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Chapter 1: Time-Stepping
Any system of evolution equations can be written as

dy
dt

= F(y)

where y is a list of all dependent variables at all points in space and F describes how they all
evolve. There are thousands of time-stepping schemes. Eg:

Explicit/
Implicit

Order of
accuracy

Multi stage/
step/neither

Forward Euler y(n+1) = y(n)+∆tF(y(n)) E 1 neither

Backward Euler y(n+1) = y(n)+∆tF(y(n+1)) I 1 neither

Trapezoidal
(Crank-Nicholson)

y(n+1) = y(n)

+∆t
2 (F(y(n))+F(y(n+1)))

I 2 neither

Forward-
backward

y′ = y(n)+∆tF(y(n))
y(n+1) = y(n)+∆tF(y′)

E 1/2 stage

Leapfrog
(centred in time)

y(n+1) = y(n−1)+2∆tF(y(n)) E 2 step

Explicit – uses values from previous time-steps to define the values at the new time-level.
Implicit – uses values at time level n+1 and possibly other time levels to define the values
at time-level n+1.
Multi-step – uses values from more that 2 time-levels.
Multi-stage (Runge-Kutta) – Calculates intermediate values in between levels n and n+1.
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Explicit/
Implicit

Order of
accuracy

Multi
stage/
step

RK4

k1 = ∆tF(y(n)), k2 = ∆tF(y(n)+
1
2

k1)

k3 = ∆tF(y(n)+
1
2

k2), k4 = ∆tF(y(n)+ k3)

y(n+1) = y(n)+
1
6
(k1 +2k2 +2k3 + k4)

E 4 stage

Adams-
Bashforth

y(n+1) = y(n)+ ∆t
2

(
3F(y(n))−F(y(n−1))

)
E 2 step

BDF2 y(n+1) = 4
3 y(n)− 1

3 y(n−1)+∆t 2
3 F(y(n+1)) I 2 step

Advantage of Multi-step over Multi-stage
Fewer function evaluations needed to achieve the same order accuracy
How can an Implicit scheme be used?
Re-arrange backward Euler: y(n+1)−∆tF(y(n+1)) = y(n)

Define a new function: (I −∆tF) where I is the identity

y(n+1) = (I −∆tF)−1y(n)

F needs to be a linear function so that (I −∆tF) is an invertible matrix
Advantage of Explicit over Implicit
No need to invert a big matrix ∴ cheaper per time-step
Advantage of Implicit? ... Advantage of Multi-stage? ...
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1.1 Stability Analysis of Leapfrog
To analyse the stability of a time-stepping scheme for solving a wave or advection equation,
we analyse how the scheme behaves for the 1D oscillation equation:

dy
dt

= iκy (1.1)

where i =
√
−1 so that the leapfrog scheme becomes

y(n+1) = y(n−1)+ i2∆tκy(n). (1.2)

We define an amplification factor, A, such that:

y(n+1) = Ay(n), y(n) = Ay(n−1), y(n+1) = A2y(n−1). (1.3)

The scheme will be stable if |A|≤ 1
Substitute the amplification factors in eqn (1.3) into eqn(1.2) and rearrange to find A and |A|:

A2y(n−1) = y(n−1)+ i2∆tκAy(n−1)

=⇒ A2 − i2∆tκA−1 = 0

=⇒ A = iκ∆t ±
√

1−κ2∆t2

=⇒ |A|
{
= 1 if κ∆t ≤ 1
> 1 if κ∆t > 1

So leapfrog is stable for ∆t ≤ 1/κ . But the existence of two possible solutions for A means
that spurious solutions - computational modes - exist which can contaminate the solution.
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1.1.1 Simulation of a Damped Pendulum
Angle of pendulum, θ , satisfies

d2θ
dt2 +

α
L

dθ
dt

+
g
L

sinθ = 0

where L = 1, g = 9.81, α = 0.03

Leapfrog RK4

• The leapfrog simulation jumps between the physical mode and the computational mode
• Can be controlled with a filter [see eg Williams, 2009]
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1.1.2 Stability Analysis of Euler Forward and Backward
Exercise We will analyse the stability of Euler forward and Euler backward for both the
oscillation equation (to mimic wave equations and advection) and for the equation that
simulations exponential decay (to mimic diffusion):

dy
dt

=−κy

Choose one of the schemes and one of the differential equations. So that we get answers for
all four possibilities, make sure that your choices are different from 3 of your neighbours.
Stability Constraints for Euler forward and backward

