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Abstract

The discrete dipole approximation is used to explore the internal electric fields of plane-wave-illuminated ice particles, and analyse
their differential scattering cross sections. The results are displayed for monocrystals and aggregates of size parameters x = 2
and x = 10. We show that the field is relatively uniform for x = 2, but for monocrystals of x = 10 there is a complex internal
structure. For a hexagonal plate, this structure is a combination of two components: a “distorted” plane wave, with wavefronts
aligned perpendicular to the incident wave close to the centre of the plate, and curved forward near the particle boundary; and
a standing wave, internally reflected around the perimeter. The former is due to the transverse component of the field i.e., the
component perpendicular to the incident wave, and the latter is due to the component parallel to the incident direction. Focussing
of the field towards the forward side of the particle is observed. As the particle complexity is increased due to aggregation, the
field becomes smoother and less focussing is seen. For complex aggregates, the individual monomers act independently of one
another, suggesting simplified methods of calculating scattering from such particles. The influence of the internal fields on far-field
scattering is explored. It is demonstrated that scattering in the forward and backward directions is dominated by the transverse
component. The parallel component contributes to sidescattering, with its influence on total scattering decreasing with particle
complexity. We propose that this is due to the inability of complex particles to maintain a standing wave, diminishing much of the
sidescattering observed for monocrystals.
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1. Introduction

Ice particles in clouds have important radiative and hydrolog-
ical impacts, contributing to rainfall in the midlatitudes [1], and
snowfall at high latitudes. To explore these processes in more
detail, measurements of microphysics are required. This is
made possible using scattered electromagnetic waves retrieved
by remote sensing instruments such as radars and radiometers.

Numerical Weather Prediction (NWP) and climate models
have benefitted greatly from developments in remote sensing
instruments and the wide variety of measurements they permit.
However, there is still work to be done to improve ice cloud
retrievals in order to gain more precise information on cloud
and hydrometeor profiles. For example, comparing 5 different
satellite products, Refs. [2, 3] have shown that there is an enor-
mous spread between retrieved ice water path from the different
datasets. Improved retrievals of such properties are integral to
the development of ice cloud microphysics schemes, which will
allow advancements in the representation of different weather
and climate processes in models. Furthermore, they will enable
more accurate detection of snowfall from space, which remains
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an area of great difficulty. CloudSat [4] has provided our best
estimates thus far of global snowfall, using a 94 GHz cloud
radar to profile cloud vertical structure and obtain information
on the constituent ice and water particles. However, there are
still substantial uncertainties in converting the backscatter from
snow at this frequency into a snowfall rate, one of which is the
accuracy of the scattering [5].

Efforts have been made to improve airborne and spaceborne
retrievals of ice water path by measuring sub-mm brightness
temperatures using radiometers such as CoSSIR, ISMAR, and
ICI [6, 7, 8]. ICI has been specifically designed for observing
cloud ice, and will be the first operational instrument to cover
sub-millimeter wavelengths, with frequencies ranging from 183
to 664 GHz. However, retrievals from these instruments are
sensitive to scattering by ice particles which are comparable to
or larger than the wavelength.

In the past, radiative transfer models have employed drastic
simplifications of cloud ice, such as approximating particles by
spheres or spheroids of equivalent size. However, as particle
size increases with respect to the wavelength, the particle shape
and material play a significant role in different interference pat-
terns that are found within the particle. Recently there have
been advances in using more realistic habits for single scatter-
ing calculations e.g. the ARTS database [9, 10]. With the ad-
vent of high frequency observations, accurate retrievals require
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continued efforts to improving our understanding of the scat-
tering properties of realistic ice cloud particles. This will en-
able better interpretations of scattered electromagnetic waves,
in turn allowing more precise retrievals of cloud properties from
both radars and radiometers.

The single-scattering properties of various particle geome-
tries are typically explored using numerical methods such as
the discrete dipole approximation (DDA), and the Rayleigh-
Gans approximation (RGA). The starting point of both meth-
ods is to discretise the particle into small volume elements,
each of which is excited by an electric field. Accurate calcu-
lations are possible using DDA, but this technique is computa-
tionally expensive as it includes interactions between different
volume elements. Less expensive methods such as RGA have
been employed by researchers in an attempt to calculate scatter-
ing properties in a more efficient manner, such as in Ref. [11].
The field at each element in RGA is approximated by the ap-
plied field, with no interactions experienced between volume
elements. Hence RGA is applicable for cases where interac-
tions are negligible, i.e. when the relative refractive index is
close to unity, and the phase shift across the particle is small.
However, comparing to DDA results of the far-field scattering
properties of snowflakes, Tyynelä et al. [12] found that RGA
can lead to relative biases of −65%. Leinonen et al. [13] also
found that even larger biases can occur for ice particles with
elevated density due to riming. These findings suggest that the
electric field inside the snowflake may be systematically larger
in magnitude than the incident wave.

The purpose of the present study is to explore the scatter-
ing of mm and sub-mm electromagnetic waves by ice particles
through an investigation of their internal electric fields, rather
than their far-field scattering properties. As we will show, this
allows us to identify different physical effects, which in turn
control different aspects of the far-field scattering; in addition
it allows us to test at a more fundamental level the realism of
approaches like RGA, by comparing the true internal field with
the incident plane wave.

Internal fields of spheres, spheroids and cylinders have been
explored in other disciplines, such as nanophotonics [14, 15].
In these studies, complex internal field structures are seen, with
constructive interference within the particles leading to a re-
gion of high electric field magnitude at the shadow-side of the
particle, similar to the characteristic focussing nature of a lens.
Owen et al. [16] describe the internal fields in infinitely long
dielectric cylinders for size parameters of order 40. They ob-
served enhanced electric fields in the forward portion of the
cylinder which they ascribe to geometrical focussing; in addi-
tion, they noted the existence of a partial standing wave pat-
tern close to the boundary of the scatterer. These surface waves
are present over a range of size parameters: they are greatly
enhanced in magnitude at very specific size parameters corre-
sponding to resonances, or whispering gallery modes, where
waves are internally reflected around the perimeter of the cylin-
der and repeat themselves (matched phase) after each trip; but
they are also present as “partial standing waves” in the off-
resonant case. Ref. [17] also modelled similar extrema in

wavelength-scale spherical particles.
Some research has been done on the internal field of more

irregular particles [18, 19]. Similar focussing behaviour of the
field was observed for Gaussian random spheres and debris par-
ticles, with the amount of focussing decreasing with increased
shape complexity [18]. It was shown by Barton [19] that in-
ternal field variations with particle geometry lead to significant
differences in far-field scattering properties. Lu et al. [20] stud-
ied the field inside a dendritic ice crystal, using their findings
to modify RGA in such a way that scattering calculations are
improved by including short-range interactions between vol-
ume elements. However, few other researchers have studied
the problem for realistic ice particles to explore how these com-
plex internal field structures differ with shape, and the role these
variations play in far-field scattering. We hope to address the
problem at a fundamental level to acquire understanding of how
scattering at radar and radiometer frequencies works.

2. Atmospheric ice particles

The constituent particles of ice clouds vary in size and shape
depending on the temperature and supersaturation of the sur-
rounding environment. Different growth processes complicate
the crystal habits, such as diffusion, accretion, and aggregation.
Aggregation can occur due to collision and coalescence, result-
ing in complex snowflake shapes.

We will investigate a number of different idealisations of sin-
gle and aggregated ice crystals. These are:

(a) Hexagonal plates: Horizontally aligned hexagonal plates
are frequently found in mixed-phase layer clouds [21], and
at the top of cirrus clouds [22, 23], particularly in anvil
cirrus [24]. These studies found plate-like crystals with
maximum dimensions reaching almost 1 mm.

(b) Hexagonal columns: Collating data from three different
cloud campaigns, Um et al. [24] concluded that hexag-
onal columns exist at all temperatures explored, between
−87 and 0◦C. However, growth is favoured between −3
and −8◦C. During the campaigns, columns of projected
maximum dimensions between approximately 0.025 mm
and 1 mm were observed. In this study we look at short
columns of solid ice, which usually occur at low ice super-
saturations [25].

(c) Chain aggregates of plates: Aggregates of plate-like crys-
tals occur in regions of high electric field, such as within
deep convective clouds [26, 27, 28]. This particle shape is
a logical elaboration on single plates and is useful to study
the transition from single crystals to complex aggregates.

