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Dual-polarisation radar measurements provide valuable information about
the shapes and orientations of atmospheric ice particles. For quantitative
interpretation of these data in the Rayleigh regime, commonpractice is to
approximate the true ice crystal shape with that of a spheroid. Calculations
using the discrete dipole approximation for a wide range of crystal aspect
ratios demonstrate that approximating hexagonal plates asspheroids leads to
significant errors in the predicted differential reflectivi ty, by as much as 1.5dB.
An empirical modification of the shape factors in Gans’s spheroid theory was
made using the numerical data. The resulting simple expressions, like Gans’s
theory, can be applied to crystals in any desired orientation, illuminated by an
arbitrarily polarised wave, but are much more accurate for hexagonal particles.
Calculations of the scattering from more complex branched and dendritic
crystals indicate that these may be accurately modelled using the new
expression, but with a reduced permittivity dependent on the volume of ice
relative to an enclosing hexagonal prism.
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1. Introduction

Dual polarisation radar is a powerful tool to study ice
particles in the atmosphere. Measurements of differential
reflectivity, differential phase shift and the copolar cross
correlation coefficient are now commonplace on research
radars, and are becoming increasingly available on oper-
ational weather radars (Illingworth 2003; Ryzhkovet al.
2005). Quantitative interpretation of these data require
accurate scattering models for the non-spherical shapes of
natural ice particles, and this presents a difficulty. For pris-
tine hexagonal crystals such as plates and columns, com-
mon practice is to approximate these shapes by spheroids
(e.g.Andric̀ et al.2013, Westbrooket al.2010, Hoganet al.
2002, Ryzhkovet al. 1998, Baderet al. 1987, Hall et al.
1984), and applyGans (1912)’s theory to solve for the
scattered field.These pristine hexagonal crystal shapes are

rare in cold upper tropospheric cirrus (where polycrys-
tals such as bullet-rosettes typically dominate, see e.g.
Heymsfield and Knollenberg 1972), but appear to be quite
common in warmer mid-level cloud layers (Westbrooket al.
2010; Westbrook and Illingworth 2013). For qualitative
interpretation of radar measurements approximating these
hexagonal crystals as spheroids is likely to be a reasonable
approach. However there is increasing interest in validating
microphysical models by forward modelling the associated
dual-polarisation radar parameters and comparing these
quantitatively against observations (e.g.Andric̀ et al.2013).
This means that the accuracy of the spheroid scattering
model for real crystals becomes rather more important.

In this note we will focus exclusively on the Rayleigh
limit where the crystals are much smaller than the radar
wavelength. This is appropriate for essentially all ice
crystals when considering S-band (10cm) radars such as
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the Chilbolton Advanced Meteorological Radar (Hall et al.
1984). Vapour grown ice crystals grow to sizes of a few
millimetres at most (e.g.Takahashiet al. 1991). It may
well also be useful in many cases for shorter wavelengths
provided that the particle dimensions are sufficiently small.

A number of previous studies have used the discrete
dipole approximation (DDA,Draine and Flatau 1994) or
closely related techniques to investigate the scattering
properties of hexagonal ice crystals. Many of these have
focussed on millimetre cloud radars where the scattering
may be outside the Rayleigh regime.O’Brien and Goedecke
(1988) computed the scattering from an idealised planar
dendritic crystal and a long hexagonal column of
maximum dimension 4mm at a wavelength of 1cm,
and found that the scattering cross-sections were often
significantly different to those of spheroids with the same
dimensions. Evans and Vivekanandan(1990) computed
scattering properties of distributions of horizontally
oriented cylinders and plates at 8, 3.5 and 1.9mm
wavelengths and used these to simulate radar parameters
and microwave radiative transfer through ice clouds.Liu
(2008) performed DDA calculations for hexagonal prisms
of 5 different aspect ratios for particles50µm–1.25cm
in maximum dimension, at wavelengths between 2cm
and 0.9mm. They also simulated some idealised dendritic
shapes. Random orientation of the crystals was assumed
however, and hence no dual-polarisation information can be
derived from these results.