Euler forward Euler backward

y(n+1) = y(n)+∆tF(y(n)) y(n+1) = y(n)+∆tF(y(n+1))

Oscillation equation F(y) = iκy unstable ∀ ∆t stable ∀ ∆t

Exponential decay F(y) =−κy stable for ∆t ≤ 2/κ stable ∀ ∆t
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1.1.2.1 Solutions
1. Euler forward for the oscillation equation.

A = 1+ i∆tκ =⇒ |A|2 = 1+κ2∆t2 > 1 ∀∆t > 0, κ > 0
2. Euler backward for the oscillation equation.

A = 1+ i∆tκA =⇒ A = 1/(1− i∆tκ) =⇒ |A|2 = 1/(1+κ2∆t2)< 1 ∀∆t > 0, κ > 0
3. Euler forward for the exponential decay.

A = 1−∆tκ =⇒ |A| ≤ 1 ⇐⇒ 1−∆tκ ≥−1 ⇐⇒ ∆tκ ≤ 2
4. Euler backward for the exponential decay.

A = 1−∆tκA =⇒ A = 1/(1+∆tκ) =⇒ |A|< 1 ∀∆t > 0, κ > 0
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1.2 Summary of Advantages of Different Types of Time-Stepping
Schemes

Explicit
Cheap to compute

Implicit
Stable with large time-steps

Multi-step
Cheap since fewer function evalulations

Multi-stage
No computational modes
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Chapter 2: Modelling Wave Equations
Many of the processes in the atmosphere are represented by the shallow water equations
(SWE). The assumptions needed to derive the SWE are:

• Horizontal length scale >> vertical length scale
• Very small vertical velocities

Depth integrate the Navier-Stokes equations over orography to give the SWE:

Du
Dt

=−2Ω×u−g∇(h+h0)+µu∇2u (2.1)

Dh
Dt

+h∇ ·u = 0 (2.2)

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
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����������������������������������������
����������������������������������������

depth,
fluid

Free surface

Solid surface

u h

h0

where

u Depth intetraged wind vector g Acceleration due to gravity
t Time ∇ Gradients in the horizontal
Ω Rotation rate of planet h0 Height of the bottom topography
h Fluid depth µu Diffusion of momentum

Exercise: What are the meaning of the terms of the momentum equation of the SWE?
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2.1 Simulations of the SWE on the surface of a sphere

The shallow-water
equations can be
solved on the surface
of a sphere with u
being the horizontal
wind (ignoring
updrafts and
downdrafts) and h
being the depth of a
layer of atmosphere.
The results look
similar to large-scale
atmospheric
circulation. The
vectors show u, the
black contours show a
mountain (h0) and
colours show h+h0.

5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
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2.2 Processes Represented by the SWE
Which of these processes are represented by the SWE and which are only represented by the
full NS equations?

Horizontal advection SWE Acoustic waves NS
Vertical advection NS Coriolis SWE
Gravity waves SWE Diffusion SWE
Rossby waves SWE Heat transport NS
Adiabatic expansion NS Atmospheric convection NS
Geostrophic balance SWE Geostrophic turbulence SWE

14



Component Form of the SWE

Assuming u = (u,v,0)T and 2Ω = (0,0, f )T , equations (2.1) and (2.2) written in component
form are:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

= f v−g
∂ (h+h0)

∂x
+µu

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

= − f u−g
∂ (h+h0)

∂y
+µu

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)