(d) Irregular aggregates of ice crystals: These are a more com-
plex representation of realistic aggregates found in strat-
iform ice clouds and snowfall. Hobbs et al. [29] ob-
served dendritic aggregates of maximum dimensions up
to 1.4 cm. Such large aggregates play a significant role
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in microwave scattering as they dominate radar reflectiv-
ity when present, thus proving important for snowfall re-
trievals. Hence it is useful to explore their scattering prop-
erties. In this study we present results for two aggregates
of fernlike dendrites modelled by Tyynelä et al. [30].

3. Modelling particles

We define the size parameter of a particle as x = kDmax/2,
where k = 2π

λ
is the wavenumber corresponding to an incident

wave of wavelength λ. Dmax is the maximum distance between
any 2 points within the particle. The frequency range covered
by ISMAR and ICI is 83 − 874 GHz. We are also interested
in radar frequencies of 3 − 94 GHz. Therefore, the range of
wavelengths relevant to this study is 0.34 mm − 10 cm.

We assume that ice is an insulator with magnetic permeabil-
ity µ = 1. This means the electric properties of the material
are determined completely by the complex relative permittiv-
ity ε = εr + iεi, which we assume is constant throughout the
medium. We can also write ε = m2, where m is the complex
index of refraction of the particle. As recommended by Eriks-
son et al. [31], the permittivity parameterisation introduced by
Mätzler [32] has been used to calculate the dielectric proper-
ties of the particles modelled in this study. The real part of the
permittivity εr (dielectric constant), which represents phase ve-
locity, varies weakly with temperature. The imaginary part εi,
which represents absorption of the wave in the particle, varies
more strongly with temperature, and also with frequency. In the
calculations presented here, we have assumed a temperature of
−20◦ C.

For the irregular aggregates of crystals studied in this pa-
per, comparisons have been done using the Maxwell-Garnett
effective medium approximation [33]. Using this method, ir-
regular particles are approximated by simpler shapes comprised
of a homogeneous ice-air mixture; in this study we have used
spheres of equal Dmax to the aggregate. The effective permittiv-
ity is determined based on the volume fraction of ice within the
sphere.

We discretise an integral formulation of Maxwell’s equations
(DDA) and numerically solve the discrete system. This is done
at two different frequencies for each particle to calculate the
internal electric field for size parameters of x = 2 and x = 10.
For these properties the real part of ε has a value of 3.1702
for solid ice, and the imaginary part varies between 0.0002 and
0.0075. We also present calculations for some particles with a
size parameter of x = 0.01. The corresponding wavelength of
these particles result in an imaginary part of ε which is of order
10−6.

The aspect ratio of the monocrystals is defined as the ratio
between the length of the particle in the z direction and the max-
imum width of the particle in the x-y plane. The monocrystals
presented in this manuscript have a fixed orientation. The in-
cident plane wave is polarised in the x direction and travels in
the direction of the y-axis. Some additional scenarios using a z
polarised plane wave and other particle orientations have been
explored, with these results presented in the supplementary ma-

terial for interested readers. Orientationally averaged far-field
scattering quantities are considered for aggregates in section 7.

4. Discrete Dipole Approximation

Many different numerical methods have been applied to solve
electromagnetic scattering problems. The discrete dipole ap-
proximation is a flexible method that is commonly used to ap-
proximate the scattering properties of penetrable objects of ar-
bitrary geometry [34, 35]. In this method, a particle is approx-
imated by N polarisable volume elements (or dipoles) located
in a cubical array. Each dipole j (= 1, . . . ,N) has a polarisation
Pj = αjEexc

j , where αj is the polarisability. There are different
ways to prescribe the polarisability α j of the dipoles that rep-
resent the particle. In this study we use the Lattice Dispersion
Relation (LDR), derived by Ref. [36]. We illuminate the parti-
cle with a plane wave:

Einc
j = E0 exp(ik · rj − iωt). (1)

E0 = E0ê is the polarisation vector for the electric field, where
ê is the unit vector in the direction of polarisation. We assign
a unit amplitude, E0 = 1. k is the wave vector, whose mag-
nitude k = |k| is the wavenumber, and whose direction k/k is
the direction of propagation of the incoming wave. r j is the po-
sition of dipole j, and ω is the angular frequency. From here
on in, we assume all fields are time-harmonic, thus leaving out
the exp(−iωt) component. The electric field incident on each
dipole (the “exciting” field) Eexc

j is given by Einc
j , plus the con-

tributions from each of the other dipoles in the particle:

Eexc
j = Einc

j −
∑
j′,j

Ajj′Pj′ . (2)

A is a 3N × 3N array commonly referred to as the interaction
matrix. Each entry Ajj′ is a 3×3 matrix which can be calculated
for j , j′ by:

Ajj′ =
exp(ikR)

R

[
k2(R̂R̂ − 13) +

ikR − 1
R2 (3R̂R̂ − 13)

]
(3)

for j, j′ = 1, . . . ,N. The distance between points r j and r j′

is given by R = |R|, where R = r j − r j′ . R̂ = R/R is the
directional unit vector between the points, and R̂R̂ is a dyadic
formed from these interdipole unit vectors. Recall R̂R̂ is a 3×3
complex matrix whose element (R̂R̂)J,J′ = R̂JR̂J′ for J, J′ =

1, 2, 3. As in Ref. [35], we make the standard assumption that
Ajj = α−1

j 13, where 13 is the 3 × 3 identity matrix. Thus we can
write Eexc

j = AjjPj and rearrange (2) as:

Einc
j = AjjPj +

∑
j′,j

Ajj′Pj′ . (4)

Hence the scattering problem can be reduced to a system of 3N
linear equations to solve for the unknown dipole polarisations
Pj′ :
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N∑
j′=1

Ajj′Pj′ = Einc
j . (5)

Once the value of Pj is known for each dipole, it is straightfor-
ward to compute the macroscopic electric field inside the vol-
ume elements:

Ej =
Pj

Vjχj
(6)

where Vj = d3 is the volume of the dipole and χj = (ε − 1)/4π
is the susceptibility of the medium [37]. This should not be
confused with the exciting electric field Eexc

j = Pj/αj mentioned
previously, which includes the field resulting from the incident
wave and contributions from the other N − 1 dipoles, but not
the field induced by the dipole on itself. For the particles in this
study, the ratio αj/Vjχj between Ej and Eexc

j is approximately
0.58.

It is also possible to calculate different scattering properties
of the particle, such as the scattered electric field. This is done
by summing the power radiated by the array of N oscillating
dipoles. If the distance r between a detector and scatterer is
large, the scattered far field can be approximated by [35]:

Esca(r) =
exp(ikr)

r
k2(n̂n̂ − 13)

N∑
j=1

Pj exp(−ikrj · n̂), (7)

where n̂ = r/r is the unit vector in the scattering direction,
and n̂n̂ is a dyadic. From the detector, we can measure
waves polarised parallel to the unit vector êdet, so the field
we sample is Edet(r, êdet) = Esca(r) · êdet. The normalised
differential scattering cross section σ(n̂, êdet) for one direction
and polarisation can be calculated such that it is independent of
distance r. The vector êdet is chosen to be perpendicular to n̂,
so n̂ · êdet = 0, and we have:

σ(n̂, êdet) = r2|Edet(r, êdet)|2 = k4

∣∣∣∣∣∣∣∣
N∑

j=1

Pj · êdet exp(−ikrj · n̂)

∣∣∣∣∣∣∣∣
2

.

(8)

If n̂ = −k/|k|, then we obtain backscattering and σ(n̂, êdet) co-
incides with Eq. (7) in Ref. [38].

In sections 6 and 7 of this paper we explore the internal elec-
tric fields of different particles, and look at their scattering prop-
erties. We plot σ on polar plots as a function of n̂, for both n̂
and êdet in the x-y plane.

4.1. Accuracy of the DDA method
Two conditions are specified by Draine and Flatau [35] to

minimize errors and ensure that the DDA formulation is valid:

1. The dipole spacing d must be sufficiently small compared
to the internal wavelength of the particle. The condition
given in their study is that the number of dipoles per inter-
nal wavelength, nλ, should exceed a value of 2π. Zubko

et al. [39] showed that the DDA provides highly accurate
results for irregular particles with this condition. How-
ever, a more restrictive value of nλ > 4π is recommended
by Draine and Flatau for scattering phase function calcu-
lations such as radar cross sections [40]. This value has
been employed in some scattering studies, e.g. Ref. [18].
The most commonly used convention for discretisation is
to prescribe at least 10 dipoles per internal wavelength,
i.e. nλ > 10. Yurkin and Hoekstra [37] state that this con-
straint is a good first guess for many applications, but ac-
curacy is not guaranteed, particularly for large size param-
eters. Comparisons with Mie theory for solid ice spheres
have shown that in fact nλ > 42 may be required for accu-
rate values of σback [38].

