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Chapter 1: Linear Advection
1.1 The Navier Stokes Equations
The Navier-Stokes Equations for a compressible, rotating atmosphere

Momentum
Du
Dt

= -2ΩΩΩ×u− ∇p
ρ

+g+µu

(
∇2u+

1
3

∇(∇ ·u)
)

Continuity
Dρ
Dt

+ρ∇ ·u = 0

Potential temperature
Dθ
Dt

= Q+µθ ∇2θ

An equation of state, eg perfect gas law, p = ρRT

Where the Lagrangian derivative is defined as
Dφ
Dt

=
∂φ
∂ t

+u ·∇φ

u Wind vector g Gravity vector (downwards)
t Time θ Potential temperature, T (p0/p)κ

ΩΩΩ Rotation rate of planet κ heat capacity ratio ≈ 1.4
ρ Density of air Q Source of heat
p Atmospheric pressure µu, µθ Diffusion coefficients
φ Any atmospheric constituent

Each of these equations has an advection term in the Lagrangian derivative.
What does u ·∇φ mean?
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1.2 The Lagrangian Derivative and Advection
All of the NS equations include advection – properties of the atmosphere are moved by the
wind. Consider a property φ (which could be wind, density or temperature). Advection with
no other sources of change is governed by:

Dφ
Dt

=
∂φ
∂ t

+u ·∇φ = 0 (1.1)

Changes of φ are produced by the component of the wind in the same direction as gradients
of φ . In order to understand why the u ·∇φ term leads to changes in φ , consider a region of
polluted atmosphere where the pollutant has the concentration contours shown below:

φ = 0.1

φ = 0.2

φ = 0.3

φ = 0.4

u

Exercise: Draw on the figure the
directions of the gradients of φ and
thus mark with a +, − or 0 locations
where u ·∇φ is positive, negative and
zero. Thus deduce where φ is
increasing, decreasing or staying the
same based on equation 1.1. Hence
overlay contours of φ at a later time.

u ·∇φ is the linear advection advection term – φ being moved around by the wind.
u ·∇u is non-linear advection – the wind being moved around by the wind.
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1.3 Advection and Diffusion
Dφ
Dt

=
∂φ
∂ t

+ u ·∇φ = S + µΨ∇2φ
Lagrangian Rate of change Advection Sources Diffusion
derivative at fixed point of φ and sinks of φ
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1.4 Properties of Advection
Which of the following are true about advection?

1. Advection moves fields around without changing their shape. False. Fields can be
deformed.

2. Advection mixes areas of high and low concentration. Not quite. Diffusion is needed for
mixing. Although advection can lead to intermingling

3. Nothing can be created or destroyed by advection. True. Advection is conservative
4. Advection moves fields from areas of high concentration to low concentration. False.

This is diffusion. Advection moves fields in the direction of the wind
5. Advection cannot create negative values of a field that is initially all positive. True. New

extrema cannot be generated. If you are at an extrema then the gradient is zero so the rate
of change is also zero. This also means that initial maxima and minima should keep the
same value.

6. Non-linear advection is not bounded. False. New extrema cannot be generated. If you are
at an extrema then the gradient is zero so the rate of change is also zero. This also means
that initial maxima and minima should keep the same value.

Exercise

Assuming that φ varies only in the x direction and that the wind vector, u =




u
v
w


, write

the one-dimensional linear advection equation for φ .
∂φ
∂ t

+u
∂φ
∂x

= 0

10



Chapter 2: Finite Differences
Partial differential equations (PDEs) such as the Navier-Stokes equations and linear
advection equation can be solved approximately by splitting up space and time into discrete
points and approximating the gradients using differences.

• For example, if we consider only
one-dimensional space (only variations in
the x direction), then we can divide the
space between x = 0 and x = 1 into N
equal intervals, each of size ∆x, so that
x j = j∆x for j = 1,2, ...,N.

• We can divide time into time steps ∆t, so
that tn = n∆t, n = 0,1,2, ....

φ j+1

φ jφ φ j−1

x1 x2
∆x

x j x j+1 xx j−1x0

• We wish to solve the 1D linear advection equation, ∂φ
∂ t +u ∂φ

∂x = 0, where u is the known
wind speed.

• Define φ (n)
j = φ(x j, tn),

∂φ
∂x

(n)

j
=

∂φ
∂x

(x j, tn),
∂φ
∂ t

(n)

j
=

∂φ
∂ t

(x j, tn).

