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The shallow water equations are solved using a mesh of polygons on the sphere
which adapts infrequently to the predicted future solution. Infrequent mesh adap-
tation reduces the cost of adaptation and load balancing and will thus allow for
more accurate mapping on adaptation.

We simulate the growth of a barotropically unstable jet adapting the mesh
every 12 hours. Using an adaptation criterion based largely on the gradient of the
vorticity leads to a mesh with around 20% of the cells of a uniform mesh which
gives equivalent results. This is a similar proportion to previous studies of the same
test case with mesh adaptation every one to twenty minutes.

The prediction of the mesh density involves solving the shallow water equations
on a coarse mesh in advance of the locally refined mesh in order to estimate where
features requiring higher resolution will grow, decay or move to. The adaptation
criterion consists of two parts: that resolved on the coarse mesh and that which
is not resolved and so is passively advected on the coarse mesh. This combination
leads to a balance between resolving features controlled by the large scale dynamics
and maintaining fine scale features.
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2 H. Weller

1. Introduction

Traditional models of the global atmosphere with fixed, uniform grids have proved
immensely successful at weather and climate forecasting and their accuracy and
efficiency are excellent. However, as computer power increases it may prove benefi-
cial to increase resolution in some places more than others. For example, in order
to resolve deep convection a prohibitive amount of additional resolution would be
needed, but only over a small fraction of the globe. This motivates the need for
adaptive mesh modelling of the atmosphere. Adaptive meshing has been under in-
vestigation for atmospheric modelling for some time [eg. Staniforth and Mitchell,
1978, Berger and Oliger, 1984, Skamarock et al., 1989, Dietachmayer and Droege-
meier, 1992, Skamarock and Klemp, 1993, Fiedler and Trapp, 1993] but is still
mostly research rather than operational [eg. Jablonowski et al., 2006, Läuter et al.,
2007, St-Cyr et al., 2008], a noteworthy exception being Bacon et al. [2000]. If adap-
tive meshing is to be used to resolve deep convection, mesh density requirements
must be predicted before convection would be likely to break out on the refined
mesh. This paper tackles the issue of predicting mesh density requirements for sim-
plified modelling of the global atmosphere, using the shallow water equations; a
necessary precursor to predicting mesh density requirements for a more complete
model of the global atmosphere.

Frequent re-meshing is usually necessary for adaptive mesh models of the global
atmosphere because regions of high errors change frequently relative to the time
step [eg Bacon et al., 2000, Jablonowski et al., 2006, Läuter et al., 2007, St-Cyr
et al., 2008]. However re-meshing can be expensive and have a detrimental effect
on the accuracy, reducing conservation of high moment properties of the flow and
altering the partition between balanced and unbalanced flow. Re-meshing using un-
structured meshes is particularly expensive for two reasons; ensuring conservation
of even just mass requires calculating all the intersecting volumes between the old
and new meshes and higher order schemes on unstructured meshes can be expen-
sive to set up at the beginning of a fixed mesh run [eg Läuter et al., 2008, Weller
et al., 2009] and hence expensive to re-initialise for each mesh change. However
unstructured meshes may be desirable due to the improved accuracy from spa-
tially smoothly varying refinement and the possibility of aligning the mesh with
features. It may therefore be desirable to change the mesh relatively infrequently
which necessitates predicting in advance regions of the globe which will require
high resolution even if the flow in those regions may be quiescent at the time of the
re-meshing.

Usually mesh density is determined based on instantaneous values of some local
refinement criterion, a new mesh is created and sometimes high resolution can be
expanded outwards so that adjacent cells do not differ in size by more than a factor
of 2 [eg Jablonowski et al., 2006] or for unstructured meshes grading can be more
gradual [eg Ringler et al., 2008]. This expanding outwards increases the number
of time steps possible in between adaptation steps because it allows features to
propagate away from their original region of fine mesh. But it should be possible
to improve on this; running for even longer before re-meshing without expanding
outwards in all directions as this will make the simulation unnecessarily expensive.