2. The shape of the particle must be described adequately by
ensuring that N is sufficiently large, i.e. d is small enough
for the results to converge. It is unclear from the literature
how to quantify this condition, so the required N is calcu-
lated on a case-by-case basis. See section 5.2 for further
details.

5. Validation of the numerical method

5.1. Verification of DDA internal field results using BEM++

As discussed in section 4.1, the accuracy of the DDA method
is sensitive to both discretisation and shape errors. A detailed
summary of previous attempts to quantify these errors is given
by Yurkin and Hoekstra [37].

In this paper we present results for 2 different size parameters
of x = 2 and x = 10. To do these calculations, a version of the
DDA method was implemented in Matlab. This was done to
develop a deeper understanding of the DDA method, to have
convenient control over input geometries and visualisation of
results, and to have a basis to develop simplified approximate
methods. Such simplified methods are described in more detail
in Ref. [41]. We note that the code used here is not highly
optimised, unlike popular open-source codes such as DDSCAT
[35] and ADDA [42].

To verify the implementation and validate the findings pre-
sented here, we compared a number of results to those ob-
tained using a fundamentally different numerical method. In
the Boundary Element Method (BEM), the electric field is ob-
tained by formulating the problem as boundary integral equa-
tions. Groth et al. [43] studied the performance of BEM for
the problem of scattering by ice particles, using an open source
boundary element library, BEM++, developed by Śmigaj et al.
[44]. In that paper they show that by using 10 mesh elements
per wavelength, BEM++ gives results for scattering and extinc-
tion efficiencies, and phase function that are accurate to within
1%. However, the accuracy of the internal fields was not in-
vestigated. The difference between the internal field obtained
using my DDA code and the BEM++ setup used by Ref. [43]
was calculated as:

‖EDDA − EBEM‖

‖EBEM‖
× 100% (9)
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where EDDA, j and EBEM, j are the solutions evaluated in the cen-
tre of the jth dipole, using DDA and BEM++ respectively.

This experiment was performed for a thin hexagonal plate
of solid ice, with a size parameter of 2 and an aspect ratio of
0.1. For the calculations we use 17 elements per wavelength
for BEM++, which is better than the required BEM++ reso-
lution specified in Ref. [43] . The difference from Eq. (9) was
calculated using different grid refinements for DDA. The dipole
size was determined by specifying the number of dipoles along
the smallest dimension of the particle. In the case of the thin
plate, this means we specify the number in the vertical dimen-
sion (nz). The difference obtained for various values of nz, and
their corresponding number of dipoles per internal wavelength,
nλ, was calculated. The results ranged from 1.2% for nz = 3
(nλ = 26), to 0.6% for nz = 7 (nλ = 61). This confirms that the
DDA code is performing as expected, and thus we are confident
that it can be used for the x = 2 calculations in this study.

Unfortunately we could not perform analogous comparisons
for x = 10, as the resources we had available were insufficient
to run BEM++ for that case. Therefore, we took an alternative
approach to examine the accuracy of DDA calculations for x =

10, outlined in the following section.

5.2. Convergence of DDA internal field results with increasing
nλ

In this section we explore how the internal field calculations
for x = 10 converge as the number of dipoles per internal wave-
length is increased.

Fig. 1 examines the convergence of the DDA internal field
with increased grid resolution. The lines show the real part of
the x component of the field though the centre of a hexagonal
plate of x = 10 and aspect ratio 0.1. The results for different
grid refinements of nz = 10, 13, 15, and 17 have been plotted in
the figure, corresponding to nλ = 17, 23, 26, and 30. The curves
are qualitatively similar for each of the different grid resolu-
tions, with the main differences occurring in the field ampli-
tudes.
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Figure 1: Real (Ex) through the centre of a hexagonal plate of x = 10 and
aspect ratio 0.1. The colours show different grid refinements of
nz = 10, 13, 15, 17, corresponding to nλ = 17, 23, 26, 30.

We estimate the error in the internal fields by comparing our
highest resolution case of nλ = 30 to results of lower resolution,
ranging from nλ = 8 to 26. The calculations are done in an
analogous manner to Eq. (9). We find that using a minimum of
17 dipoles per internal wavelength gives an error below 10% in
the field for x = 10.

This experiment was also done for x = 2. It is noted that us-
ing the same discretisation for x = 2 results in higher values of
nλ, so greater accuracy is expected. The values tested range be-
tween nλ = 44 and 124, uncovering much smaller errors below
0.5%. The accuracy estimated via these tests is sufficient for
exploring the qualitative properties we are interested in here,
i.e. the variation of internal field with particle size and shape,
and the effects of these changes on far-field scattering.

It is worth noting that despite the fact we are well within
the commonly prescribed criterion of nλ = 10, convergence
with increasing resolution is slow. Although the fields are very
similar, the results in some regions of the particle have not com-
pletely converged, and the relative errors do not decrease mono-
tonically as nλ is increased. Yurkin et al. [45] found a simi-
lar pattern, highlighting that the issue only occurs with shapes
that cannot be modelled exactly by cubical cells. Inaccurate
representation of boundaries leads to small variations in parti-
cle shape with discretisation, which in turn causes oscillating
errors. However, this does not affect the conclusions we are
drawing in the rest of the paper.

Comparisons of the corresponding scattering cross section
results for these discretisations (not shown for brevity) reveals
that the error in the far field is mainly concentrated in the back-
ward direction. Backscatter is very sensitive to particle discreti-
sation, whereas scattering in other directions shows little varia-
tion with discretisation. This result is consistent with Petty and
Huang [38] who show that smaller dipole spacing is required
for accurate backscatter results. As pointed out in the previous
section, they suggest using a value of nλ > 42 for accurate σback

in the case of ice spheres, and with our highest resolution we are
only using nλ = 30. It is possible that a finer discretisation may
be needed if accurate backscatter calculations are required.

6. Results and discussion - Pristine monocrystals

6.1. Hexagonal plate

6.1.1. Internal field
Fig. 2 shows the magnitude of the internal electric field

through the central horizontal plane of a hexagonal plate of
solid ice, with a maximum dimension (Dmax) of 1 mm and an
aspect ratio of 0.1. The plate is discretised with nz = 15, re-
sulting in approximately nλ = 132 and nλ = 26 for x = 2 and
x = 10 respectively. The incident plane wave propagates in the
y direction, i.e. from the top of the page to the bottom, and is
polarised along the x-axis. Note that the color scales in Figs. 2a
and 2b are not the same. The plots shown for x = 2 in this
manuscript have a smaller range than their x = 10 equivalents,
in order to show some detail for the smaller size parameter. This
is the case for the majority of the internal field magnitude plots
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(a)

(b)

Figure 2: Magnitude of the internal field through the central horizontal plane
of a hexagonal plate of aspect ratio 0.1 for (a) x = 2 and (b) x = 10. The
arrows show the direction of propagation and polarisation, which are
perpendicular to each other in the x-y plane. The particle is discretised with
nz = 15, resulting in (a) nλ = 132; (b) nλ = 26.

presented here, with the exception of the complex aggregate in
Fig. 14.

The average and peak values of the field for both size param-
eters are given in Table 1, along with results for a smaller value
of x = 0.01. For very small values of x � 1, particles are in the
Rayleigh scattering limit. In this size regime, the internal field
has approximately constant magnitude, with the maximum and
average values varying by only a factor of 1.15. For x = 2 and
x = 10, the largest value of electric field is observed close to
the perimeter of the particle, at the opposite side from where
the wave hits the plate. We refer to this as the forward region
of the particle. For x = 2 there is a rather broad maximum
centred at approximately 0.1 mm from the forward edge of the
plate, with the peak magnitude reaching 1.3744. For x = 10,
the focussing behaviour becomes more obvious, and the maxi-
mum magnitude also increases. There is an “O” shaped region
where the field magnitude is largest, reaching a value close to 4.
Supplementary plots S1-S3 show how the field changes within
the hexagonal plate geometry for intermediate size parameters

between 2 and 10. The focussing pattern is a persistent feature,
becoming more prominent with increased x. Therefore, this is
not a resonant phenomenon. The maximum magnitude within
the particle broadly increases with x. It is interesting to note
that for all size parameters shown, the magnitudes are consid-
erably higher than the value of |Ej| = |Einc

j αj/Vjχj| ≈ 0.58 that
would result from the presence of the applied wave only. Hence
there is a strong coupling between the dipoles across the crys-
tal, and RGA provides a poor approximation to the field in this
case.