Schneider and Stephens(1995) used DDA to simulate
horizontally oriented hexagonal columns and platesvarying
from 50µm to 2mm in maximum dimensionat wavelengths
of 1.4, 3.2 and 8.7mm and compared them to results
obtained by assuming the particles were spheroids. A single
aspect ratio was simulated for each crystal size. Some of the
smaller particles in this study fall within the Rayleigh limit,
and Schneider and Stephens(1995)’s results suggest that
the errors in the backscatter cross-sections were of order
∼10%. However these error estimates only apply to the
specific aspect ratios whichSchneider and Stephens(1995)
considered;in addition they found significant errors in the
DDA results themselves, observing an error of order 15%
when comparing the backscatter of spheroids computed by
DDA in the Rayleigh regime relative to Gans theory. They
attributed this to the relatively coarse discretisation ofthe
particle which was used. The increase in computational
resources over the past 2 decades mean that much more
accurate results are now possible.

In what follows new DDA calculations are presented for
hexagonal ice crystals covering a wide range of aspect ratios
ranging from long slender hexagonal columns (1:50) to
very thin hexagonal plates (100:1). This covers the range of
aspect ratios typically seen in nature (Pruppacher and Klett
1997), and as we will see in section 3 the results at the
extreme aspect ratios approach an asymptotic limit in any
case. By focussing exclusively on the Rayleigh regime, the
analysis of this data can be simplified to the estimation
of 2 ‘polarisabilities’ for each ice crystal. Once these
polarisabilities are known, thedifferential scattering cross-
sectionsof that ice crystal in any orientation with respect to
the incident wave’s polarisation, in any scattering direction,
and for any given size crystal can be computed immediately.
The DDA results are compared to those predicted byGans
(1912)’s spheroid theory, and this allows us to evaluate the
errors associated with the spheroid approximation over a
much wider range of aspect ratios than has previously been

attempted, with a focus on dual-polarisation parameters, in
particular the differential reflectivityZDR.

2. Theory

We begin with a brief review of some relevant scattering
theory. In the Rayleigh regime the applied electric field
is uniform across the scatterer and the scattering problem
is effectively reduced to an electrostatic one (van de Hulst
1957). The ice particle acts as a radiating point dipole
in the far field, and the problem is thus simplified to
determining the induced dipole momentp for a given
applied electric fieldE0. This relationship is determined by
the ‘polarisability’ of the particleX:

p = 4πǫ0XE0 (1)

where ǫ0 is the permittivity of free space. Here X is a
symmetric 3×3 tensor containing at most 6 independent
elements (Senior 1976). The elementsXij are proportional
to the volume of the scattering particle (the units ofXij are
[m3]), and also depend on the shape and permittivity of the
particle. The scattered electric field at a pointr is:

Es(r) = k2
eikr

4πǫ0r
[̂r × (p × r̂)] (2)

where r = |r|. We suppress the harmonic oscillation
exp(ikct) since this constant factor is present in both the
applied and scattered fields, and we are ultimately only
interested in the amplitude ofEs(r). Here t is time, c is
the speed of light, and the wavenumberk = 2π/λ whereλ
is the wavelength of the radar.

In this paper unit vectors are identified with a circumflex:
r̂ represents a unit vector in the scattering direction. The
factor [̂r × (p × r̂)] in equation2 therefore describes the
well-known doughnut-shape radiation pattern of a point
dipole in the far field and is simply equal top in the case
where the scattering direction and induced dipole moment
are perpendicular, or zero if they are parallel (since an
electromagnetic wave must be polarised perpendicular to its
direction of propagation).

The radar cross section of a particle may be related to
the scattered electric field in an analogous manner to that
given by Seliga and Bringi(1976). If our radar transmits
a wave of magnitudeE0 and polarisationÊ0 = E0/E0,
then the copolar radar cross section is simply4πr2 × |Es ·

Ê0|
2/E2

0 , i.e.:
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Here we have applied the vector identitŷr × (XÊ0) ×

r̂ = XÊ0 − [̂r · (XÊ0)]̂r, and realisedthat in the case
of backscatter the second term on the right hand side
of this identity is orthogonal toÊ0 and therefore
makes no contribution toσco (Russchenberg 1992;
Bringi and Chandrasekar 2001). Analogously, the cross-
polar radar cross-section is:

σcross = 4πk4
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noting that the unit vector̂E0 × r̂ describes the polarisation
of the cross-polar channel since it is orthogonal to both the
transmitted polarisation and the direction of propagation.