• At time n and position j we can make the following approximations:

∂φ
∂x

(n)

j
≈

φ (n)
j+1−φ (n)

j−1

2∆x
∂φ
∂ t

(n)

j
≈

φ (n+1)
j −φ (n−1)

j

2∆t

• These can be substituted into the linear advection equation to give

φ (n+1)
j −φ (n−1)

j

2∆t
+u

φ (n)
j+1−φ (n)

j−1

2∆x
= 0
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• This can be re-arranged to give φ (n+1)
j , φ j at the next time-step as a function of φs at

previous time-steps and at adjacent locations. This can be simplified using the Courant
number, c = u∆t/∆x to give:

φ (n+1)
j = φ (n−1)

j − c j
(
φ (n)

j+1−φ (n)
j−1

)

• This is the CTCS scheme - Centred in Time, Centred in space, because the
approximations for ∂φ/∂ t and ∂φ/∂x are both centred.
• CTCS uses three time levels (two previous time levels). However at the first time step,

only one previous time level is available. Therefore a forward in time approximation is

needed for
∂φ
∂ t

(n)

j
:

∂φ
∂ t

(n)

j
≈

φ (n+1)
j −φ (n)

j

∆t

Combined with centred in space, this gives the FTCS scheme:

φ (n+1)
j = φ (n)

j −
c j

2
(
φ (n)

j+1−φ (n)
j−1

)

• Python code implementing CTCS is given in section 2.1

12



2.1 Python Code to Solve the Linear Advection Equation using CTCS
import numpy as np # E x t e r n a l l i b r a r y f o r n u m e r i c a l c a l c u l a t i o n s
import m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g l i b r a r y

def i n i t i a l B e l l ( x ) :
" I n i t i a l c o n d i t i o n s as a f u n c t i o n o f space , x "
re turn np . where ( x%1. < 0 . 5 , np . power ( np . s i n (2∗ x∗np . p i ) , 2 ) , 0 )

# S e t u p space , x , i n i t i a l p h i p r o f i l e and Courant number
nx = 40 # number o f p o i n t s i n space
c = 0 . 2 # The Courant number
x = np . l i n s p a c e ( 0 . 0 , 1 . 0 , nx +1) # From z e r o t o one i n c l u s i v e
n t = 40 # The number o f t i m e s t e p s
p h i = i n i t i a l B e l l ( x ) # Three t i m e l e v e l s o f t h e d e p e n d e n t v a r i a b l e ,
phiNew = p h i . copy ( ) # p h i
ph iOld = p h i . copy ( )

# d e r i v e d or assumed q u a n t i t i e s
u = 1 . 0
dx = 1 . / nx
d t = c∗dx / u

# P l o t t h e i n i t i a l c o n d i t i o n s
p l t . p l o t ( x , phi , ’ k ’ , l a b e l = ’ i n i t i a l c o n d i t i o n s ’ )
p l t . l e g e n d ( l o c = ’ b e s t ’ )
p l t . y l a b e l ( ’ $ \ ph i$ ’ )
p l t . a x h l i n e ( 0 , l i n e s t y l e = ’ : ’ , c o l o r = ’ b l a c k ’ )
p l t . pause ( 1 )

13

# FTCS f o r t h e f i r s t t ime−s t e p , l o o p i n g over space
f o r j in range ( 1 , nx ) : # l o o p s from 1 t o nx−1

p h i [ j ] = ph iOld [ j ] − 0 . 5∗ c ∗ ( ph iOld [ j +1] − ph iOld [ j −1])
# a p p l y p e r i o d i c boundary c o n d i t i o n s
p h i [ 0 ] = ph iOld [ 0 ] − 0 . 5∗ c ∗ ( ph iOld [ 1 ] − ph iOld [ nx−1])
p h i [ nx ] = p h i [ 0 ]

# Loop over r e m a i n i n g t ime−s t e p s ( nt −1) u s i n g CTCS
f o r n in range ( 1 , n t ) : # l oop from 1 t o nt−1

f o r j in range ( 1 , nx ) : # l oop ov er space from 1 t o nx−1
phiNew [ j ] = ph iOld [ j ] − c ∗ ( p h i [ j +1] − p h i [ j −1])

# a p p l y p e r i o d i c boundary c o n d i t i o n s
phiNew [ 0 ] = ph iOld [ 0 ] − c ∗ ( p h i [ 1 ] − p h i [ nx−1])
phiNew [ nx ] = phiNew [ 0 ]
# u pd a t e p h i f o r t h e n e x t t ime−s t e p
ph iOld = p h i . copy ( )
p h i = phiNew . copy ( )
# R e p l o t
p l t . c l a ( )
p l t . p l o t ( x , i n i t i a l B e l l ( x − u∗n∗ d t ) , ’ k ’ , l a b e l = ’ a n a l y t i c ’ )
p l t . p l o t ( x , phi , ’ b ’ , l a b e l = ’CTCS ’ )
p l t . l e g e n d ( l o c = ’ b e s t ’ )
p l t . y l a b e l ( ’ $ \ ph i$ ’ )
p l t . a x h l i n e ( 0 , l i n e s t y l e = ’ : ’ , c o l o r = ’ b l a c k ’ )
p l t . pause ( 0 . 0 5 )

p l t . show ( ) # To keep t h e p l o t showing a t t h e end

14



2.2 Exercises
1. Find a finite difference formula for the second derivative, ∂ 2φ/∂x2, on a grid with

spacing ∆x indexed by j.
2. Hence derive the forward in time, centred in space (FTCS) scheme for the diffusion

equation:
∂φ
∂ t

= K
∂ 2φ
∂x2 .