Low order adaptive mesh models of the shallow water equations have used rela-

tive vorticity, ζ [eg St-Cyr et al., 2008] as an adaptation criterion, or
√∫

A
ζ2 + δ2dA
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[Läuter et al., 2007] as an adaptation criterion, where dA is the cell area and δ is the
divergence. In geophysical fluid dynamical applications of the shallow water equa-
tions the divergence is often small in comparison to the vorticity so these refinement
criteria are similar in practice. However second order accurate discretisations of ve-
locity and geopotential height should be able to represent high constant values
of vorticity exactly on a coarse mesh; vorticity is proportional to the first spatial
derivative of velocity and when close to geostrophic balance, velocity is propor-
tional to the first derivative of height. This implies that vorticity is proportional to
the second derivative of height. So if vorticity is constant then height will vary ap-
proximately quadratically which should be represented exactly using second order
schemes. It may therefore be more approprate to refine based on |∇ζ| or |∇

√
ζ2+δ2|

when using second order accurate schemes. As well as presenting a technique for
re-meshing infrequently this paper also looks at the relative merits of refining based
on
√
ζ2+δ2 and |∇

√
ζ2+δ2|.

Infrequent mesh adaptation has been achieved by Power et al. [2006] by solving
a single large forward time step followed by single large adjoint backward step in
order to estimate error norms for the flow’s future movement. Hence remeshing
was only necessary every 40 time steps. However the single large time step used
assumes that changes are close to linear in between remeshing time steps. The
technique presented here uses multiple time steps to determine the new mesh but
on a coarse mesh to ensure that this process is inexpensive. However the error
estimators are less advanced than in Power et al. [2006].

The model to solve the shallow water equations on fixed meshes of polygons is
described in section 2 and various methods of mapping and interpolating between
meshes are discussed in section 3. The mesh generator and the predictive adaptive
meshing technique are described in section 4 and results demonstrating the value
of the algorithm in simulating a barotropically unstable jet are given in section 5
with final conclusions drawn in section 6.

2. Solving the Shallow Water Equations on Polygons

The shallow water equations on a rotating sphere have been implemented using the
computational fluid dynamics C++ library, OpenFOAM (www.opencfd.co.uk) to
create AtmosFOAM as described in detail by Weller and Weller [2008] and Weller
et al. [2009] and summarised here.

OpenFOAM solves transport equations in parallel using the finite volume method
on 3-D polyhedral meshes in Cartesian coordinates. AtmosFOAM uses a spherical
shell of polygonal cells embedded in 3-D space. It has not yet been run in parallel.
The momentum and continuity equations are written in 3-D vector flux form:

∂hU

∂t
+ ∇ • (hU ⊗U) = −2Ω× hU − gh∇(h+ h0) (2.1)

∂h

∂t
+ ∇ • (hU) = 0, (2.2)

where U is the 3-D velocity vector in global Cartesian co-ordinates relative to the
rotating frame, h is the height of the fluid surface above the solid surface, h0 is
the height of the solid surface above a spherical reference height, Ω is the angular
velocity vector of the sphere (= (0, 0, 7.292×10−5s−1)), g is the scalar acceleration
due to gravity and ∇ • and ∇ are the divergence and gradient operators in 3-D
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global Cartesian space. Because of the use of global 3-D Cartesian coordinates, a
Lagrange multiplier should be added to the momentum equation to constrain the
motion to follow the sphere [as suggested by Côté, 1988]; instead any radial com-
ponent of the momentum is removed during each time step (hU → hU − (hU • r̂)r̂
where r̂ is the unit normal vector in the radial direction).

The prognostic variables are the three components of the cell-average momen-
tum, hU and the cell average height, h. The mass flux between cells, φ, is advanced
from the interpolated momentum at the previous time step by solving the mo-
mentum equation as described by Rhie and Chow [1983], removing the grid scale
oscillations of the A-grid [Arakawa and Lamb, 1977]. So φ is partially a prognostic
variable.

Here is an overview of the solution algorithm:

1. The cell centred momentum equation is linearised about the solution from
the previous iteration and each component solved implicitly. This allows time
steps slightly longer than the CFL restriction based on the flow.

2. The momentum equation is also discretised on the cell faces and is combined
with the continuity equation to form a modified Helmholtz equation to predict
the height and the face fluxes, φ. This allows time steps much longer than
that restricted by gravity waves.

3. The implicit time discretisation is two time-level Crank-Nicholson with off
centering of 0.55 (0.5 being centred).

4. Centred, linear differencing is used to construct the global matrices with
higher order explicit deferred corrections. This leads to very sparse, diago-
nally dominant matrices which are efficiently solved with iterative solvers.