In summary, onceX is known for a particular shape,
then the dipole moments and hence the scattered field for
an arbitrary incident polarisation can be computed, and the
radar cross-sections for arbitrary transmitted and received
polarisations can be predicted. Our aim in what follows
therefore is to estimateX for some shapes relevant to ice
crystals in the atmosphere.

There are a number of ways to determineX for a given
shape, but direct analytical results are very difficult for all
but the simplest cases. One shape for which this is possible
is an ellipsoid (Gans 1912). Let us choose the coordinate
system (described by standard cartesian basis vectorsx̂, ŷ,
ẑ) such that theprincipalaxes of the ellipsoid lie parallel to
them. In this caseX is diagonal and the elements are

Xii =
V

4π
×

ǫ − 1

Li(ǫ − 1) + 1
(5)

where V is the volume of the particle,Li is a function
of the aspect ratio (van de Hulst 1957), and ǫ is the
relative permittivity. For a spheroidal particle the situation
is simplified further as two of the three elements ofX are
now equal. Let us choose the axis of revolution to be aligned
with the ẑ axis – in this case the shape factorsLi are:

Lz =
1 − e2

e2

(

−1 +
1

2e
ln

1 + e

1 − e

)

(6)

for prolate (cigar-shaped)particles, while for oblate
(pancake-shaped)spheroids, one obtains:

Lz =
1 + e2

e2

(

1 −
1

e
tan−1 e

)

(7)

wheree is the eccentricity of the spheroid. In both cases the
shape factors corresponding to thex̂ and ŷ axis axes are
Lx = Ly = (1 − Lz)/2.

Seliga and Bringi(1976) considered the case of oblate
spheroids (raindrops) oriented so that their long axes
were oriented horizontally and their short axis was
aligned vertically. For a radar dwelling at zero elevation
angle (horizontal incidence), and transmitting horizontally
(Ê0 = x̂) and vertically (̂E0 = ẑ) polarised waves the
corresponding copolar radar cross-sectionsσco,h andσco,v

are simply:
σco,h = 4πk4|Xxx|

2 (8)

σco,v = 4πk4|Xzz|
2 (9)

recognising thatXÊ0 is perpendicular tôr and parallel
to Ê0 in this particular case. The differential reflectivity
ZDR = σco,h/σco,v for an oblate particle of a given aspect
ratio is then simply:

ZDR =
|Xxx|

2

|Xzz|2
(10)

Analogouscalculations have been performed byHall et al.
(1984) andHoganet al. (2002) (amongst others) for oblate
spheroid ice crystals to computeZDR as a function of
aspect ratio, and show that 10dB is the maximum possible
differential reflectivity from thin plate crystals.Hoganet al.

(2002) also considered prolate ice spheroids with their long
axis lying in the horizontal plane. Here the calculation is a
little more complicated since the long (ẑ) axis of the crystal
may be aligned in an arbitrary direction in the horizontal
plane, while the horizontal polarisation vectorÊ0 is fixed.
This means that equation3 must be integrated over all
possible (̂z,Ê0) combinations, leading to the result:

ZDR =
3

8

|Xzz|
2

|Xxx|2
+

3

8
+

1

4

|Xzz|

|Xxx|
(11)

Hoganet al. (2002) found that the maximum differential
reflectivity from thin column crystals was 4dB.

The use of the analytical results (5,6,7) for spheroids
to compute the polarimetric properties of ice crystals is
very common. However the accuracy of this approximation
for hexagonal ice crystals has not been clearly established.
In section 3 we will determine the errors involved
in this approximation using numerical calculations of
X for hexagonal ice prisms. Following this a simple
empirical modification to Gans’s theory is proposed to more
accurately capture the scattering properties of hexagonalice
crystals.

3. Hexagonal prisms: numerical data and a new
empirical formula

For a hexagonal ice crystal no exact solution currently exists
for X. However we can obtain some useful information
about its form.Senior(1976) has shown that for particles
with two perpendicular axes of symmetry (such as an ice
crystal with hexagonal symmetry),X is diagonal, as it is
for an ellipsoid. This means we need to determine at most
3 numbers for a given crystal shape, and in what follows
we will use numerical solutions for the scattered fields from
various crystal shapes to determine a simple approximate
formula forX.