∂h
∂ t

+u
∂h
∂x

+ v
∂h
∂y

+h
(

∂u
∂x

+
∂v
∂y

)
= 0 or

∂h
∂ t

+
∂hu
∂x

+
∂hv
∂y

= 0
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2.2.1 Linearised SWE
In order to find analytic solutions and to analyse numerical methods, we linearise the SWE.
Assume:

• u = (u,v,0)T is small
• 2Ω = (0,0, f )T

• h = H +h′ where H is uniform in space and time and h′ is small
• the product of two small variables is ignored (even if one or both are inside a differential)
• h0 and µu are ignored

This gives the following equations for u,v and h′ expressed in terms of f (rather than Ω):
∂u
∂ t

= f v−g
∂h′

∂x
(2.3)

∂v
∂ t

= − f u−g
∂h′

∂y
(2.4)

∂h′

∂ t
= −H

(
∂u
∂x

+
∂v
∂y

)
(2.5)

2.3 Analytic Solultion
Ignoring Coriolis, the linearised SWE have wave-like solutions – gravity waves. In 1d these
are:

h′ = H eikx e±ikt
√

gH (2.6)

u =±
√

g/H H eikx e±ikt
√

gH (2.7)

for any constant H. So waves with wavenumber k in space oscillate with frequency k
√

gH
and the wave speed is ...

√
gH (so gravity waves are non-dispersive).
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2.4 Unstaggered Forward-Backward (1d A-grid FB)
As there are two equations that depend on each other, it is quite natural to solve them using
forward-backward time-stepping – forward for u and backward for h. We will also start by
assuming that h and u are defined at the same spatial positions (this is called co-located,
unstaggered or A-grid) and we will use centred spatial discretisation:

h j−2 h j h j+2h j−1 h j+1

u j−2 u j−1 u j u j+1 u j+2∆x

∂u
∂ t

=−g
∂h
∂x

→
u(n+1)

j −u(n)j

∆t
=−g

h(n)j+1 −h(n)j−1

2∆x
(2.8)

∂h
∂ t

=−H
∂u
∂x

→
h(n+1)

j −h(n)j

∆t
=−H

u(n+1)
j+1 −u(n+1)

j−1

2∆x
(2.9)

where x j = j∆x, t(n) = n∆t, h(n)j = h(x j, t(n)) and u(n)j = u(x j, t(n)).
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2.4.1 Von-Neumann Stability Analysis
We can find the stability limits and dispersion relation for the numerical scheme given in
section 2.4 (1d A-grid FB) using von-Neumann stability analysis.
To calculate an amplification factor, A, for each wavenumber, k, we assume wave-like
solutions for h and u:

h(n)j =H An eik j∆x (2.10)

u(n)j = U An eik j∆x (2.11)

for some constants H and U. Substituting these into (2.8) and (2.9) and defining the Courant

number c =
√

gH∆t
∆x

leads to: (workings on lecturer notes)

A = 1− c2

2
sin2 k∆x± ic

2
sink∆x

√
4− c2 sin2 k∆x (2.12)

There are two solutions for A but this is correct because there are also two analytic solutions
to the equations (because of the ± in the analytic solution). For |c| ≤ 2 this gives |A|2 = 1
so the scheme is stable and undamping for sufficiently small time steps. However for |c|> 2
we have:

|A|2 =
(

1− c2

2
sin2 k∆x± c

2
sink∆x

√
c2 sin2 k∆x−4

)2

which can be greater than 1 and so the scheme is unstable for |c|> 2 where c =
√

gH∆t/∆x.
So this scheme is conditionally stable. Stable for c ≤ 2.

18



Von-Neumann Stability Analysis of Unstaggered Forward-Backward
Substitute eqns (2.10) and (2.11) into eqns (2.8) and (2.9):

U An+1 eik j∆x −U An eik j∆x

∆t
=−g

H An eik( j+1)∆x −H An eik( j−1)∆x

2∆x
H An+1 eik j∆x −H An eik j∆x

∆t
=−H

U An+1 eik( j+1)∆x −U An+1 eik( j−1)∆x

2∆x
.