5. Equations are solved twice per time step with higher order discretisation, non-
linear and Coriolis terms updated for the second iteration to improve accuracy
and convergence. The second iteration effectively makes the algorithm fully
implicit in terms of the accuracy.

6. The higher order corrections fit either a two-dimensional quadratic or a poly-
nomial with a few of the additional terms from a cubic. An upwind biased
stencil of cells is used for discretising the divergence term of the momentum
equation using the partial cubic. A centred stencil of cells is used for discretis-
ing all other terms using the quadratic. The 2-D quadratic and partial cubics
are:

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 (2.3)

a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 +a6x
3 + a7xy

2 (2.4)

and examples of the upwind biased and centred stencils are shown if figure 1.

3. Mesh to Mesh Interpolation and Mapping

This section provides some comments on how solutions should be mapped (con-
servatively) from one mesh to another as well as how mesh to mesh interpolation
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x
y

(a) Centred

xy

(b) Upwind biased

Figure 1. The 2D stencils of cells for interpolating from cell centres onto the grey face.

(non-conservatively) is achieved for the solutions presented in this paper (section
a). The mesh to mesh interpolation implemented is not optimal but is sufficient to
demonstrate the validity of the mesh density prediction technique presented here.
Comparisons with other mesh to mesh mappings (sections b to d) are the subject
of future work.

(a) Interpolating from a Stencil of Cells onto a Point

For the results presented in section 5b, a two-dimensional quadratic (equation
2.3) is used to interpolate from stencils of cell centres in the old mesh onto each new
cell centre. The stencils in the old mesh are found starting from the cell(s) which
contain(s) the new cell centre and expanding outwards until the stencil satisfies two
criteria:

1. The stencil must contain more cells than unknowns in the quadratic (i.e.
6). This ensures that the matrix to be inverted to find the coefficients in
the quadratic is over- rather than under-specified and is solved with a least
squares fit.

2. The stencil of old cells must cover all the vertices of the new cell. This ensures
that all cells in the old mesh are used in the mesh to mesh interpolation, even
if the old mesh is much finer than the new.

The advantage of this technique is that it gives quadratic accuracy on arbitrarily
unstructured meshes. However there are some disadvantages:

1. It is not locally conservative as interpolation is from old to new cell centres
rather than from old to new areas or volumes.

2. Because the 2D quadratic is only fit in a least squares sense, the interpolation
is discontinuous between adjacent stencils in the old mesh.

3. The interpolation is not guaranteed to be bounded because it uses a quadratic.

The advantages and disadvantages of this technique are the same as using bi-cubic
spline interpolation or radial basis function interpolation as described in chapter
4.5 of Behrens [2006]. The disadvantages may be overcome as described in some of
the following subsections.

(b) Ensuring Continuous and Bounded Interpolation

The most straightforward way of creating a continuous interpolation would be to
treat the dual mesh of triangles (or quadrilaterals for meshes of quadrilaterals) as a
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6 H. Weller

P1 continuous finite element mesh with the cell average values at polygon centroids
becoming the point values at the nodes of the triangles. Linear interpolation to new
cell centres within a triangle can then be done which would ensure both continuous
and bounded interpolation. But this would not be conservative.

(c) Enforcing Local Conservation

Local conservation requires the calculation of all of the intersecting areas be-
tween the cells of the old and new mesh which is considerably more effort on an
unstructured mesh [Iske and Kaser, 2004, and fig 2] in comparison to the trivial
job that this is on a block-structured mesh. Efficient algorithms are available for
calculating the necessary intersections and areas [eg O’Rourke et al., 1982]. If fields
are interpolated non-conservatively from the old cell centres to the cell centres of
the intersections of the old and new meshes then a conservation correction can be
added to ensure that the new intersecting areas contain exactly the same amount
as the old cell which they cover. Local conservation corrections like this (and like
the mass-packet based algorithm described by Behrens [2006]) reduce the formal
order of accuracy.

Figure 2. Figure 4 from Iske and Kaser [2004] showing new cell U decomposed into four
parts which intersect with the old cells V for interpolating from old (V ) to new (U)
cells. Iske and Kaser [2004] used this algorithm for conservative semi-Lagrangian but it is
assumed here to be for arbitrary mesh to mesh mapping.

