocity field. Although this may seem surprising at first, since until now the concept

of APE dissipation has been defined and predicted accurately by the incompressible

Boussinesq approximation, there is actually no contradiction because as shown by [17],

the Boussinesq model actually admits a representation of compressible effects in the

form of apparent changes in gravitational potential energy due to density changes.

This new interpretation of APE dissipation is important, because it implies that in

the context of parallel shear flow instability, there is actually no irreversible transfer

of horizontal momentum into vertical momentum, as seems to be necessary if the

thermodynamic work of expansion/contraction is neglected altogether, which seems

odd from the viewpoint of momentum conservation. In the new interpretation, the

vertical momentum associated with the net vertical motion of the centre of gravity due

to turbulent mixing is found to be entirely caused by the vertical thermodynamic forces

caused by the departure of the vertical stratification from thermodynamic equilibrium,

so that the net change in background GPE occurs solely at the expenses of internal

energy, as is well known to be the case in the purely laminar case. Simultaneously,

turbulent molecular diffusion enhances the magnitude of the divergent velocity field,
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which appears to be the part of the velocity field causing the irreversible dissipation of

the parallel shear flow kinetic energy into internal energy. We speculate that this new

interpretation should have implication for how to parameterise the turbulent dissipation

of momentum in the coarse grained Navier-Stokes equations, but further work is needed

to understand how to do this precisely.
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