Another interesting observation is that the inhomogeneity
along the x-axis in Fig. 2b resembles diffraction and interfer-
ence patterns, such as those resulting from Young’s double-slit
experiments. This suggests that we are entering a regime where
physical optics approximations could be used. Geometric op-
tics may be applied for size parameters much larger than the
incident wavelength. However, improvements to geometric op-
tics methods have been shown to be accurate for x as small as
18, e.g. using methods such as ray tracing with diffraction on
facets (RTDF; [46]). Hence it is possible that for the larger size
parameters considered here, physical or geometric optics meth-
ods may be suitable approximations to apply.

The concentration of the electric field is similar to the fo-
cussing nature of a convex optical lens, and is caused by a
change in wavelength, due to m, that takes place inside the par-
ticle. The difference in wavelength is more pronounced through
the centre of the particle than it is close to the boundaries, re-
sulting in a curved wave front which focusses the field towards
one side of the plate. Note that the symmetric structure and fo-
cussing behaviour of the field also occurs if the incident wave
is propagating in the x direction, such that it encounters a cor-
ner of the plate rather than a flat side. Similarly, the symmetry
and focussing remain when the wave is polarised orthogonal to
the direction shown here, i.e. in the z direction. These results
can be seen in Figs. S4 and S5 of the supplementary material.
However, for the z polarised wave, the focussing occurs over
a smaller region and is less prominent than in the x polarised
case, showing a maximum magnitude that is 23% lower.

It is interesting to do some experiments to explore whether
the phenomena above are a special case resulting from the sym-
metry of the setup, or whether they are part of a more general
behaviour. We divide our sensitivity tests into 2 categories:

1. Experiments with k̂ in the x-y plane but not along an axis
of symmetry of the hexagon.

2. Experiments where k̂ is rotated around the x-axis to lie at
an angle in the y-z plane.

Fig. S6 in the supplementary material shows the internal field
when the incident wave is directed at an offset of 20◦ from the
positive y-axis in the x-y plane. In this case the focussing be-
haviour is still prominent, but the symmetry of the field is lost
as the incident wave is no longer directed along a particle axis
of symmetry.

Figs. S7 - S9 of the supplementary material show the internal
field magnitudes for incident angles of 20◦, 70◦, and 90◦ in the
y-z plane. Focussing behaviour is still found for the smallest
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angle of 20◦ in the y-z plane (Fig. S7), but the location of the
focussing has moved slightly. There is a region at the bottom
of the plate towards the forward side of the particle where the
field values are large. An apparent internal reflection from the
lower basal face results in the high field values being redirected
towards the top of the particle. The field corresponding to this
incident direction sees a decrease in maximum magnitude by
approximately 10%, when compared to the case in Fig. 2b. In-
creasing the incident angle to 70◦ in the y-z plane diminishes
much of the focussing behaviour. In this case the maximum
magnitude decreases to a value approximately 50% lower than
in Fig. 2b. Further increasing the angle to 90◦, i.e. direct-
ing the incident wave from above a basal face, the maximum
magnitude is found to occur close to the centre of the particle.
Although the maximum is slightly larger than at 70◦, it is still
42% lower than the horizontally directed case. Thus the largest
fields are found when the incident wave is directed in a more
horizontal direction, hitting the sides of the particle rather than
the basal faces, even if the incident angle is not directed along
an axis of symmetry. Lower field magnitudes result when the
effective size parameter in the direction of propagation is small,
as is the case for the incident wave directed at 70◦ and 90◦ in
the y-z plane.

We explore the individual components of the field shown in
Fig. 2b, where the incident wave is directed in the y direction
and polarised in the x direction. Fig. 3 shows the real part of the
components of the field which are perpendicular and parallel to
the direction of propagation, i.e. the x and y components, for
x = 10. This is what Tyynelä et al. [18] refer to as the transverse
and longitudinal components of the field. The real part of the
z component is approximately 10−5 in the central plane of the
particle. It has a maximum of 0.55 on the top and bottom layers,
and globally in L2-norm Ez is 20 times smaller than Ex. For that
reason, the z component is not shown here, but the reader is
directed to Fig. S10 of the supplementary material if interested.
Unlike the z component, the x and y components do not change
much across the different layers within the plate. The fields are
slightly larger in the central plane than on the top and bottom
layers for the x and y components. For both Ex and Ey, the field
through the middle layer is approximately 30% larger than on
the top and bottom layers. For Ez, the top and bottom layers
have values which are 104 times larger than in the middle layer.
The structure is concentrated on the particle boundary for Ez.

It is clear that the total field in Fig. 2b is a combination of
two distinct waves. The x component in Fig. 3a shows a curved
wave front extending through the bulk of the particle. The y
component in Fig. 3b has a different structure resembling a
standing wave around the perimeter of the plate, comprising
a series of nodes (minima) and antinodes (maxima). It is seen
in Fig. 3a that <(Ex) has even symmetry, whereas the plot of
<(Ey) in Fig. 3b has odd symmetry. The focussing of a plane-
like wave through the bulk of the crystal, plus a standing wave
close to the boundary is similar to the behaviour found in spher-
ical and cylindrical particles larger than the wavelength in Refs.
[16, 17, 47]. As mentioned, we see this behaviour over a range
of different values of x in the hexagonal plate, showing that

(a)

(b)

Figure 3: Real part of the (a) x component and (b) y component of the internal
electric field for x = 10.

this is an “off-resonance” phenomenon. Similar wave struc-
tures are observed for all size parameters, though it is less clear
that a standing wave is present around the perimeter for smaller
size parameters as there are fewer nodes and antinodes in these
cases. Resonances may well exist at very specific values of x,
however we have not found them, and unlike the case of spheres
and infinite cylinders, there is no simple way to accurately pre-
dict the size parameters at which they would occur.

The different components of the field within the hexagonal
plate of x = 10 for a z polarised wave have also been examined
(not shown for brevity). <(Ex) and <(Ey) display fields with
a node in the central plane of the particle, oscillating in sign
between the top and bottom layers. <(Ez) displays minimum
values at the particle surface and reaches a maximum in the
central plane, while the sign does not oscillate throughout the
particle.

As expected, the wave extending through the particle in
Fig. 3a has a shorter wavelength than in the exterior medium
due to the refractive index, m, of the particle. For wavelength-
scale spherical particles, analogous studies by Refs. [48, 49]
found the wavelength through the central plane to be approxi-
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mately equal to the material wavelength, i.e. λ/<(m). In our
case of a hexagonal plate with a wavelength smaller than the
particle size, we have estimated that the external wavelength ex-
ceeds that inside the plate by a factor of 1.5±0.2. This is slightly
lower than the factor of approximately 1.78 that would result if
the wavelength was dictated by the refractive index alone. This
may be because we are looking at a flat geometry where even
the central points are close to the particle boundary, so we don’t
see the material wavelength.

The standing wave around the perimeter has a longer wave-
length that is more comparable to that of the incident wave,
since it is located very close to the boundary. In this case, we
have estimated that the incident wavelength is approximately
1.3± 0.2 times that of the standing wave. Again, this behaviour
was observed in spherical particles by Refs. [48, 49], who also
found that the number of maxima or minima around the perime-
ter was equal to the value of x. However, in our case we have
found the number of maxima and minima to be less than x,
counting a total of 9 each in Fig. 3b.

6.1.2. Far-field scattering

(a) x = 2 (b) x = 10

Figure 4: Polar plots of the differential scattering cross section of a hexagonal
plate as a function of the propagation n̂ and polarisation êdet directions of the
scattered wave. This is calculated using all components of the field (black),
only the perpendicular component (P⊥; magenta), and only the parallel
component (P‖; blue). The value at 0◦ represents forward scattering, and 180◦

is backscatter.

It is interesting to explore the effect the two different
wave structures in Fig. 3 have on far-field scattering. To do
this, Eq. (8) was used to calculate the differential scattering
cross section, σ, computed at scattering angle intervals of 1◦.
These calculations are displayed on a polar plot using dB, i.e.
10 log10(σ). Forward scattering is located at 0◦ on the plot,
and backscatter is shown at 180◦. It is noted that for x = 0.01
(not shown), scattering at different angles is less sensitive to
particle shape, and scattering in the forward and backward di-
rections is approximately equal. The cross section for x = 2
and x = 10 has been computed in 3 different ways: (i) using all
components of the internal field; (ii) using only the component
perpendicular to the incident wave (P⊥); and (iii) using only the
component parallel to the incident wave (P‖). These correspond
to the x and y components in this case.