Simplify by substituting in the Courant number, c =
√

gH∆t/∆x, cancelling Aneik j∆x and
combining H and U:

A−1 =− c
2

√
g
H

∼ H
U

A
(

eik∆x − e−ik∆x
)

H
U
(A−1) =− c

2

√
H
g

(
eik∆x − e−ik∆x

)
.
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H/U can be eliminated and we can substitute in e±ik∆x = cosk∆x± isink∆x to get an
expression for the amplification factor, A, in real and imaginary parts:

H
U

=−ic

√
H
g

1
A−1

sink∆x (2.13)

=⇒ A−1 =−c2 A
A−1

sin2 k∆x (2.14)

=⇒ A2 −A(2− c2 sin2 k∆x)+1 = 0 (2.15)

=⇒ A =
2− c2 sin2 k∆x±

√
(2− c2 sin2 k∆x)2 −4

2
(2.16)

=⇒ A = 1− c2

2
sin2 k∆x± icsink∆x

2

√
4− c2 sin2 k∆x2. (2.17)

In order to find the stability of this scheme we need to find the magnitude of the
amplification factor, ||A||=

√
AA∗ and compare this to one. For the above amplification

factor, if c2 sin2 k∆x < 4 ∀ k∆x then the value inside the square root is positive and we can
calculate:

||A||2 =

(
1− c2

2
sin2 k∆x

)2

+
c2 sin2 k∆x

4
(
4− c2 sin2 k∆x2)

= 1− c2 sin2 k∆x+
c4

4
sin4 k∆x+ c2 sin2 k∆x− c4

4
sin4 k∆x

= 1.

So for c < 2 this scheme is stable and does not damp waves of any frequency. However for
c > 2, ||A|| can be greater that 1 for some values of k∆x so the scheme is unstable.
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2.4.2 Dispersion of Unstaggered Forward-Backward (1d A-grid FB)
A reminder of the amplification factor for this method:

A = 1− c2

2
sin2 k∆x± ic

2
sink∆x

√
4− c2 sin2 k∆x.

The argument of A gives us the wave frequency as a function of wavenumber:

ω = tan−1
c
2 sink∆x

√
4− c2 sin2 k∆x

1− c2

2 sin2 k∆x
(2.18)

This can be simplified by assuming that
c
2

sink∆x = sinα to give:

ω =±2α =±2sin−1( c
2

sink∆x
)

(2.19)

This is the A-grid dispersion relation:

Grid-scale gravity waves (k∆x/π = 1) have
zero frequency! This is highly unrealistic.

0.0 0.2 0.4 0.6 0.8 1.0
k∆x/π

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
av

e 
fr

eq
u
en

cy
, 
ω

exact

A-grid
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2.5 Problems with Co-location of h and u
Consider the following initial conditions of the linearised non-rotating SWE:

x

h′

x

u u = 0

Questions:

1. How do you expect the real solution of the linearised SWE to evolve?
High-frequency waves will be generated that propagate in both directions. The solution
will oscillate between having non-zero h′ and non-zero u.

2. How will the solution of the 1d A-grid FB scheme evolve?
The solution will not change after initialisation. The grid-scale wave in h′ will remain. No
non-zero u will be generated.
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2.6 Staggered Forward-Backward (1d C-grid FB)
So that gradients of h can be calculated where u is located and gradients of u can be
calculated where h is located, h and u can be staggered in space:

h j−2 h j h j+2h j−1 h j+1

u j−3/2 u j−1/2 u j+1/2 u j+3/2

Using centered, 2-point spatial differences and forward-backward in time gives:

∂u
∂ t

=−g
∂h
∂x

→
u(n+1)

j+1/2
−u(n)j+1/2

∆t
=−g

h(n)j+1 −h(n)j

∆x
(2.20)

∂h
∂ t

=−H
∂u
∂x

→
h(n+1)

j −h(n)j

∆t
=−H

u(n+1)
j+1/2

−u(n+1)
j−1/2

∆x
(2.21)

Von-Neumann stability analysis gives:

• |A|=
{

1 for |c| ≤ 1
> 1 for |c|> 1 for some k∆x

∴ neutrally stable for |c| ≤ 1
• Dispersion relation:

ω =±2α =±2sin−1(csin
k∆x

2
)

0.0 0.2 0.4 0.6 0.8 1.0
k∆x/π
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w
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• ∴ the C-grid is dispersive
• grid-scale waves propagate too slowly
• C-grid widely used in atmosphere and ocean models
• What about in 2d?
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2.7 Arakawa Grids
In two dimensions, there are more possibilities for where the prognostic variables are
located:

A-grid B-grid C-grid

h, u, v

u, v

h

u, v

u, v

u, v u, v

u, v

u
h

u
v

v

D-grid E-grid

v h v

u

u h

h

u, v
h

u, v

u, v h

u, v

h
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2.8 Linearised Shallow-Water Equations on Arakawa Grids
The linearised SWE with rotation are:

∂u/∂ t =−2Ω×u−g∇h

∂h′/∂ t +H∇ ·u = 0

• The linearised SWE are solved numerically on Arakawa A, B and C grids, starting from
initial conditions consisting of zero velocity and zero h′ everywhere except a positive h′ in
one central grid-box

• The colours show h′ in the grid boxes. Red/yellow positive, blue negative, white zero

A-grid B-grid C-grid

2.9 Discussion Question
For solving the 2d, linearised rotating SWE (eqns 2.3-2.5) what are the advantages and
disadvantages of the different grids? Which terms or which balances between terms will be
represented accurately by different grids?
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2.10 Exercise
We have found that the numerical methods for solving the shallow water equations using
forward-backward time-stepping have time-step restrictions based on the Courant number
(defined with respect to the gravity wave speed). In the atmosphere, gravity waves can travel
very quickly, up to about 300m/s - nearly as fast as acoustic waves. Complete models of the
compressible atmosphere also support acoustic waves. We do not want the time-step of our
models to be constrained by these very fast waves. Therefore, often, models are
semi-implicit, which means that fast waves (such as acoustic and gravity waves) are treated
implicitly whereas slow processes (such as advection and Coriolis) are treated explicitly. An
implicit, co-located finite difference method for the one-dimensional, linearised,
non-rotating shallow water equations is:

u(n+1)
j −u(n)j

∆t
=−g

h(n+1)
j+1 −h(n+1)

j−1

2∆x
(2.22)

h(n+1)
j −h(n)j

∆t
=−H

u(n+1)
j+1 −u(n+1)

j−1

2∆x
(2.23)

with the usual notation.

1. Use von-Neumann stability analysis to find the time-step restrictions of this scheme.
2. What problems does this scheme have in comparison to a staggered (or C-grid) scheme?
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Answers to Exercise 2.10

1. Substituting h(n)j =H An eik j∆x and u(n)j = U An eik j∆x into the equations for the scheme
gives:

U An+1 eik j∆x −U An eik j∆x

∆t
=−g

H An+1 eik( j+1)∆x −H An+1 eik( j−1)∆x

2∆x
H An+1 eik j∆x −H An eik j∆x

∆t
=−H

U An+1 eik( j+1)∆x −U An+1 eik( j−1)∆x

2∆x
.

We can simplify by substituting in the Courant number, c =
√

gH∆t/∆x, cancelling
Aneik j∆x and combining H and U:

A−1 =− c
2

√
g
H

∼ H
U

A
(

eik∆x − e−ik∆x
)

H
U
(A−1) =− c

2

√
H
g

A
(

eik∆x − e−ik∆x
)
.

H/U can be eliminated and we can substitute in e±ik∆x = cosk∆x± isink∆x to get an
27

expression for the amplification factor, A, in real and imaginary parts:

H
U

=−ic

√
H
g

A
A−1

sink∆x (2.24)

=⇒ A−1 =−c2 A2

A−1
sin2 k∆x (2.25)

=⇒ A2 (1+ c2 sin2 k∆x
)
−2A+1 = 0 (2.26)

=⇒ A =
1±
√

1−
(
1+ c2 sin2 k∆x

)

1+ c2 sin2 k∆x
(2.27)

=⇒ A =
1± icsink∆x

1+ c2 sin2 k∆x
. (2.28)

In order to find the stability of this scheme we need to find the amplitude of the
amplification factor:

||A||2 = AA∗

=
1+ c2 sin2 k∆x
(
1+ c2 sin2 k∆x

)2

=
1

1+ c2 sin2 k∆x
.