3. The equation for inertial oscillations given in section 3.2.1 is:

∂u
∂ t

= -2ΩΩΩ×u.

(a) Write equations for the horizontal components of u, assuming that:

u =




u
v
w


 , 2ΩΩΩ =




0
0
f


 .

(b) Hence write down a numerical method for integrating u and v forward in time.
(c) From u and v, write down equations for calculating the location of a parcel of air,

(x(n),y(n)) at time step n from the previous time step.
4. Derive a finite difference scheme for Burger’s equation in one dimension:

∂u
∂ t

+u
∂u
∂x

= 0.
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2.2.1 Answers

1.
∂ 2φ
∂x2 j

≈ φ j+1−2φ j +φ j−1

∆x2

2.
φ (n+1)

j −φ (n)
j

∆t
≈

φ (n)
j+1−2φ (n)

j +φ (n)
j−1

∆x2

3. ∂u/∂ t = f v, ∂v/∂ t =− f u
u(n+1) = u(n)+∆t f v(n)

v(n+1) = v(n)−∆t f u(n+1)

x(n+1) = x(n)+∆t u(n)

y(n+1) = y(n)+∆t v(n)

4. u(n+1)
j = u(n)j −∆t u(n)j

u(n)j −u(n)j−1

∆x

16



2.3 Python Code to Solve the Inertial Oscillation Equation using
forward-backward time-stepping

# Numer ica l s o l u t i o n o f t h e i n e r t i a l o s i c l l a t i o n e q u a t i o n u s i n g
# forward−backward t ime−s t e p p i n g w i t h C o r i o l i s parame te r f
# dud t = f ∗v
# d v d t = − f ∗u

import numpy as np # E x t e r n a l l i b r a r y f o r n u m e r i c a l c a l c u l a t i o n s
import m a t p l o t l i b . p y p l o t a s p l t # P l o t t i n g l i b r a r y

# S e t u p p a r a m e t e r s
f = 1e−4 # C o r i o l i s parame te r
n t = 12 # Number o f t i m e s t e p s
d t = 5000 # Time s t e p i n s e c o n d s
# I n i t i a l c o n d i t i o n s ( i n m e t e r s or m/ s )
x0 = 0 .
y0 = 1 e5
u0 = 1 0 .
v0 = 0 .
# I n i t i a l i s e v e l o c i t y from i n i t i a l c o n d i t i o n s
u = u0
v = v0
# S t o r e a l l l o c a t i o n s f o r p l o t t i n g and s t o r e i n i t i a l l o c a t i o n s
x = np . z e r o s ( n t +1)
y = np . z e r o s ( n t +1)
x [ 0 ] = x0
y [ 0 ] = y0
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# Loop over a l l t ime−s t e p s
f o r n in range ( n t ) :

u += d t ∗ f ∗v
v −= d t ∗ f ∗u
x [ n +1] = x [ n ] + d t ∗u
y [ n +1] = y [ n ] + d t ∗v

# A n a l y t i c s o l u t i o n f o r t h e l o c a t i o n as a f u n c t i o n o f t i m e
t i m e s = np . l i n s p a c e ( 0 , n t ∗dt , n t +1)
xa = x0 + 1 / f ∗ ( u0∗np . s i n ( f ∗ t i m e s ) − v0∗np . cos ( f ∗ t i m e s ) + v0 )
ya = y0 + 1 / f ∗ ( u0∗np . cos ( f ∗ t i m e s ) + v0∗np . s i n ( f ∗ t i m e s ) − u0 )

# P l o t t h e s o l u t i o n i n compar i son t o t h e a n a l y t i c s o l u t i o n
p l t . p l o t ( xa , ya , ’−k+ ’ , l a b e l = ’ a n a l y t i c ’ )
p l t . p l o t ( x , y , ’−bo ’ , l a b e l = ’ fo rward−backward ’ )
p l t . l e g e n d ( l o c = ’ b e s t ’ )
p l t . x l a b e l ( ’ x ’ )
p l t . y l a b e l ( ’ y ’ )
p l t . show ( )
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2.4 Practical: Solving a Differential Equation using Finite Differences
This practical is open ended and we will build on it during the week. Everyone has different
knowledge and experience coding numerical methods so during this practical you will
choose your own equation to solve and choose or design a numerical method to solve it. If
you have not coded numerical methods before, you might like to start with the one
dimensional linear advection equation and make modifications to the code in section 2.1 or
inertial oscillations and start from the code in section 2.3. For the more adventurous, you
could choose an equation that you are interested in or pick a couple of terms from one of the
Navier-Stokes equations to model. Please discuss your decisions with the staff. Also feel
free to find equations and numerical methods online. Some equations that you might like to
consider:

• John Methven’s Potential Vorticity Problem
• The linear advection equation (this is not easy to solve well)
• The non-linear advection equation (Burger’s equation)
• The linear or non-linear shallow-water equations
• The diffusion equation (easier than the linear advection equation)
• Inertial oscillations. You could start from the code in section 2.3, see what happens when

you make the time-step very large and then try to make the time-stepping implicit.

You will probably learn most if you stick with one dimensional equations.
You will have an opportunity at the end of the week to tell the rest of the class what equation
you have chosen, how you have chosen to solve it and if you have any results or problems.
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Chapter 3: The Navier Stokes Equations
The Navier-Stokes Equations for a compressible, rotating atmosphere

Momentum
Du
Dt

= -2ΩΩΩ×u− ∇p
ρ

+g+µu

(
∇2u+

1
3

∇(∇ ·u)
)

Continuity
Dρ
Dt

+ρ∇ ·u = 0

Potential temperature
Dθ
Dt

= Q+µθ ∇2θ

An equation of state, eg perfect gas law, p = ρRT

Where the Lagrangian derivative is defined as
DΨ
Dt

=
∂Ψ
∂ t

+u ·∇Ψ

u Wind vector g Gravity vector (downwards)
t Time θ Potential temperature, T (p0/p)κ

ΩΩΩ Rotation rate of planet κ heat capacity ratio ≈ 1.4
ρ Density of air Q Source of heat
p Atmospheric pressure µu, µθ Diffusion coefficients

• What does ∇ ·u mean?
• What does ∇p mean?
• What does u ·∇Ψ mean?
• What does ΩΩΩ×u mean?
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3.1 Vector Calculus Revision
3.1.1 Gradients and Scalar Products
For a scalar quantity φ (which could be density, temperature or concentration of a pollutant),
the gradient of φ is a vector:

∇φ =




∂φ
∂x
∂φ
∂y
∂φ
∂ z




Question: If φ is shown by the contours, which vector field shows ∇φ?

a

 
 

3.0

4.0
5.0 X b

 
 2.0

3.0

4.0
5.0 ×

c

 
 2.0

3.0

4.0
5.0 × d

 
 2.0

3.0

4.0
5.0 ×

Quiz [responses]
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3.1.2 Dot Products

If the wind speed is a vector, u =




u
v
w


, then the dot product between vectors u and ∇φ ,

u ·∇φ , is (select all that apply):

1.




u
∂φ
∂x

v
∂φ
∂y

w
∂φ
∂ z



×

2. u
∂φ
∂x

+ v
∂φ
∂y

+w
∂φ
∂ z

X

3.




v
∂φ
∂ z
−w

∂φ
∂y

−u
∂φ
∂ z

+w
∂φ
∂x

u
∂φ
∂y
− v

∂φ
∂x



×

4. u
∂φ
∂y
− v

∂φ
∂ z

+w
∂φ
∂x
×

5. |u||∇φ |cosθ where θ is the angle
between u and ∇φ X

6. Zero when u and ∇φ are parallel ×
7. Zero when u and ∇φ are at right angles X
8. Negative when u and ∇φ are in opposite

directions.X

Quiz [responses]
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3.1.3 Divergence

The divergence of a vector, u =




u
v
w


 is ∇ ·u =

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

.

Do these vector fields have positive, negative or near zero divergence? Quiz responses

a

 
 

+ b

 
 

-

c

 
 

0 d

 
 

0

Is the divergence in the atmosphere large or small? Small in 2D. Very small in 3D.
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3.1.4 Laplacian
The Laplacian of a scalar field, φ is ∇2φ = ∇ · (∇φ). In component form, the Laplacian of φ
is:

1.
∂ 2φ
∂x2 +

∂ 2φ
∂y2 +

∂ 2φ
∂ z2 X

2.




∂ 2φ
∂x2

∂ 2φ
∂x∂y

∂ 2φ
∂x∂ z

∂ 2φ
∂x∂y

∂ 2φ
∂y2

∂ 2φ
∂y∂ z

∂ 2φ
∂x∂y

∂ 2φ
∂y∂ z

∂ 2φ
∂ z2



×

3.
∂φ
∂x

+
∂φ
∂y

+
∂φ
∂ z
×

4.