Fig. 4 shows the result for the hexagonal plate of x = 2 and
x = 10. In both cases it can be seen that the transverse com-
ponent, P⊥, contributes more to scattering near the forward and
backward directions, with a smaller contribution from P⊥ at in-
termediate scattering angles close to 90◦ and 270◦. Conversely,
P‖ contributes more to the total scattering at these angles, and
less in the forward and backward directions. This is expected
from Eq. (8), as the polarisation direction êdet is perpendicular
to the observation direction n̂. It is interesting to note that for
x = 0.01, P⊥ is responsible for the total differential scattering
cross section, and no contribution from P‖ is apparent at any an-
gle. Contributions from the parallel component emerge as the
size parameter is increased to approximately x > 1. We deduce
that for the case shown here, the standing wave structure around
the perimeter of the hexagonal plate contributes predominantly
to sidescattering, and the wave extending through the centre is
responsible for scattering at angles proximate to the forward
and backward directions.

The differential scattering cross section for the z polarised
incident wave is also explored, this time plotting the results in
the y-z plane. Interested readers can find this in Fig. S11 of
the supplementary material. The same conclusions are drawn
from this scenario - the transverse component (corresponding to
the z component in this case) dominates forward and backward
scattering, and the component in the direction of propagation
(Py) contributes mainly to sidescatter.

The results presented here help us to understand what con-
trols the asymmetry parameter, g, which describes how much
incident radiation is scattered in the forward and backward di-
rections. Therefore, the findings could be useful for developing
parameterisations of g for use in radiative transfer simulations.

6.2. Cylindrical disk and spheroid

Realistic ice particles have historically been approximated by
simpler shapes such as spheres and spheroids in order to calcu-
late their scattering properties. Much of the literature has shown
that this method produces poor results for particles outside the
Rayleigh regime [50]. It is interesting to explore whether it is
possible to gain greater physical insight into why these methods
fail to produce accurate results by modelling different approxi-
mations to the plate.

The magnitude of the internal field is plotted for a cylindrical
disk of solid ice, with equivalent aspect ratio and Dmax to the
hexagonal plate in section 6.1. This allows us to look at the ef-
fect of particle shape on the structure of the field. We also look
at a solid ice spheroid of equal aspect ratio and Dmax. Figs. 5
and 6 show the results for x = 2 and x = 10, respectively. The
real parts of the x and y components of the field for x = 10
can be seen in Fig. S12 of the supplementary material. Over-
all, there are clear similarities between the structure of the field
within both of these particle shapes, compared to the hexagonal
plate. The same phenomenology applies to both geometries,
and the details of the perimeter of the particle are not critical
to produce similar internal fields. The field is more uniform
for x = 2, increasing in complexity for x = 10. The focussing
behaviour in the forward region is also prominent for both the
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x = 0.01 x = 2 x = 10
Geometry Avg. |E| Max |E| Avg. |E| Max |E| Avg. |E| Max |E|
1 hex plate 0.8169 0.9414 1.0969 1.3744 1.4108 3.9786
2 hex plates 0.8136 0.9173 0.9464 1.0949 1.6021 3.0049
5 hex plates 0.8583 1.2337 0.9111 1.3866 1.5049 2.3575
Aggregate 1 0.6503 1.2430 0.6593 1.2617 0.6986 1.4302
Aggregate 5 0.6593 1.2097 0.6650 1.2212 0.6879 1.2400

Table 1: Average and maximum internal field magnitudes for different geometries of x = 0.01, x = 2 and x = 10. The geometries included are the single hexagonal
plate, aggregates of 2 and 5 plates, and 2 different arrangements of 10 “fernlike dendrite” monomers modelled by Tyynelä et al. [30] . “Aggregate 1” is the particle
shown in Fig. 14; “Aggregate 5” is not shown for brevity. For reference, |E| ≈ 0.58 in the presence of the applied wave only.

disk and spheroid. For x = 2, a slightly smaller amount of
focussing is seen in the spheroid than in the disk and the hexag-
onal plate. Conversely, for x = 10, the spheroid exhibits more
focussing than the other geometries. Within the spheroidal ge-
ometry, the wave crests (in green) appear to be more curved,
extending to the the particle edge. This could be because the
spheroidal shape is very thin close to the perimeter, resulting in
less interference from different layers in these areas.

The structure of the fields within the cylindrical disk and the
hexagonal plate exhibit clear resemblances, suggesting that in
terms of approximations for a hexagonal geometry, a disk may
provide superior results to a spheroid. However, in terms of the
average magnitudes, the spheroid displays results that are closer
to the plate, giving values within 1% for x = 2, and 3% for
x = 10. The average values for the disk differ from the plate by
approximately 4% and 13% for x = 2 and x = 10. For x = 2, the
maximum magnitudes of the disk and spheroid are within 3%
and 4% of the plate, respectively. For the larger size parameter
of x = 10, both geometries have maximum values that differ
from the plate by about 10%, but the spheroidal shape results in
an overestimation while the disk gives an underestimation.

6.3. Hexagonal column

6.3.1. Internal field
Fig. 7 shows the field inside a hexagonal prism of aspect ratio

1 for x = 2 and x = 10. Slices have been plotted through the
planes x = 0 m and z = −1.2 × 10−4 m, where |E| is at a maxi-
mum for x = 10. The particle has the same value of Dmax as the
plate. It can be seen that by increasing the aspect ratio, more
focussing is seen for x = 2 compared to the plate, and the max-
imum field strength is approximately 20% larger. For x = 10,
Fig. 7b shows that the increased aspect ratio results in 2 primary
regions of focussing, but the maximum value of these is smaller
than in the flat plate. There appears to be more destructive in-
terference in the prism, with the average magnitude in the plate
exceeding that in the prism by a factor of 1.3. Investigating the
real part of the x and y components of the field for x = 10 shows
that these are qualitatively very similar to the field components
of the plate (not shown for brevity). The transverse component
for the column exhibits a wave extending though the particle,
and the component in the direction of propagation displays a
well defined standing wave structure around the perimeter.

Fig. S13 in the supplementary material shows the case equiv-

(a) Disk

(b) Spheroid

Figure 5: Magnitude of the internal field of (a) a disk and (b) a spheroid of
x = 2. Both particles have the same aspect ratio and Dmax as the hexagonal
plate in section 6.1.

alent to Fig. 7b, but with the incident wave along the z-axis,
hitting the top basal face of the prism. This corresponds to an
angle of 90◦, as discussed for the plate in section 6.1. For the
thin plate, it was found that this setup results in an internal field
with lower maximum magnitudes than when the incident wave
is directed in the x-y plane. For the prism of aspect ratio 1, this
is not the case. Strong focussing behaviour is seen towards the
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(a) Disk

(b) Spheroid

Figure 6: As in Fig. 5 but for x = 10.

forward region of the particle. Thus, the lower field value found
for the plate when the incident angle is directed at 90◦ is a result
of the aspect ratio of the particle. The effective size parameter
in the direction of propagation is small for the thin plate, result-
ing in a diminished field, but this is not the case for the thick
prism.

6.3.2. Far-field scattering
Polar plots of σ are displayed in Fig. 8 for a hexagonal col-

umn, to explore the effect of aspect ratio on the differential scat-
tering cross section. The overall pattern resembles that of the
thin plate with qualitatively similar P⊥ and P‖ contributions.
Quantitatively, there are some large differences, particularly in
the backscatter direction for x = 10. However, as mentioned
in section 5.2, backscatter is very sensitive to discretisation.
Therefore a finer mesh resolution would be required in order
to make meaningful conclusions about changes in σback with
aspect ratio.

(a) x = 2

(b) x = 10

Figure 7: Magnitude of the internal field of a hexagonal column of aspect
ratio 1 of (a) x = 2; (b) x = 10. Slices are shown through x = 0 m and
z = −1.2 × 10−4 m. These particles have a value of nλ = 62 and 17,
respectively.

(a) x = 2 (b) x = 10

Figure 8: Differential scattering cross section, as in Fig. 4, but for a hexagonal
prism of aspect ratio 1.