3.1. DDA calculations

To determine the 3 polarisability tensor elements for
hexagonal ice crystals the DDA method was used. This
approach involves discretising the particle into many small
volume elements, each of which is represented by a point
dipole. Knowing the polarisability of each of these small
(cubic) ice volumes allows the scattered field due to each
volume element to be determined as a function of the
applied electric field and the scattered field from all other
volume elements in the particle. This system of equations
is then inverted to obtain the electric field at each volume
element, and hence the far-field scattering pattern and
polarisability tensor elements. Full details of the method
are given byDraine and Flatau(1994)∗, and provided that
the permittivity of the particle is not very strong, and a
sufficient number of dipoles is used to represent the shape
of the crystal, this approach should provide quite accurate
estimates ofXii. The key advantage of this method is
its flexibility - the scattering for an arbitrary shape can
be calculated, and particles with large aspect ratio can be
handled without difficulty.Draine and Flatau(1994) show

∗The calculations in this paper were performed using version 6.1 of the
DDSCAT package used byDraine and Flatau(1994); repetition of these
calculations using version 7.3 (the latest release at the time of writing)
gave identical results (RMS fractional difference of 0.1%).
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comparisons of the differential scattering cross sections
of spherical particles validated against Mie theory for
permittivities comparable to ice and the error in the DDA
estimates were<3% in the backscatter direction using∼
104 dipole elements or more.Zubkoet al. (2010) has noted
that the sphere is one of the most challenging geometries
to simulate accurately using DDA.In the calculations for
hexagonal prisms below we used between4 × 105 and
2 × 106 dipole elements; for the branched plate crystals
in section4 memory limitations combined with the open
geometry of some of the shapes meant that fewer dipole
elements were used, but in all cases this was> 105. Based
on this we expect errors smaller thanDraine and Flatau
(1994) obtained, which should be more than sufficient for
the practical purpose of estimating radar parameters.

Figure 1 illustrates the geometry of the crystals. Right
regular hexagonal prisms were constructed. On the basal
(hexagonal) faces the sides of the hexagon have lengtha,
and hence the maximum span across the basal facet is2a.
The span of the crystal along the prism axis isL. The
prism axis is oriented along thêz direction, whilex̂ and
ŷ lie in the basal plane. This geometry is fixed for all
the simulations, and the DDA calculations are performed
3 times for incident waves polarised parallel tox̂, ŷ and
ẑ: this is sufficient to determine the 3 non-zero elements of
X. The permittivity of the particles was set equal to that
of solid iceǫ = 3.15 + iδ. Sinceδ is a very small number
(∼ 5 × 10−4 at S-band:Liebeet al. 1989) we ignore the
resulting imaginary components of the polarisability tensor,
and report only the real parts. This is consistent with the
negligible attenuation typically produced by non-melting
ice particles in the microwave (Atlas and Ludlam 1961).
To ensure that the calculations are firmly in the Rayleigh
regime the equivalent-volume radius of the ice crystals
was set to10µm which is indeed much smaller than the
10cm wavelength. The specific choice of crystal size is not
important since theelementsof X are simply proportional
to the volume, and so the results can be simply scaled up or
down as desired, and in what follows we will actually report
polarisabilities which have been normalised by the volume
of the crystal.

The results of these calculations are shown in figure2 as
a function of aspect ratiow = 2a/L ranging from 0.02 (a
long slender column) to 100 (a thin plate).The elements of
Xii have been normalised by a factorV/(4π) and are now
dimensionless, depending on the shape and permittivity of
the particle alone. Although the author is not aware of any
theoretical reason to require it, it is observed numerically
that the elementsXxx and Xyy are essentially identical
(within ≈ 1% of each other), and hence onlyXxx andXzz

are reported in figure2. Also plotted on this figure are
the theoretical results for spheroids (equations5, 6 and7).
Note that this method of comparison implicitly means that
we are considering a spheroid with a volume and aspect
ratio equal to that of the hexagonal crystal it is intended to
represent, and this is logical sinceX ∝ V . Other choices of
spheroid (e.g. in- or circum-scribed around the hexagonal
crystal) would not have the same volume, and are therefore
unphysical.