Thus ||A||2 ≤ 1 ∀ c and ∀ k∆x. Thus this implicit scheme is unconditionally stable (stable
for all time-steps).

2. This co-located scheme has u and h stored at the same locations and spatial gradients are
always calculated centred on a variable, missing out the variable in the middle.
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Consequently, grid-scale oscillations do not influence the gradients and hence grid-scale
oscillations do not lead to changes in u or h. In the linear shallow-water equations, all
waves should propagate with speed

√
gH but with this scheme, grid-scale waves (of

wave-length 2∆x) do not propagate all. Thus the scheme suffers from a spurious,
stationary computational mode. This can also be seen by calculating the dispersion
relation for the scheme, which shows that waves of length 2∆x are stationary. This
problem is solved by using a staggered grid, with u and h stored at locations off-set from
each other by ∆x/2. For the shallow-water equations, it is necessary to calculate ∂h/∂x
where u is stored and to calculate ∂u/∂x where h is stored. Consequently we will
calculate ∂h/∂x at the mid-points between storage locations for h and the same for u.
Thus the calculations of ∂h/∂x and ∂u/∂x will not miss out the central points; they will
be compact. Any oscillations in u or h will lead to non-zero spacial gradients and will
hence lead to changes in u and h. Therefore there is no stationary computational mode.
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Chapter 3: Semi-Implicit Time-Stepping
Recap Some Advantages (and implied disadvantages) of aspects of time-stepping

Implicit Explicit
Stable for Courant number >> 1 Cheap

Short time-steps Long time-steps
Accurate Cheap

Modelling Considerations
We can afford this setup for our model:

∆x, ∆y 10km
∆z 200m
∆t 1 minute

The atmosphere has the following speeds:
Acoustic wave speed 340m/s
Gravity wave speed ≤300m/s
Horizontal wind ≤80m/s
Vertical wind ≤1m/s

What Courant numbers will these speeds and resolutions lead to? What are the implications
for choices of explicit and implicit time-stepping (assuming that explicit schemes are
typically stable for Courant numbers less than one)?

31

Maximum
Courant number

Implication

Horizontal
acoustic 340×60/103 ≈ 2 Treat horizontal acoustic waves implicitly, use a

shorter time-step or use sub-stepping
(split-explicit)

Vertical
acoustic 340×60/200 ≈

100
Vertically propaganing acoustic waves must be
treated implicitly

Gravity
wave 300×60/103 ≈ 2 Treat gravity waves implicitly, use a shorter

time-step or use sub-stepping (split-explicit)
Horizontal
wind 80×60/103 ≈ 0.5 Can be treated explicitly (unless you are on a

lat-lon grid)
Vertical
Wind 1×60/200 ≈ 0.3 Can be treated explicitly as long as you do not try

to resolve convection or other processes which
will increase the maximum vertical wind.
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Treating gravity and acoustic wave implicitly and advection (and possibly Coriolis)
explicitly is called semi-implicit. For the shallow-water equations, if we treat gravity waves
using backward Euler and advection and Coriolis with forward Euler, mark which terms are
evaluated at time-level n and which at time-level n+1.

u(n+1)−u(n)

∆t
+u(n ) ·∇u(n ) =−2Ω×u(n )−g∇h(n+1) (3.1)

h(n+1)−h(n)

∆t
+u(n ) ·∇h(n ) =−h(n )∇ ·u(n+1) (3.2)

This is solved by rearranging equation 3.1 for u(n+1) and substituting these into equation 3.2.
This leads to a semi-discretised version of the wave equation (2.5) or Helmholtz equation
which can be solved for h(n+1).

u(n+1) = u(n)−∆t
(
u(n) ·∇u(n)+2Ω×u(n)+g∇h(n+1))