6.4. Cylindrical column and sphere of same Dmax as hexagonal
prism

In section 6.2 we explored the differences between the inter-
nal field of the hexagonal plate and that of a cylindrical disk
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(a)

(b)

Figure 9: Magnitude of the internal field of (a) a cylindrical column and (b) a
sphere of aspect ratio 1 for x = 2.

and spheroid. Analogous to this, we have compared the taller
hexagonal prism to a sphere and right circular cylinder of equiv-
alent aspect ratio and Dmax. Figs. 9 and 10 show the results
for x = 2 and x = 10. For both values of x, it is observed
that spheres have one principle region of focussing, rather than
the two maxima we observed for the hexagonal column. The
cylindrical column bears a closer resemblance to the hexago-
nal prism geometry in that it displays multiple regions of large
magnitude values for x = 10, although the maximum value is
slightly larger for the cylindrical column, exceeding the hexag-
onal geometry by approximately 6%. However, the maximum
magnitude of 6.6 found for the sphere of x = 10 overestimates
the hexagonal case by 75%. It is noted that in order to enable
clearer comparisons we fixed the range of the colour scale in
Fig. 10b to be the same as the other shapes. Although the sphere
displays a higher maximum value, the hexagonal and cylindri-
cal prisms have larger average magnitudes than the sphere, by
a factor of approximately 1.3. These results show that for the
larger aspect ratio of 1 considered here, the cylindrical approx-
imation to the hexagonal particle appears to be superior to the
commonly used spherical or spheroidal approximations. In sec-

(a)

(b)

Figure 10: As in Fig. 9 but for x = 10.

tion 6.2, it was found that an equivalent aspect ratio spheroid
gives a good approximation of the internal field for a smaller
aspect ratio of 0.1. However, it is shown here that as the aspect
ratio increases, the approximation becomes less accurate.

7. Results and discussion - Aggregates

7.1. Chain aggregates of plates 1: 2 hexagonal plates

In the presence of an electric field, chain aggregates of plates
can form. Connolly et al. [28] observed that these geometries
form predominantly with the prism faces of individual crys-
tals touching. Here we have studied two different aggregates
of plates. The first is a simple aggregate of 2 plates, and the
second is an aggregate of 5 plates. Both geometries are aligned
with prism faces touching, and were generated by Ref. [51]
using a stochastic algorithm.

7.1.1. Internal Field
First we look at an aggregate of 2 plate-like particles, where

each monomer is the same height and Dmax as the individual
plate studied in section 6.1. Fig. 11 shows that the aggregates
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(a) x = 2

(b) x = 10

Figure 11: Magnitude of the internal field through the central plane of an
aggregate of 2 hexagonal plates for (a) x = 2 and (b) x = 10. The number of
dipoles per wavelength used in the calculations for these particles is nλ = 159
and 31, respectively.

of 2 plates exhibit less defined regions of focussing with smaller
maximum magnitudes than the previous geometries. For x = 2,
there is very little focussing. In Fig. 11b, it can immediately
be seen that for x = 10 interference between the two plates ob-
fuscates the clear wavy structure and symmetry observed in the
hexagonal, cylindrical, and spheroidal monocrystals. These in-
teractions and the resulting field depend on the alignment of the
2 plates. If the arrangement is such that the aggregate of 2 plates
is symmetric with respect to the incident wave, the internal field
is also symmetric, as expected. An example of this can be seen
in Fig. S14 of the supplementary material. Although the field
has a symmetric structure in this case, the focussing is still less
defined and the maximum magnitude is lower than that calcu-
lated for the single plate, suggesting that the complexity of the
particle is integral to the loss of structure, rather than the align-
ment or orientation. We are interested in exploring more irreg-
ular aggregates which are frequently observed in clouds. The
result in Fig. 11b suggests that the internal field within such
particles may not exhibit any clear structure. To test this, the

field inside an aggregate of 5 plates was examined, followed by
the exploration of more complex aggregates in section 7.4.

7.2. Chain aggregates of plates 2: 5 hexagonal plates

7.2.1. Internal Field

(a) x = 2

(b) x = 10

Figure 12: Magnitude of the internal field through the central plane of an
aggregate of 5 hexagonal plates for (a) x = 2 and (b) x = 10. These particles
have a value of nλ = 184 and 36, respectively.

Fig. 12 shows the field inside an aggregate of 5 hexagonal
plates, where each plate has the same dimensions as the particle
modelled in Fig. 2. Similarly to what was found for the aggre-
gate of 2 plates, this particle has a field that shows less symme-
try than the monocrystals. It is obvious that as the complexity
of the geometry increases, there is a clear reduction in magni-
tude and further dampening of the wavy structure. The internal
field magnitude becomes more smoothed and seems to lack the
constructive interference that locally changes the magnitude in
simpler particles such as the individual plate. However, upon
closer inspection, the amount of focussing varies according to
the orientation of the particle with respect to the incident wave.
For example, directing the incident wave at an angle of 140◦ in
the clockwise direction from that shown in Fig 12b leads to a
maximum magnitude which exceeds that shown here by almost
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50%. This can be seen in Fig. S15 of the supplementary ma-
terial. It is noted that this value is still less than that calculated
for the single plate. Overall, the focussing effect appears to be
more prominent in cases where the path length in the direction
of propagation is longer. At 140◦, a large amount of focussing
is seen as the incident wave is directed at an angle allowing pas-
sage through multiple plates with little deviation from the inci-
dent direction. This is similar to the results for the hexagonal
monocrystals, with the incident wave directed along the z-axis.
The shorter path length through the thin plate results in a lower
maximum magnitude of the internal field, while the longer path
length through the prism results in a larger field with prominent
focussing behaviour.

For the orientation shown in Fig. 12, the average and max-
imum magnitudes for the aggregate of 5 plates are quantified
in Table 1. Since remote sensors probe an ensemble of particle
orientations, and details of the far-field patterns are sensitive to
orientation, we consider orientationally averaged far-field scat-
tering quantities in the following sections.

7.2.2. Far-field scattering

(a) x = 2 (b) x = 10

Figure 13: Scattering in different directions by chain-like aggregate of 5
plates for (a) x = 2 and (b) x = 10. In (a), the scattering due to P⊥ (magenta
line) almost entirely overlaps the total scattering (black), and the amount of
scattering due to P‖ (blue) is very small. For both size parameters, the results
are averaged over 36 orientations in the x-y plane.

The far-field scattering results for the aggregate of 5 plates is
shown in Fig. 13. As in previous cases, the incident plane wave
propagates in the y direction, and is polarised perpendicular to
the incident wave, along the x-axis. However, in this case we
have considered an orientationally averaged example, for dif-
ferent orientations in the x-y plane. The particle is rotated at
intervals of 10◦ about the z-axis, resulting in scattering calcu-
lations being obtained for 36 different orientations. The results
averaged over the 36 orientations are shown in Fig. 13. As be-
fore, the cross sections have been computed using all compo-
nents of the internal field, and also using only the components
perpendicular and parallel to the incident wave, P⊥ and P‖.

For x = 2, P⊥ is responsible for the majority of the total scat-
tering. The transverse component also has a larger contribution
towards the total scattering value for x = 10. Similar to the re-

sults seen for the single plate with a fixed orientation in Fig. 4,
P⊥ contributes mainly to forward and backward scattering, and
P‖ contributes more to sidescatter. This pattern persists through
orientation averaging, and is not limited to a single particle ori-
entation.

7.3. Spheroids of equal Dmax and aspect ratio to plate-like ag-
gregates, but with effective permittivity determined by vol-
ume fraction

Comparisons have been done with the internal field of
spheroids of equal Dmax and aspect ratio to the aggregates of
plates. The permittivity of the spheroids have been reduced
according to the Maxwell-Garnett formula in Ref. [33]. This
mixing ratio determines the volume fraction of ice that such
a spheroid has, and subsequently calculates the corresponding
effective permittivity. Such soft sphere and spheroid approx-
imations have been used extensively in previous literature, so
we are interested in assessing the performance of this method.

For brevity, the internal field plots have not been included
here; instead we summarise the results briefly. In all cases
examined it is found that the Maxwell-Garnett approximation
overestimates the average internal field value. This overestima-
tion ranges between 5% and 11%. For the spheroidal approxi-
mation of 2 hexagonal plates of x = 2, the maximum field value
is also overestimated. However, as the particle size or complex-
ity is increased, the Maxwell-Garnett approximation results in
underestimations of the maximum value. This is caused by the
incapability of the spheroid to replicate complex interactions
within realistic particles.