Senior(1976) shows that these normalised values forXii

should be bounded from below by(ǫ − 1)/ǫ = 0.68, and
indeed all the numerical data does satisfy this condition. We
also note thatXzz approaches this limit for thin plates (data
point atw = 100). For long slender columns (w ≪ 1), and
very thin plates (w ≫ 1), theGans(1912) spheroid theory

Figure 1. Schematic showing the orientation of a hexagonal prism crystal
relative to the basis vectorŝx, ŷ and ẑ, seen from two orthogonal
viewpoints. Also indicated is the length of the crystalL and width2a.

gives results which are very close to the hexagonal prism
calculations, indicating that in these limits the spheroidal
approximation is an accurate one. However, for less extreme
aspect ratios there are significant discrepancies. One of the
most obvious features of figure2 is that the point where
the polarisability along both axes are equal (Xxx = Xzz) is
significantly shifted in the DDA results (w ≈ 1.3) relative
to the spheroid prediction (w = 1). For plate crystals the
spheroid model predicts a polarisability along theẑ axis
which is too small, and a polarisability in thêx-ŷ plane
which is too large.

For example, consider a plate withw = 3. The spheroidal
approximation predicts a value which is 12% too low for
Xzz, and 5% too high forXxx andXyy. These may appear
to be relatively modest errors, but note that equation3
means that the radar cross-section is proportional to the
square of these polarisabilities. For horizontally oriented
hexagonal plates probed by a radar dwelling at horizontal
equations8 and9 tell us thatσco,h will be 10% too large,
while σco,v will be 25% too small, and this means that the
spheroidal assumption leads to a 38% (1.5dB) overestimate
in ZDR. This is a significant error.

The impact on the specific differential phase shiftKDP

is smaller than for differential reflectivity because it is
proportional toXxx − Xzz (Oguchi 1983). For our oriented
plate therefore we should expect a 17% overestimate in
the computedKDP using the spheroid approximation.
Although smaller than the error inZDR, this is not a
negligible error in the author’s opinion.

Figure 3 shows calculations ofZDR for horizontally
oriented plate and column crystals as a function of aspect
ratio, using both the DDA data for hexagonal plates, and the
theoretical curves for spheroids. The spheroid calculations
in figure 3 are identical to those ofHoganet al. (2002)
except we have assumed that the change in orientation
between plates and columns occurs not at an aspect ratio of
w = 1, but atw = 1.1 based on the laboratory experiments
of Westbrook (2011). His data show that columns and
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Figure 2. DDA calculations of the polarisability tensor elementsXxx andXzz (circles) for hexagonal prisms. Also shown are theoretical curves for
spheroids (black solid curve), DDA results for spheroids (asterisks) and the new empirical formula for hexagonal prisms described in the text (grey
dashed line).

thick plates withw < 1.1 are oriented with their̂z axis
horizontal, while plates withw > 1.1 have their ẑ axis
vertical. This assumption leads to a slight discontinuity in
the theoretical spheroid curve atw = 1.1 since this cross-
over in orientation no longer coincides with the point where
Xxx = Xzz (w = 1 for spheroids), and means that there is
a narrow region of parameter space betweenw = 1 and1.1
(thick plates) whereZDR is predicted to be slightly negative
(−0.2dB atw = 1.1).

For plates of all aspect ratios we observe that the
spheroidal approximation systematically overestimates the
magnitude ofZDR. This is most pronounced for aspect
ratios between 1.1 and 10 whereZDR is 1—1.5dB too large;
for a more extreme aspect ratio of 100 the error is reduced to
only 0.2dB. For column crystals the spheroid approximation
is more accurate: errors are 0.5dB or less in general.