∂φ
∂x
∂φ
∂y
∂φ
∂ z



×

Quiz [responses]
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3.1.5 Cross Product

If vectors x =




a
b
c


 and y =




d
e
f


 then the cross product is

x×y =

∣∣∣∣∣
i j k
a b c
d e f

∣∣∣∣∣=




b f − ce
−a f + cd
ae−bd




If the velocity vector is u =




u
v
w


 and the angular velocity of the domain is

ΩΩΩ =




0
0

1/2 f


 then the Cartesian components of the Coriolis term, −2ΩΩΩ×u, are:

1.




f v
− f u

0


 X 2.



− f v

f u
0


 × 3.




f u
f v
0


 × 4.



−2 f u
−2 f v

0


 ×

Quiz [responses]
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3.2 The Momentum Equation
Du
Dt

= -2ΩΩΩ×u -
∇p
ρ

+ g + µu

(
∇2u+

1
3

∇(∇ ·u)
)

Lagrangian Coriolis Pressure Gravitational Diffusion
derivative gradient acceleration

3.2.1 Coriolis
Inertial Oscillations governed by part of the momentum equation:

∂u
∂ t

= -2ΩΩΩ×u

• A drifting buoy set in motion
by strong westerly winds in
the Baltic Sea in July 1969.

• Once the wind subsides, the
upper ocean follows inertia
circles
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3.2.2 The Pressure Gradient Force

If the pressure gradient force is the only
large term in the momentum equation, then
together with the continuity equation and
perfect gas law, we get equations for
acoustic waves:

∂u
∂ t

+
1
ρ0

∇p = 0

∂ p
∂ t

+ρ0c2∇ ·u = 0

where ρ0 is a reference density and c is the
speed of sound.
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Pressure Gradients lead to very fast acceleration - Acoustic Waves

29

Geostrophic Balance: Pressure Gradients versus Coriolis

-2ΩΩΩ×u =
∇p
ρ

. If 2ΩΩΩ =




0
0
f


 and u =




u
v
w


 then u =− 1

f ρ
∂ p
∂y

, v =
1
f ρ

∂ p
∂x

.
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Geostrophic turbulence: pressure gradients, Coriolis and the (non-linear) advection of
velocity by velocity
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3.2.3 Gravitational Acceleration: Explosive Comulonimbus
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3.2.4 The Complete Navier Stokes Equations
With moisture, phase changes, radiation, ... from NUGAM (courtesy of Pier Luigi)
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Vector Calculus Revision: The Chain Rule
Two forms of the chain rule are

d ( f g)
dx

= f
dg
dx

+g
d f
dx

for scalar valued functions f and g and

∇ · (φu) = φ∇ ·u+u ·∇φ

for scalar valued φ and vector u. There are other forms depending on the type of the variable
and the type of the gradient, ie div, grad and curl.

3.3 Flux and Advective Form
The Navier-Stokes equations are usually derived by considering fluxes entering and leaving
small volumes. This leads to the flux or conservative form of the advective term. For
example, for the continuity equation this is

∂ρ
∂ t

+∇ · (ρu) = 0.

Exercise: Use the chain rule to show that this is equivalent to the form of the equation given
at the beginning of this chapter.
∂ρ
∂ t

+∇ · (ρu) =
∂ρ
∂ t

+u ·∇ρ +ρ∇ ·u =
Dρ
Dt

+ρ∇ ·u
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The equations at the beginning of the chapter can also be written in terms of density
weighted variables such as ρθ .

Exercise (more difficult): Use the chain rule to find an equation for
∂ρθ
∂ t

in terms of
∂ρ
∂ t

and
∂θ
∂ t

. Then substitute in the expression for
∂ρ
∂ t

from the flux form of the continuity

equation and the expression for
∂θ
∂ t

to find an expression for
∂ρθ
∂ t

. Hence use the chain rule
to derive:

∂ρθ
∂ t

+∇ · (ρuθ) = ρQ+ρ∇ ·κθ ∇θ

∂ρθ
∂ t

= θ
∂ρ
∂ t

+ρ
∂θ
∂ t

= θ {−∇ · (ρu)}+ρ {−u ·∇θ +Q+∇ · (κθ ∇θ)}
= −{θ∇ · (ρu)+ρu ·∇θ}+ρ {Q+∇ · (κθ ∇θ)}
= −∇ · (ρuθ)+ρ {Q+∇ · (κθ ∇θ)}
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3.4 Simplifications of the Navier-Stokes Equations
These are the equations of motions as given at the beginning of this chapter:

Du
Dt

= -2ΩΩΩ×u− ∇p
ρ

+g+µu

(
∇2u+

1
3

∇(∇ ·u)
)

Dρ
Dt

+ρ∇ ·u = 0

Dθ
Dt

= Q+µθ ∇2θ

1. What does this simplification represent?

Du
Dt

= -2ΩΩΩ×u− ∇p
ρ

+g+µu∇2u

∇ ·u = 0

(a) Hydrostatic balance
(b) Inviscid (frictionless) flow
(c) Linear advection
(d) Constant density flow
(e) Divergence free flow

(f) Geostrophic balance
(g) Thermal wind
(h) Irrotational flow
(i) Adiabatic flow

Answers here Responses e (not necessarily d)
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2. What does this simplification represent?