7.4. Irregular aggregates of 10 “fernlike dendrite” monomers

Realistic snowflakes modelled by Tyynelä et al. [30] have
been used to examine the internal field of more complex geome-
tries. These particles are composed of 10 “fernlike dendrite”
monomers. Ten different arrangements of these particles were
available to us, with values of Dmax ranging from 6−9 mm. We
plot the field of one arrangement in Fig. 14, and include results
for the average and peak fields of two different arrangements in
Table 1.

7.4.1. Internal field
In Fig. 14, the internal field of one aggregate is plotted for

x = 2 and x = 10. Note that the range of the colour scale has
been reduced for these particles to observe more detail in the in-
ternal field. For both values of x, the average field value is very
similar (approximately 0.65 − 0.7, see Table 1), and the mag-
nitudes are lower than in all other particles considered. The
maximum field value is also considerably smaller than in the
different monocrystals of equal x. The same thing was found
when these calculations were repeated for various different ar-
rangements of 10 monomers. It can also be seen in Table 1 that
calculations for x = 0.01 show almost identical average and
maximum values to x = 2.

The values obtained for these particles are more similar to
the value of |E| ≈ 0.58 you would see if only the applied field
were present. This shows that for these fluffy aggregates, RGA
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Figure 14: Magnitude of the internal field of an irregular aggregate of 10
“fernlike dendrite” monomers for (a) x = 2 and (b) x = 10. The dipole spacing
is 47µm, giving approximately nλ = 125 for x = 2, and nλ = 25 for x = 10.
Note that the range of values in the colorbar is reduced, compared to previous
cases.

is a more realistic approximation than for monocrystals. How-
ever, the true field is still systematically 15 − 20% higher than
that assumed by RGA, while peak values are at least a factor 2
larger. These differences in the internal field strength lead to un-
derestimates of scattering cross-sections by RGA, as observed
by Tyynelä et al. [12].

No focussing behaviour is obvious for x = 2 or x = 10 in
the complex aggregate. In fact, the individual crystals within
each aggregate seem to be independent of each other, acting as
if they are isolated. To test this, we calculated the field of the
individual crystals detached from the rest of the aggregate. If
we isolate crystals, we find the same field to within 5% of that
calculated in the presence of the surrounding crystals. There is
very little coupling between different monomers in the particle
- only intramonomer. This may suggest a simplified method
of computing scattering from large complex aggregates by con-
sidering interactions only within individual monomers. This

implies that the “modified RGA” method developed by Lu et al.
[52] is a reasonable approximation. In that method the range
of interactions between dipoles is limited to some multiple of
the minimum dimension of the particle. The method could pro-
vide good results for the fluffy aggregates considered here, pro-
vided that the range of interactions used is close to the scale
of a monomer. We are developing this idea and testing it for a
range of aggregates of different densities in a separate publica-
tion. This will help to clarify the range of applicability of such a
method, and uncover whether it is limited to sparse aggregates,
or if good results can also be obtained for rimed particles.

Our results show that if the scattering by the monomer crys-
tals can be computed individually, the net scattering by the ag-
gregate can quickly be estimated using RGA, since coupling be-
tween the monomers is small. For monomers small compared
to the wavelength, the monomer scattering could be calculated
rapidly using the results in Ref. [53]. For larger monomers,
DDA calculations could be used (but on a much smaller scale
than required to compute the scattering by the whole cluster).
Our results support the assumptions made by Hogan et al. [54]
who postulated that if an isolated monomer crystal scatters ac-
cording to Gans theory with a particular dielectric factor (re-
lated to the internal field of the monomer), then a larger aggre-
gate composed of several monomers could be described using
RGA with that same value of dielectric factor - i.e. neglecting
inter-monomer coupling.

7.4.2. Far-field scattering
For the complex aggregates, we have also considered a sce-

nario averaged over 36 orientations, using the same method-
ology described in section 7.2.2 for the aggregate of 5 plates.
The polar scattering plots in Fig. 15 show the orientationally
averaged differential scattering cross sections. Panels (a) and
(b) show the total amount of scattering, along with the contri-
butions from the perpendicular and parallel components of the
field, for x = 2 and 10. The results exhibit similar behaviour
to the aggregate of 5 plates in Fig. 13. As before, a significant
amount of scattering in the forward and backward directions
is due to the component of the field perpendicular to the inci-
dent wave, with the parallel component contributing mainly to
sidescatter. For the larger size parameter of x = 10, a compar-
ison with the results for the aggregate of 5 plates in Fig. 13
shows that the influence of P‖ on the total amount of scatter-
ing is getting weaker with particle complexity. In contrast to
the aggregate of plates, there are now very few angles where P‖
dominates the total. The cross sections for individual crystals
isolated from the aggregate were also examined, showing the
same results. Therefore we suggest that the decrease in con-
tribution from the component in the direction of propagation
occurs as a result of the reduction in homogeneity of the par-
ticle composition, i.e. the presence of regions of air between
solid ice branches.

It is worth noting that in contrast to the example of a symmet-
ric plate, the z component of the field for these fluffy aggregates
is comparable to the y component. Although the z component
is larger, it is not significant for the scattering quantity shown

14



here as in Eq. (8) we chose the detector to be polarised in the x-
y plane. However, we did also consider single orientation cases
with a z polarised incident wave travelling in the x and y direc-
tions, with the detector polarised in the x-z and y-z directions,
respectively. The corresponding results for x = 10 are shown
Fig. S16 of the supplementary material. The same conclusion
applies to these cases - the component parallel to the propaga-
tion direction is small and contributes to sidescatter, while the
transverse component is responsible for the majority of the scat-
tering in the forward and backward directions. Orientational
averaging was not done for these cases.

It is interesting to explore whether the diminishing contri-
bution from the component parallel to propagation is a result of
the inability of such low density structures to support a standing
wave like that observed in the plot of <(Ey) for the hexagonal
plate in Fig. 3b. To test this, we plotted the parallel component
of the field for some of the aggregate setups considered, i.e. for
different incident directions and polarisations (not shown for
brevity). It is found that there is no clear standing wave struc-
ture throughout the aggregate in any of the cases, suggesting
that the standing wave may indeed play a key role in sidescatter.
However, further work would be required to confirm whether
the decreased influence of the field component parallel to the
propagation direction on the total amount of scattering within a
complex aggregate is in fact caused by the inability to maintain
a standing wave on the perimeter.

7.5. Sphere of equal Dmax to aggregate, but with effective per-
mittivity determined by volume fraction

In a similar manner to section 7.3, the Maxwell-Garnett for-
mula is used to calculate the internal field of a sphere of equal
Dmax to the aggregate of fernlike dendrites. The plots of the
field have been omitted in the interest of brevity. It is found
that approximating the aggregate by a soft sphere results in a
more uniform internal field. The symmetry of the particle leads
to very slight focussing behaviour towards the forward region,
but the magnitude of the field is close to 1 everywhere, mean-
ing the average field value is larger than in the aggregate. The
maximum magnitude value in the sphere is lower than in the
aggregate, and the minimum value is higher.

In panels (c) and (d) of Fig. 15, the far field scattering by
the complex aggregate is compared to the result calculated us-
ing the equivalent sphere, and also using RGA. For x = 2,
the averaged differential cross section, σ, is accurately approx-
imated by the equivalent sphere in the forward direction. How-
ever, the approximation overestimates sidescatter and underes-
timates backscatter for this size parameter. For x = 10, the
DDA result is underestimated at almost all scattering angles by
the equivalent sphere, particularly in the backscatter direction.
Such underestimates in scattering properties as a result of soft
sphere approximations are consistent with previous literature,
e.g. [55, 56], with Ref. [56] showing that horizontally aligned
soft spheroids provide better results for radar scattering by ice
clouds. However, Tyynelä et al. [30] found that soft spheroids
also underestimate the backscatter cross section of realistic ag-
gregates.

(a) x = 2 (b) x = 10

(c) x = 2 (d) x = 10

Figure 15: Orientationally averaged scattering cross section at different
scattering angles by a complex aggregate for (a, c) x = 2 and (b, d) x = 10.
The black lines in all plots show the total amount of scattering. The magenta
lines in the top row show scattering due to P⊥, and the blue lines show
scattering due to P‖. Panels (c) and (d) show comparisons of the total
scattering with results obtained using RGA (orange), and an equivalent sphere
approximation (purple) using the Maxwell-Garnett mixing ratio. The DDA
and RGA results are almost identical for x = 2, with the orange line covering
the black line in panel (c).