The differences between hexagonal crystals and their
spheroid ‘equivalents’ appears to be significant for
polarimetric radar applications. However, it is importantto
establish that this a genuine effect, and not a numerical
artefact. To this end some test DDA calculations were
performed. Identical dipole volume element spacings were
used to the hexagonal plate computations, but instead of
hexagonal crystals, spheroidal particles were generated,and
their polarisability tensor elements computed. The results
of these computations at aspect ratios of 0.03, 0.5, 2, 5
and 30 are shown by the asterisk markers in figure2. The
calculations are in excellent agreement with the theoretical
curves for spheroids. This gives us confidence that our DDA
calculations are accurate, and that the discrepancy between

Figure 3. Differential reflectivity predicted for horizontally oriented
hexagonal plate crystals of various aspect ratios viewed athorizontal
incidence (circles). Also shown are theoretical results for spheroid model
(solid black line) and the new empirical formula for hexagonalprisms
described in the text (grey dashed line).

our hexagonal results and theGans(1912) spheroidal model
is genuine.
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3.2. Empirical modification of the Gans equations: new
analytical expressions

Based on the results above the spheroidal model is not
an accurate representation of hexagonal ice crystals and
it would be desireable to replace it or modify it in order
to improve the accuracy of scattering calculations without
needing to recompute the polarisability tensor for each
possible aspect ratio. Based on the observation thatXxx ≈
Xyy, and that the spheroidal polarisabilities in figure2 have
a qualitatively similar shape to our DDA data, we start by
assuming that our polarisability tensor elements will have
the same functional form (equation5) as spheroids, but with
different geometrical factorsLi. Under this assumption,
we can computeLx = Ly and Lz from our DDA data
by inverting equation5. Given that we observe in figure
2 than the asymptotic limits seem to be the same as
for spheroids, we expect that for thin platesLx → 0 and
Lz → 1, whilst for long slender columnsLx → 1

2
and

Lz → 0 (van de Hulst 1957). Using these limits, two simple
functions with the correct asymptotic limits were fitted to
the numerical data forLx = Ly andLz:

Lz =
1

2

(

1 − 3/w

1 + 3/w
+ 1

)

(12)

Lx = Ly =
1

4

(

1 − 0.5w0.9

1 + 0.5w0.9
+ 1

)

(13)

where w = (2a/L) is the aspect ratio. Unlike spheroids
these formulae (and our numerical data) do not satisfy
Lx + Ly + Lz = 1.

Applying these new equations to computeX yields
the grey dashed lines in figure2, which is an excellent
approximation to the numerical data, with RMS errors of
1% and 0.5% respectively forXzz andXxx.

Applying this curve to the computation ofZDR leads to
the grey dashed curve in figure3, again providing a very
close approximation to the numerical data to within a tenth
of a dB. As for spheroids we observe a slight discontinuity
at w = 1.1 because the cross-over in the orientation of
the crystals atw = 1.1 does not coincide with the point
where Xxx = Xzz at w ≈ 1.3, and again small negative
differential reflectivities of up to−0.6dB are theoretically
possible in the narrow region of parameter space between
these two aspect ratios.

It is noteworthy that equations12 and 13 are in fact
simpler than the exact expressions for spheroids. They are
also easier to apply because no split into prolates and oblates
is necessary, and there are no numerical difficulties in the
case ofw = 1 (unlike equations7 and6).

3.2.1. Testing the new analytical expression for smaller
permittivities

Thus far we have assumed that the elementsXii take
the form given in equation5. To test this assumption, a
number of DDA calculations have been made where the
relative permittivity has been reduced relative to the value
for solid ice, while the geometry remained fixed (w = 10
in the data presented here). This will allow us to test
whether the assumed separation of the permittivity and
shape dependency in equation5 is in fact the correct one.
A motivation for this is that we would like to be able to
use our new expression to predict the scattering from more

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4π
 X

ii / 
V

Relative Permittivity

For hexagonal plates, aspect ratio 10

 

 
X

xx
 DDA data

X
zz

 DDA data

New analytic expression

Figure 4. DDA calculations of the polarisability tensor elementsXxx and
Xzz for hexagonal plates with reduced permittivities (markers).Solid lines
show prediction using the new model.

complex pristine crystals such as branched hexagonal plates
(stellar and dendritic crystals), and one way to approach this
problem is to treat the more complex particle as a hexagonal
prism of the same overall dimensions, but with a reduced
permittivity based on the fraction of the prism which is
composed of ice. This will be discussed in section4.