Du
Dt

= -2ΩΩΩ×u− ∇p
ρ

+g

Dρ
Dt

+ρ∇ ·u = 0

Dθ
Dt

= 0

(a) Hydrostatic balance
(b) Inviscid (frictionless) flow
(c) Linear advection
(d) Constant density flow
(e) Divergence free flow

(f) Geostrophic balance
(g) Thermal wind
(h) Irrotational flow
(i) Adiabatic flow

Answers here Responses b and i
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3. What does this simplification represent?

2ΩΩΩ×u = −∇p
ρ

(a) Hydrostatic balance
(b) Inviscid (frictionless) flow
(c) Linear advection
(d) Constant density flow
(e) Divergence free flow

(f) Geostrophic balance
(g) Thermal wind
(h) Irrotational flow
(i) Adiabatic flow

Answers here Responses f
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4. What does this simplification represent?

−∇p
ρ

+g = 0

(a) Hydrostatic balance
(b) Inviscid (frictionless) flow
(c) Linear advection
(d) Constant density flow
(e) Divergence free flow

(f) Geostrophic balance
(g) Thermal wind
(h) Irrotational flow
(i) Adiabatic flow

Answers here Responses a
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5. What does this simplification represent?

∂Ψ
∂ t

+u ·∇Ψ = 0

(a) Hydrostatic balance
(b) Inviscid (frictionless) flow
(c) Linear advection
(d) Constant density flow
(e) Divergence free flow

(f) Geostrophic balance
(g) Thermal wind
(h) Irrotational flow
(i) Adiabatic flow

Answers here Responses c

40



More on the Practical
For this practical you have more choices:

1. Further analysis of the method that you have already chosen.
2. Implement a better numerical method for the equation you are solving.
3. Solve a different equation.

In particular, you may consider:

1. If you are solving an advection equation, you might like to consider using one of:

(a) A monotonic advection scheme
(b) Semi-Lagrangian advection
(c) The Lax-Wendroff method

2. How do solution errors vary with resolution in time and space?
3. Is your numerical method stable for all time steps?
4. Is your numerical method conservative?
5. Is there any spurious behaviour in your solution? (eg unbounded results or unrealistic

oscillations).
6. Compare explicit and implicit time-stepping.
7. You might like to consider using Runge-Kutta time-stepping
8. You might like to increase the order of accuracy of the spatial discretisation
9. If you are solving the shallow water equations

(a) Try adding non-linear terms

41

(b) Try using a different Arakawa grid
10. Try using variable spatial resolution or adaptive time-stepping

You should search online for ideas of a numerical method to use. You can also refer to my
MSc teaching notes:
http://www.met.reading.ac.uk/~sws02hs/teaching/MTMW12/MTMW12_2_lec.pdf
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Chapter 4: Spatial Discritisation for Atmospheric Modelling
Aim
• Describe a multitude of spatial discretisation methods used in atmospheric modelling
• Describe their advantages and disadvantages
• What modelling centres use what methods
• Different meshes of the sphere

Methods

• Finite difference
• Arakawa grids
• Semi-Lagrangian
• Finite Volume
• Finite Element

• Spectral Method
• Spectral Element
• Mixed finite element
• Discontinuous Galerkin

No spatial discretisation method is perfect. But some produce useful forecasts.
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4.1 Shallow Water Equations
Non-linear

Du
Dt

=−2Ω×u−g∇(h+h0) (4.1)

Dh
Dt

+h∇ ·u = 0 (4.2)

Ω is rotation
Exercise: Linearise
Assume that u is small and that
h→ H +h where H is mean height and h is
small (ignore mountain)

Solutions of non-linear SWE

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

Colour shows height of atmosphere.
Vectors show depth integrated wind.

∂u
∂ t

=−2Ω×u−g∇h ,
∂h
∂ t

+H∇ ·u = 0

Exercise: Write in one dimension, assuming variations only in the x direction

∂u
∂ t

= f v−g
∂h
∂x

,
∂h
∂ t

+H
∂u
∂x

= 0
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4.2 Finite Differences - Arakawa A-grid
To solve the linearised shallow water equations in one dimension:

∂u
∂ t

= f v−g
∂h
∂x

,
∂h
∂ t

+H
∂u
∂x

= 0

Store discrete values of h and u on a grid.

hi−2 hihi−1

ui−2 ui−1 ui

hi+1

ui+1

hi+2

ui+2

∂u
∂x j

≈ u j+1−u j−1

2∆x
∂h
∂x j

≈ h j+1−h j−1

2∆x
This can be extended to two dimensions and gives these solutions:

The Arakawa A-grid is not used by operational centres in this form.
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4.3 Arakawa Grids [Arakawa and Lamb, 1977]
Consider the component form of the 2D linearised SWE:

∂u
∂ t

= f v−g
∂h
∂x

(4.3)

∂v
∂ t

= − f u−g
∂h
∂y

(4.4)

∂h
∂ t

= −H
(

∂u
∂x

+
∂v
∂y

)
(4.5)

A-grid

h, u, v

• Non-compact discretisation of ∂u/∂x, ∂u/∂y, ∂h/∂x and
∂h/∂y leads to spurious gravity modes.
• Grid-scale oscillations
• Simple
• Acurate representation of inertial oscillations (u and v are

together)

B-grid

u, v

h

u, v

u, v

u, v u, v

u, v

• Some older ocean models use B-grid. Eg ocean component of
HadCM3.
• Gradients are compact but averaging needed
• Still computational modes
• Acurate representation of inertial oscillations (u and v are

together)
46



C-grid

u
h

u
v

v

• Compact discretisation of ∂u/∂x, ∂u/∂y, ∂h/∂x and ∂h/∂y
→ best representation of gravity modes.
• Coriolis terms and geostrophic balance more of a problem.
• Widely used including current UK Met Office model.

D-grid

v h v

u

u

• Non-compact discretisation of ∂u/∂x and ∂h/∂x leads to
spurious gravity modes
• Lots of averaging needed
• Best representation of geostrophic balance
• GFDL’s FV3 model uses a C-D grid

E-grid

h

h

u, v
h

u, v

u, v h

u, v

h

• Equivalent to a B-grid rotated by 45o
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4.3.1 Solutions of Linearised SWE starting from an initial bump
A-grid B-grid C-grid
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4.4 The Pole Problem
Convergence of points towards the poles

• Severe time-step restrictions
• Parallel scaling bottlenecks

Who uses a lat-lon grid?

• UK Met Office (moving to cubed sphere)
• NOAA (moving to cubed sphere)
• Environment Canada (for low resolution.

Yin-Yang for high resolution)
• NCAR Community Atmosphere Model

CAM-FV (for low resolution. CAM-SE on
cubed sphere for high resolution)
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4.4.1 Cubed Sphere

Grid lines are non-orthogonal which must
be treated accurately to avoid grid
imprinting.

Used by
• Next UK Met Office model

– Mixed finite elements
• GFDL’s FV3 (will also be used by

NOAA)

– finite volume, CD grid
• NCAR CAM-SE

– spectral element method
• NUMA-NEPTUNE, from the US Navy

(not operatation)

– discontinuous Galerkin
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4.4.2 Reduced grid
Used by
• ECMWF IFS

– spectral method
• ECMWF FV3

– experimental finite volume model
using A-grid
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4.4.3 Icosahedral grids
Suitable for low order models

Used by

• NICAM

– Japanese A-grid model run at very
high resolution

• MPAS (Voronoi, US community model
to replace WRF)

– finite volume C-grid
• ICON (triangles, German operational

model)

– finite volume C-grid
• DYNAMICO (French experimental

model)

– finite volume C-grid
• Colorado State University Model (Uses

Vorticity is a prognostic variable, Z-grid)
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4.4.4 Yin-Yang Grid

Conservation is problematic
Spurious behaviour on overlaps

Used by
• Environment Canada

– for high resolution modelling
– semi-implicit, semi-Lagrangian (like

UK Met Office)
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4.5 Discretisations for terms of the Euler Equations
Linear Advection Non-linear advection
Terms involved in gravity and acoustic wave propagation
Coriolis

Momentum
∂u
∂ t

+u ·∇u = -2ΩΩΩ×u− ∇p
ρ

+g

Continuity
∂ρ
∂ t

+∇ ·ρu = 0

Potential temperature
∂θ
∂ t

+u ·∇θ = Q

An equation of state, eg perfect gas law, p = ρRT

u Wind vector g Gravity vector (downwards)
t Time θ Potential temperature, T (p0/p)κ

ΩΩΩ Rotation rate of planet κ heat capacity ratio ≈ 1.4
ρ Density of air Q Source of heat
p Atmospheric pressure
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4.6 Who uses what for Advection?
Model/Modelling centre Version Numerical method
UK Met Office Current Semi-Lagrangian (not conservative)

Next Flux form semi-Lagrangian? (FV)
ECMWF Current Semi-Lagrangian (not conservative)

Next Flux form semi-Lagrangian (FV)
Environment Canada Semi-Lagrangian (not conservative)
NOAA Flux form semi-Lagrangian (FV)
NCAR CAM FV Flux form semi-Lagrangian (FV)