=⇒ h(n+1)−h(n)

∆t
+u(n) ·∇h(n)

=−h(n)∇·
(

u(n)−∆t
(
u(n) ·∇u(n)+2Ω×u(n)+g∇h(n+1))

)

The terms that make this into a Helmholtz equation are:

h(n+1)−h(n)

∆t
= h(n)∇·

(
∆tg∇h(n+1)

)
+ . . .= ∆tgh(n)∇2h(n+1)+ . . .

which must be solved implicitly since h(n+1) appears on the RHS and LHS.
A similar procedure is used to solve the Navier-Stokes equations in semi-implicit models of
the global atmosphere.
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Chapter 4: Conservation
• What should be conserved? [Material from Thuburn, 2008, Ringler et al., 2010]
• How can conservation be achieved?

4.1 Should Weather and Climate Models Conserve Mass?
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• ECMWF and the Met Office are the most skillful weather forecasting models and they do
not conserve mass. Why not?

– They rely on semi-Lagrangian advection to achieve reasonable time-steps on lat-lon
grids

However we are moving away from lat-lon grids because they do not work well on
massively parallel computers

• Mass is conserved in the real atmosphere over all time-scales, regardless of adiabatic
processes and friction (neglecting relativistic effects)

• Mass errors → pressure errors → spurious winds
• Failure to conserve mass means that nothing else can be conserved.
• You do not want to lose all the mass in the atmosphere over a long climate simulation

So YES weather and climate models should conserve mass

4.2 Should Weather and Climate Models Conserve Energy?
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• Energy is difficult to conserve because it consists of many different types of energy which
are calculated separately and transfers between them may not be conservative. It consists
of:

– Available and un-available potential energy (the unavailable potential energy is the
potential energy that the atmosphere would have if it were in stationary hydrostatic
balance)

– kinetic energy
– internal energy (calculated from temperature)
– chemical energy

• Unavailable PE is much larger than all the others and does not undergo a cascade to
smaller scales. ∴ should be conserved exactly.

• Available PE has a time-scale of ≈20 days in the atmosphere so spurious sources should
lead to slower changes than this.

• Kinetic energy cascades to small scales and there will always be unresolved kinetic
energy. ∴ models should dissipate rather than conserve KE (which should lead to a rise in
temperature).

• Formal energy conservation helps with model stability.

Avoid large spurious sinks and especially spurious sources of energy

4.3 Should Weather and Climate Models Conserve Momentum?
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• There is a transfer of momentum with the Earth’s surface so momentum is not conserved
in the atmosphere.

• Momentum is not dissipated – there is no cascade to small scales.
• Momentum is conserved over very long time-scales in the stratosphere.
• Most models do not conserve momentum
• The stratospheric quasi-biennial oscillation is very difficult to simulate. Related?

Don’t know. Usually more focus on energy, enstrophy and vorticity in atmospheric
modelling.

4.4 Should Weather and Climate Models Conserve Tracer Variance
and Potential Enstrophy?

What is potential enstrophy? ... Variance of the potential vorticity:

potential enstrophy =
1
2

hq2

where
potential vorticity, q = (η +2Ω) ·k/h , vorticity, η = ∇×u

41

42



• Cascade to small scales then dissipation in about 10 days
• Lots of un-resolved tracer variance and enstrophy
• Conservation → spectral blocking at the grid-scale
• ∴ need to make sure that tracer variance and enstrophy are destroyed at the grid scale.

How ...