Figure 4 shows the resulting normalised polarisability
tensor elements where the real part of the permittivity is
3.15 (the value for solid ice), 2.15, 1.65 and 1.15. Also
shown in the figure (solid lines) are the predicted values,
based on equations5, 12, 13. The new equations are
indistinguishable from the numerical data, indicating that
the separation of the geometry and permittivity factors in
equation5 is the correct one, at least for these relatively
weak permittivity values.

3.2.2. Effect of crystal fluttering onZDR errors

In section 3.1 we considered the error in calculations
of ZDR when approximating a horizontally oriented
hexagonal crystal with a horizontally oriented spheroid.
Westbrooket al. (2010) showed that such crystals are
frequent in mid-level mixed-phase layer clouds. However
large hexagonal ice crystals (with Reynolds number∼ 100
or greater) do not have a perfectly horizontal orientation,but
fall unsteadily (Kajikawa 1992), leading to a distribution
of orientations relative to the fixed polarisation of the
radar. To investigate whether the spheroid approximation
also leads to similar errors in the case of unsteady fall,
ZDR was computed for an ensemble of ice crystals, each
rotated by an angleφ, where φ was sampled from a
uniform distribution of angles in the range±φmax. To
calculateσco from these rotated crystals, one simply needs
to ensure thatÊ0 is defined correctly relative to the
x̂, ŷ, ẑ basis vectors ofX when applying equation3. A
detailed discussion of this is provided byRusschenberg
(1992) and Bringi and Chandrasekar(2001). Since the
most significant errors in figure3 were for hexagonal
plates, we focus on these particles here, and figure5
shows the difference between theZDR computed using
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Figure 5. Error in differential reflectivity of hexagonal plate crystals when
computed using the Gans spheroid model, as a function of aspectratio and
the distribution of fluttering angles assumed (see text). Different lines show
maximum fluttering angles ofφmax = 0, 15, 30 and 45◦.

spheroids, and theZDR computed using the new results
for hexagonal crystals. Forφmax = 15◦ the error associated
with approximating plates as spheroids is almost identical
to the case of perfect horizontal orientation (φmax = 0◦),
to within 0.1dB. As the distribution of crystal orientations
becomes broader, the error in approximating the crystals
as spheroids becomes gradually smaller: for example at
w = 2 the error is 1.45 dB forφmax = 0◦, falling to 1 dB
for φmax = 45◦. These results suggest that even for rather
broad distributions of crystal fall orientation, the errorin
ZDR from approximating hexagonal crystals as spheroids
can be significant.

4. Broad-branched, stellar and dendritic ice crystals

Plate crystals formed at high supersaturations often grow
preferentially at the corners and develop branches, leading
to broad-branched, stellar and dendritic crystal types
(Takahashiet al. 1991). The polarisability tensor was
computed in the same manner as before for a number of
idealised branched crystal geometries. The geometries of
the crystals follows those considered inWestbrooket al.
(2008).

We first consider stellar and broad-branched crystals.
The specific model geometries used here are shown in
cross-section in figure6a; in all cases the aspect ratio was
w = 10. Again, the hexagonal symmetry means that the
polarisability tensor is diagonal. The elements ofX were
computed using DDA as before. As for hexagonal prisms
we again observe from the numerical data thatXxx =
Xyy. The results forXxx and Xzz are plotted in figure
7 (filled markers) as a function of the volume fractionf
which we define here as the volume of ice in the crystal,
divided by the volumeV of a hexagonal prism of the
same span and length. As in section3 the results have
been normalised by a factorV/(4π). Both Xxx and Xzz

decrease monotonically with decreasing volume fraction
as one moves from broad-branch crystals withf = 0.96
down to tenuous star-shaped crystals withf = 0.11. This is

Figure 6. Branched crystal shapes used in DDA calculations. Panel (a)
shows the broad-branched and stellar crystal shapes simulated in section
4 as a cross-section in thêx–ŷ plane. Similarly panel (b) shows more
complex branched dendritic examples included in section4.

Figure 7. DDA calculations of the polarisability tensor elementsXxx

and Xzz for stellar and dendritic crystals as a function of ice volume
fraction relative to a solid hexagonal plate of the same span.Solid and
dashed lines show results obtained using a simple air-ice hexagonal prism
using the Maxwell-Garnett mixture theory for spherical and needle-shaped
inclusions respectively.

physically sensible, since asf becomes smaller the volume
of ice in the particle is smaller, and hence less scattering can
occur. More importantly, we note that the curves forXxx

and Xzz converge asf → 0 this means that for tenuous
particles polarisation effects become steadily weaker, a
result anticipated byBaderet al. (1987).