SE Spectral Element (no upwinding)
FV3 (NOAA and GFDL) Flux form semi-Lagrangian (FV)
NUMA-Neptune (US Navy) Next Discontinuous Galerkin
NICAM (A Japanese model) Flux form semi-Lagrangian (FV)
MPAS (to replace WRF) Upwinded finite volume
ICON Flux form semi-Lagrangian (FV)
DYNAMICO Flux form semi-Lagrangian (FV)
CSU Upwinded finite volume
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4.6.1 Semi-Lagrangian

∂ψ
∂ t

+u ·∇ψ = 0

solved as
ψn+1

i j = ψn
d

where n is the time level, i j is the position on the grid
and d is the departure point.
Interpolate to find ψd at the departure point from
surrounding values on the grid.

d

ψi j

u

Advantages and Disadvantages
, Stable and accurate for very long time steps

, Cost and accuracy not strongly related to time step

/ ψ is not conserved
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4.6.2 Flux Form Semi-Lagrangian
Also known as:

• Forward in time
• Swept area/volume
• Space-time
Examples:

• PPM (piecewise parabolic method)
• Lin and Rood
• COSMIC
• Lax-Wendroff.

u

ψ f
V

, Conservative

/ Only used with small
time-steps ( c < 1)

∂ψ
∂ t

+∇ ·ψu = 0 solved as ψn+1 = ψn− 1
V ∑

faces
ψ f u ·S

where ψ f is integrated over the volume swept through the face during one time step.
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4.6.3 Other Advection Schemes
Space and time discretised separately – “method of lines”.
Options for Space
• Finite difference (with upwinding)
• Finite volume (with upwinding)
• Spectral Element (not upwinded)
• Discontinuous Galerkin
• Finite Element (Petrov-Galerkin with

upwinding)

Options for Time
• Runge-Kutta (multi-stage)
• Multi-step (eg leapfrog)
• Implicit (eg Crank-Nicolson)
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4.7 Numerical Methods for Gravity and Acoustic waves (2nd order
wave equations)

• Finite Difference - Arakawa A, B, C, D or E grids [Arakawa and Lamb, 1977]

– Finite Volume (A-grid – co-located or C-grid – staggered)
• Spectral element (co-located)
• Discontinuous Galerkin (co-located)
• Spectral method (co-located)
• Finite Element

– Mixed finite element – finite element version of staggered
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4.8 Spectral Method
• Fourier and Legendre transforms convert grid point data,

X̃(λ ,θ) (λ is longitude and θ is latitude) into coefficients,
Xm

n so that the atmospheric state can be represented as a sum
of spherical harmonics:

X̃(λ ,θ) =
N

∑
n=0

n

∑
m=−n

Xm
n Pm

n (θ)eimλ

where Pm
n is a Legendre polynomial.

• Differentiation and interpolation can then be done very
accurately in spectral space.

Spherical harmonics for n = 5→
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Spectral Method
, Highest possible order of accuracy for the

resolution

, ECMWF IFS has always been the most
accurate model.

, No grid imprinting due to gird irregularities

/ Lot of communication involved in spectral
transforms and inverse transforms→
parallel scaling problems

/ Spectral ringing

Scaling of spectral transform
(Andreas Müeller, ECMWF)

Performance modelling
[Zheng and Marguinaud, 2018]
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4.9 The Finite Element Method
The solution, u(x), is represented as a sum of N basis
functions:

u(x) =
N

∑
i=1

Uiφi(x). (4.6)

For the finite element method, the basis functions, φi,
are piecewise polynomials defined as non-zero on on
each element.

• To find Ui, multiply eqn (4.6) by a test function.
• Galerkin method:

– test functions = basis functions
• Integrate by parts to get weak formulation
• Leads to a set of linear simultaneous equations: the

mass matrix (or stiffness matrix) – a global matrix
• Solve to find Ui

Representation of a function using
a piecewise linear basis.
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4.10 Spectral Element Method
Basis functions are Lagrange interpolation
on Gauss-Lobatto quadrature points

• Integration over an element is summation
of values at Gauss-Lobatto quadrature
points

• Leads to a diagonal mass matrix
∴ less communication

• Used by CAM-SE on the cubed sphere
(4th order accurate)

• Excellent parallel scaling
• Pressure and velocity co-located

∴ A-grid computational mode but high
order

4.11 Mixed Finite Element
• Different basis functions for pressure and velocity

∴ good wave dispersion
• Finite element equivalent of staggered grid
• Next generation Met Office model
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4.12 Vertical Discretisation
(c) co-located

ρ uh w θ

ρ uh w θ
ρ uh w θ

UK Met Office
Environment Canada

MPAS, DYNAMICO
ICON, NICAM, CAM-SE

ECMWF IFS and FVM
GFDL and NOAA’s FV3

NUMA-Neptune, CAM-FV?
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