The inaccuracies that result from soft sphere and spheroid
approximations are due to a combination of 2 factors. As we
just discussed, the first reason is that the internal fields are not
represented correctly, with the Maxwell-Garnett approximation
leading to a less structured field. The second reason is that the
spatial structure of ice is incorrect when approximating a real-
istic particle by a spherical or spheroidal equivalent. It has been
suggested that for sparse structures such as the fluffy aggregates
we are interested in, using RGA could result in more accurate
scattering calculations than soft sphere or spheroid approxima-
tions, as in Ref. [12]. Since RGA doesn’t include internal
field interactions, these improvements to scattering by aggre-
gates have been attributed to the fact that the spatial structure of
the particle is modelled in RGA calculations. Fig. 15 (c) and (d)
show σ for the aggregates of “fernlike dendrites” using RGA. It
is clear that significant improvements are indeed seen for the ir-
regular geometries used in this study by using RGA rather than
soft sphere and spheroid approximations. Thus, a significant
amount of the error caused by those approximations is due to
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the incorrect representation of the spatial structure of the par-
ticle. Internal coupling plays a smaller role, but nonetheless
a notable one. Similar to the findings in Ref. [12], large errors
between RGA and DDA are found in some directions. Underes-
timations of the backscatter cross sections become more promi-
nent with size parameter, reaching −38% for x = 10, with errors
increasing further towards sidescattering angles. Comparisons
of the internal fields of these aggregates show that the average
field strength is higher using DDA than it is using RGA. As the
internal field is the same everywhere using RGA, the structure
is also noticeably different. Hence it is worthwhile exploring
whether improvements can be made to RGA in order to rep-
resent some internal structure and improve scattering calcula-
tions.

8. Conclusions

In this paper we use the DDA numerical method to investi-
gate the internal field and scattering properties of ice particles,
presenting results for two different size parameters of x = 2
and x = 10. We also reference values obtained for some of
the particles with a smaller size parameter of x = 0.01, where
the particle is in the Rayleigh regime. In section 5.2, we point
out that convergence is slow with increased grid resolution. It
has been suggested that such convergence issues could be im-
proved by weighting the discretisation of dipoles on the edge of
the particle, such as the method used in Ref. [57], and we plan
to investigate this in future work.

Exploring the magnitude of the internal electric field for dif-
ferent monocrystals, it is found that the field varies greatly with
size parameter. For x = 0.01, the field is almost uniform, with
a factor of 1.15 between the average and maximum field values
of the hexagonal plate. The magnitude of the field is small, with
an average of approximately 1.4 times the value obtained as a
result of the applied wave only. For x = 2 the magnitude is also
small with a relatively uniform field, ranging from an average of
approximately 1.02 for the hexagonal prism, to approximately
1.13 for the cylindrical disk. Increasing x results in a more
complex internal field with larger maximum values. Strong fo-
cussing is observed at the forward side of the monocrystals for
x = 10. The focussing behaviour is persistent for different ori-
entations in the x-y plane, and occurs independently of whether
the incident wave hits a flat prism facet or a sharp edge. Strong
focussing remains when the incident wave is directed at small
angles in the y-z plane, but the behaviour starts to diminish for
larger angles. Such angles correspond to cases where the inci-
dent wave is approximately travelling in the direction of a basal
face, rather than hitting a prism face or edge. The diminished
focussing is a result of the small thickness of the plate in the
direction of travel of the incident wave, as strong focussing is
found when the same angles are used along with the thicker
hexagonal prism of aspect ratio 1. For the single hexagonal
plate presented in this manuscript, the internal field structure
is a combination of 2 distinct waves. The perpendicular com-
ponent of the field, Px, displays a wave extending through the
centre of the particle, and the parallel component, Py, displays
a standing wave around the perimeter.

Mitchell and co-workers developed the Modified Anomalous
Diffraction Approximation (“MADA”), for the efficient predic-
tion of the extinction of radiation by water droplets [58] and
ice crystals [59] at size parameters x ≈ 10-1000. In addition
to its speed, an attractive feature of the MADA is that phys-
ical wave scattering phenomena are explicitly represented as
separate terms, and this can provide insight into their roles in
the scattering process. Our results provide new data on these
scattering phenomena for hexagonal ice crystals (specifically
the existence and characteristics of internally-reflected surface
waves and waves extending through the particle), and thus may
be informative for further development and theoretical under-
pinning of the MADA approach.

A simple aggregate of 2 hexagonal plates sees a similar uni-
formity of the internal field for x = 0.01 and x = 2. However, a
dramatic decrease in focussing behaviour and symmetry is ob-
served for x = 10, along with an overall smoothing of the field.
This becomes even more obvious for a chain-like aggregate of
5 plates. It is noted that this behaviour is partly controlled by
the alignment of the plates, and the focussing patterns vary de-
pending on the arrangement of the individual monocrystals (see
Ref. [41], in preparation).

As the complexity of the particle is increased further, the in-
ternal field continues to lose more structure, and no focussing
behaviour is obvious for the fluffy aggregate of 10 dendrites.
The maximum value of electric field decreases significantly for
aggregated dendrites, with the single hexagonal plate display-
ing a maximum magnitude approximately 3 times larger than
the irregular aggregates for x = 10. Different values of x give
very similar internal fields for the complex aggregate, with al-
most identical average and maximum values for x = 0.01 and
x = 2, and slightly larger values for x = 10. An interesting
observation is that the individual dendrites comprising the ag-
gregate act somewhat independently of each other, as seen by
calculating the field of the monocrystals in isolation from the
rest of the particle. This could have important consequences
for scattering calculations, suggesting that calculations for large
aggregates could be done without the need for huge computer
resources. Individual crystals could be solved independently
and then combined to obtain approximations for complex parti-
cles.

To explore the performance of currently used approxima-
tions, the Maxwell-Garnett formula has been employed to cal-
culate the internal field of spherical or spheroidal particles of
equivalent size to the different aggregates in this study. It is
found that the reduced permittivity used in this method leads
to the loss of internal field structure. The effective medium ap-
proximation causes the average field to be overestimated for all
particles, and the maximum value to be underestimated in most
cases.

The effect of the internal electric field on far-field scattering
is also examined by calculating the differential scattering cross
section for a number of particles in this study. For x = 0.01,
the particles scatter equally in the forward and backward direc-
tions, and can be represented fully using only the component
of the field which is perpendicular to the direction of propaga-
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tion. As size parameter is increased, the amount of scattering
observed becomes very dependent on scattering angle. For both
single orientation and orientationally averaged cases, it is found
that the component perpendicular to the direction of propaga-
tion contributes mainly to scattering in the forward and back-
ward directions. For size parameters of x = 2 and x = 10, a
field component in the direction of propagation emerges, and
this parallel component contributes to sidescatter. It is evident
that for x = 10, the influence of the latter component is get-
ting weaker as particle complexity is increased. The polar plot
for the irregular aggregate displays very few angles where P‖
dominates the total scattering. We saw for the hexagonal plate
that it is the standing wave around the perimeter that leads to
sidescatter. For irregular aggregates of “fernlike” dendrites, it
appears that their fluffy structure is incapable of supporting such
a standing wave. This may be why we see a decrease in the con-
tribution from P‖ to the total scattering.

Approximations of dendritic aggregates using Maxwell-
Garnett soft spheres is explored. As discussed, this method
leads to an internal field that is more uniform than the true
field. In the far-field, underestimations of scattering properties
are found. The far field results are also calculated using RGA,
showing more accurate results than the soft sphere, but with er-
rors persisting at some angles for x = 10, predominantly in the
backward hemisphere.

Of course this is an idealised scenario as the majority of the
work presented here considers particles of fixed orientation. On
one hand it is a scenario that makes sense physically, as planar
crystals tend to orient themselves horizontally [60]. Hence, the
fixed orientation examples for plate-like particles are similar to
probing with radar at low elevation. However, we acknowl-
edge that plates may oscillate and rotate around the axis perpen-
dicular to their face, depending on the Reynolds number [61].
Therefore, the geometries presented in this manuscript and in
the supplementary material are unlikely to be representative of
all orientations. Although we considered orientationally aver-
aged results for the complex aggregate, it would be interesting
to develop this work by looking at orientationally averaged ex-
amples for all particles. Another interesting extension to this
work would be to investigate the evolution of the internal field
as the size parameter is increased to much larger values, which
may possible for infinitely long, thin crystals, as described in
Refs. [62, 63].
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