More complicated dendritic crystal shapes, shown in
figure 6b were also simulated using DDA. The results
of these computations is also shown in figure7 (open
markers). The results appear to follow the same behaviour
as the simpler branched crystals, with decreasing volume
fraction (spanning the range 0.48 to 0.13) corresponding
to a decrease in the polarisability of the particles and a
convergence of the two polarisability tensor elements.

Since there seems to be a rather well-defined dependence
of the change in the polarisabilities of the crystal as
a function of the volume fraction, it suggests that the
scattering from these more complex particles can be
characterised by the dipole moments of an enclosing
hexagonal prism and the volume fractionf . One way to
do this would be to simply fit a curve to the numerical
data in figure7. Perhaps a more physically satisfactory
approach is to use a dielectric mixture theory to represent
the complex particle as a solid hexagonal prism with a
reduced permittivity. The essence of these mixture theories
is that the complexities of the particle (i.e. the branches
of the dendrite surrounded by air) are approximated by
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a homogeneous mixture of air and ice with an effective
permittivity which lies somewhere between the two (ǫ =
1—3.15). A detailed overview of dielectric mixture theory
is provided bySihvola(1989). Obviously this is a relatively
crude approximation to the complex geometry of the ice
crystals: however as we will see, it appears to be an
acceptable one for these crystals.The most common of
these theories is attributed toMaxwell-Garnett(1904) and
prescribes the effective permittivity as:

ǫeff =
(1 − f) + fβǫ

1 − f + fβ
(14)

Bohren and Huffman(1983) has shown that Maxwell-
Garnett’s original approximation can be generalised
depending upon the shape of the ice ‘inclusions’ in the
mixture. For spherical inclusions the paramaterβ = 3/(ǫ +
2) = 0.58. For randomly oriented rod-shaped inclusions
β = 0.65.

We can use equation14 in addition to the new
equations for hexagonal prisms developed in section3 to
calculate the polarisability tensor elements for the branched
crystals. The results of this calculation are shown by
the solid line (spherical inclusions) and dashed line (rod-
shaped inclusions) in figure7. Both estimates capture the
behaviour of the numerical data well, although assuming
rod inclusions appears to be slightly more accurate. Forf ∼
0.5 the spherical Maxwell-Garnett curve underestimates
Xxx by about 10%, whilst for rod-inclusions the differences
are typically≈ 2%. One may speculate that the branches of
the crystals are not entirely dissimilar to rod shapes oriented
in many different angles, and this may be the reason for the
better agreement with that theory.

5. Conclusions

In this note we have shown that modelling hexagonal
ice crystals as spheroids may lead to significant error
in calculations of dual-polarisation measurements such
as differential reflectivity. It was shown that hexagonal
crystals, like spheroids can be characterised by only
two elements of the polarisability tensorX. These
elements could be accurately captured by making a simple
modification of the geometrical factorsLi used in Gans’s
theory for spheroids, and the resulting formulae are in fact
simpler to apply in practice as well as more accurate. It
is therefore recommended that future polarimetric studies
which seek to model the scattering from oriented crystals
use the new expression developed here.

A key advantage of setting the numerical DDA results
in the polarisability tensor framework ofSenior(1976) is
that we can deterimne the scattering properties for a crystal
of any desired volume, in any desired orientation relative
to the polarisation of the applied wave. The proposed
modification of the Gans equations takes this generalisation
further to allow calculations for any desired aspect ratio,or
permittivity between1 and 3.15 to be rapidly performed.
The scattered field can be determined in the forward
(or indeed an arbitrarily chosen) scattering direction, in
addition to backscatter, allowing one to predict propagation
effects such as specific differential phase shift.

DDA calculations of more complex branched crystals
show that they can be accurately approximated by a
hexagonal prism of the same length and width, but with a
reduced permittivity prescribed by Maxwell-Garnett theory,

allowing a rather simple interpretation of the scattering
properties in terms of the aspect ratio and volume fraction.
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