– Scale selective dissipation or
– Dissipative advection scheme, eg

∗ Odd order finite volume with a limiter
∗ Even order semi-Lagrangian
So that leading order error is dissipative rather than dispersive

4.5 Should Weather and Climate Models Conserve Potential Vorticity?
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• PV conservation → correct strength of weather systems
• PV is derived from velocity so conservation requires careful numerics
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4.6 How can Mass be Conserved?
Air density, ρ , satisfies the continuity equation:

∂ρ
∂ t

+∇ · (uρ) = 0 (4.1)

where u is the wind. This is a conservation equation for ρ . Let us assume that ρ and u vary
only in the x direction and that our periodic domain goes from x = 0 to x = 2π (for example
around the equator). Then the total mass of air is:

M =

ˆ 2π

0
ρ dx (4.2)

If we solve eqn (4.1) using a finite volume scheme we get:

ρ(n+1)
j = ρ(n)

j −∆t
u j+1/2ρ j+1/2 −u j−1/2ρ j−1/2

∆x
(4.3)

where u j±1/2 and ρ j±1/2 can be defined in any way from the values of u j and ρ j at the grid
points (eg interpolation). The total mass in the computational domain at time n is:

M(n) =
j=N

∑
j=1

∆xρ(n)
j . (4.4)

To find M(n+1) as predicted from the finite volume scheme, we can substitute eqn (4.3) into
(4.4):
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M(n+1) =
j=N

∑
j=1

∆xρ(n+1)
j =

j=N

∑
j=1

{
∆xρ(n)

j −∆t
(
u j+1/2ρ j+1/2 −u j−1/2ρ j−1/2

)}
(4.5)

= M(n)−∆t

(
j=N

∑
j=1

u j+1/2ρ j+1/2 −
j=N

∑
j=1

u j−1/2ρ j−1/2

)
(4.6)

= M(n)−∆t

(
j=N

∑
j=1

u j+1/2ρ j+1/2 −
j=N−1

∑
j=0

u j+1/2ρ j+1/2

)
(4.7)

= M(n)−∆t
(
uN+1/2ρN+1/2 −u1/2ρ1/2

)
(4.8)

and since we have periodic boundary conditions, uN+1/2ρN+1/2 = u1/2ρ1/2 proving that
M(n+1) = M(n) and hence mass is conserved.
If instead we discretised the advective form of the continuity equation:

∂ρ
∂ t

+u ·∇ρ +ρ∇ ·u = 0 (4.9)

using finite differences or semi-Lagrangian, conservation would not be so easy to achieve.
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4.7 How can Energy be Conserved?
One possible technique would be to solve a conservation equation for total energy and then
calculate temperature from the energy. However this is not done in atmospheric models.
Why not? ... Instead we can consider how energy can be conserved in the vector invariant
form of the linearised shallow-water equations, solving for u and h:

∂u
∂ t

+η ×u =−g∇h−∇K (4.10)

∂h
∂ t

+∇ · (hu) = 0 (4.11)

where η = ∇×u+2Ω is the total vorticity and K = 1
2 |u|2 is the kinetic energy. The energy

is defined as:
E =

1
2

gh2 +hK. (4.12)

If we calculate hu·(4.10)+(gh+K) (4.11) we can derive the conservation equation for E:

hu · ∂u
∂ t

+hu · (η ×u)+(gh+K)
∂h
∂ t

+(gh+K)∇ · (hu) =−ghu ·∇h−hu ·∇K (4.13)
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Using the vector calculus identities:

u · (η ×u) = 0
K∇ · (hu)+hu ·∇K = ∇ · (Khu)

eqn (4.13) can be rearranged to give:

∂E
∂ t

+∇ · (h2u+hKu) = 0. (4.14)

The term ∇ · (h2u+hKu) is the divergence of a flux so it cannot create or destroy energy,
just move energy around. Therefore, for a SWE model to conserve energy, it must have
discrete versions of the above vector calculus identities. These are called mimetic properties.
The mimic properties of the real system.
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4.8 How can Potential Vorticity be Conserved?
The PV equation can be derived by taking the curl of the momentum equation (in vector
invariant form):

∇× ∂u
∂ t

+∇× (η ×u) =−
��������:0
∇× (g∇h+∇K) (4.15)

Considering the 2D flow of the SWE and uing the vector calculus identities:

∇×∇h = 0

this gives:
∂hq
∂ t

+∇ · (qhu) = 0

which is a conservation equation for the PV, q = (η +2Ω) ·k/h. So for a model to conserve
PV, it must have a discrete equivalent of curl free gradients. This is another mimetic property.

50