(d) Variables to Interpolate

If mass (geopotential height) and momentum are mapped from old to new mesh
as described in sections b and c then mass and momentum will be conserved
locally but there will be no guarantees that the partition between geostrophic
and ageostrophic velocity will be preserved. Alternatively, for a two-dimensional
shallow-water model, vorticity, divergence and mass could be mapped conserva-
tively from old to new meshes. This interpolation would effectively be higher or-
der than interpolating mass and momentum because vorticity and divergence are
derivatives of velocity. This mapping would lead to conservation of vorticity rather
than momentum which may have advantages and would lead to improved preser-
vation of geostrophic balance under adaptation. However retrieving components of
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velocity from vorticity and divergence requires the solution of the Poisson equation
which comes at additional cost.

4. Adaptive Meshing with Polygons

Section a describes how to create a Voronoi mesh of polygons from a mesh density
function. The novel technique for defining this mesh density function based on the
predicted requirements until the next re-meshing time is described in section b.

Currently AtmosFOAM runs on a fixed mesh and separate OpenFOAM exe-
cutables have been created for generating new meshes based on the mesh density
function and mapping solutions between meshes. The executables are all called from
an outer time loop in a script.

(a) Voronoi Meshes based on a Mesh Density Function

In order to generate Voronoi meshes of polygons in which the distances between
cell centres conform approximately to a required mesh density function, a set of
points on the sphere are Delaunay triangulated using the Computational Geometry
Algorithms Library [CGAL, http://www.cgal.org]. Each triangle edge is then mod-
elled as a critically damped spring with un-stretched length equal to the desired
mesh density function and the mesh of springs is then relaxed, following Tomita
et al. [2002]. In order to converge quickly to a mesh with density close to the given
function, points are also added to and removed from the triangulation in regions
where they are too closely or too sparsely packed following Weller et al. [2009]. The
Voronoi dual is then used as the mesh for AtmosFOAM (eg figure 3).

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

(metres) 60000 120000 180000 240000 300000 360000 420000 480000 540000 600000 660000 720000

Figure 3. The locally refined mesh generated from the density function shown by colours.
The density function is calculated and displayed on a uniform coarse mesh.
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8 H. Weller

(b) Predicting Mesh Density Ahead of Fluid Solution

It now remains to define the most important and novel part of this adaptive
meshing algorithm; how we define the mesh density function in order to generate
a mesh for the next simulation of the global atmosphere until the next re-meshing
time. The time between re-meshings is denoted T , from T0 to T1 and the required
mesh density function, 1

δx
. The full shallow water equations on a coarse mesh are

solved between T0 and T1 in advance, in order to predict where 1
δx

may need to
be high. The initial conditions on the coarse mesh are interpolated from the fine
mesh at T0. As well as keeping track of where refinement criteria are high on the
coarse mesh based on the flow that is resolved on the coarse mesh, a measure of the
features which are unresolved on the coarse mesh is also advected with the coarse
mesh solution so that the new mesh can be generated to resolve these features.

In section 5 we will show results using two refinement criteria; R = η =
√
ζ2+δ2

(where ζ is the local horizontal component of the relative vorticity, ζ = r̂ • (∇×U)
where r̂ is the radial direction and δ is the divergence) and for R = |∇η|. The part
of the required mesh density based on the flow which is resolved on the coarse mesh,
1
δx r

(where subscript r indicates resolved on the coarse mesh) is given by:

1

δx r

=
1

δxmax
+

max

(
Rrc, max

T0→T1

Rr

)

Rrc

(
1

δxmin
−

1

δxmax

)
(4.1)

where Rr is either η or |∇η| resolved on the coarse mesh, max
T0→T1

takes the maximum

value over every time step between times T0 and T1 for every coarse mesh cell, Rrc is
the critical value for the resolved component of R, δxmax is the maximum resolution
to be used where R is zero and δxmin is the minimum resolution to be used where
R is at or above the critical value.

The part of the required mesh density based on the flow which may not be
resolved on the coarse mesh is calculated by first calculating R on the old fine mesh
at time T0 and injecting into each coarse mesh cell the maximum fine mesh value
over all the fine mesh cells whose centre lies within the coarse mesh. For example
the maximum is taken over all the cells shown by dots in figure 4 and this value is
given to the coarse mesh cell which contains all the dots. These injected values are
then advected passively with the flow which is solved on the coarse mesh and the
maximum value seen in each cell over time T is stored as max

T0→T1

Ru where subscript

u denotes unresolved. The part of the required mesh density based on the flow
which may not be resolved on the coarse mesh, 1

δx u
is given by:

1

δxu

=
1

δxmax
+

max

(
Ruc, max

T0→T1

Ru

)

Ruc

(
1

δxmin
−

1

δxmax

)
(4.2)

The required mesh density based on both the resolved and unresolved fields is then
calculated as:

1

δx
= max

(
1

δx r

,
1

δxu

)
(4.3)
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Figure 4. Coarse and fine mesh cells. The unresolved component of the flow is estimated
by taking the maximum value of the refinement criteria, R, in the fine mesh over all the
cells whose centre lies within a coarse mesh cell (as shown by dots). This maximum value
is then injected into the coarse mesh cell

and the field is smoothed without increasing resolution anywhere by taking, for
each cell, the maximum between 1

δx
and the average value of all the neighbours of

the cell.
From the mesh density function, 1

δx
, a new mesh is created as described in

section a, the solution is interpolated from the old to new meshes at time T0 as
described in section 3 and the atmosphere is simulated on the new mesh until time
T1 as described in section 2.

5. Results of a Barotropically Unstable Jet

The barotropically unstable jet test case of Galewsky et al. [2004] is a challeng-
ing test case for both unstructured meshes and mesh adaptivity; firstly because
barotropic instability is particularly sensitive to numerical errors with spurious
waves generated where geostrophic balance is lost due to imbalanced truncation
errors and secondly because there is a cascade of length scales from planetary to
sub-grid scale so at some point small scale features should no longer be resolved.

(a) Results using Fixed Meshes of Polygons

The AtmosFOAM shallow water model has been validated by Weller et al. [2009]
but some additional results of the barotropically unstable jet on fixed polygonal and
reduced latitude-longitude meshes are shown here.

The relative vorticity of the barotropically unstable jet after six days on six
different AtmosFOAM meshes are shown in figure 5 and are compared with the
spectral reference solution of Galewsky et al. [2004]. The fixed time steps (given in
figure 5) lead to maximum flow CFL numbers of about 0.4 and maximum gravity
wave CFL numbers of about 0.9. All the resolutions of reduced latitude-longitude
meshes appear to be very similar to the reference solution but without the spec-
tral ringing. The upwind biased differencing of the non-linear advection term (the
divergence term in the flux form momentum equation) means that the model is
slightly diffusive and once features cascade to the smallest scales they are diffused.

The solutions on reduced latitude-longitude meshes are also compared with
solutions on quasi-uniform meshes of polygons (hexagonal icosahedral) with various
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10 H. Weller

Galewsky et al. [2004] reference at T341, δt = 30s

AtmosFOAM on reduced lat-lon meshes AtmosFOAM on quasi-uniform polygons

554,960 cells (576×1152), ∼35km, δt = 2.5 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

655,362 cells, ∼30km, δt = 2.5 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

137,666 cells (288×576), ∼70km, δt = 5 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

163,842 cells, ∼60km, δt = 5 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

33,842 cells (144×288), ∼139km, δt = 10 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

40,962 cells, ∼120km, δt = 10 mins

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E

20˚N

40˚N

60˚N

80˚N

Figure 5. Relative vorticity of the barotropically unstable jet after 6 days. Contours every
2×10−5s−1. Results on six fixed quasi-uniform AtmosFOAM meshes are compared with
the spectral reference solution of Galewsky et al. [2004].

similar resolutions. The reduced latitude-longitude meshes do not generate spurious
waves (as do the coarser meshes of polygons) because the jet is perfectly aligned
with the unperturbed flow before the waves grow and so barotropic instability is not
generated by unbalanced truncation errors on the aligned latitude-longitude meshes.
However when this case is run on rotated reduced latitude-longitude meshes, results
are similar or worse than using the meshes of polygons [Weller et al., 2009].

The growth of errors with time on the different AtmosFOAM meshes is shown
in figure 6 – the root mean square normalised volumetric mean height errors (the `2

error norm) for the AtmosFOAM cases in comparison to the finest reduced latitude-
longitude mesh. There is an initial jump in the errors due to the coarser resolution
of the initial gravity wave adjustment. Between half and two days the errors of the
coarser models grow very little. After 2.5 days the errors on polygonal meshes grow
more quickly due to the barotropic waves triggered by the non-alignment of the
meshes.

When creating adapting meshes of polygons in section b, a finest resolution
of 60km is used as this appears to represent the barotropic wave with reasonable
accuracy (despite slightly enhanced wave growth at around 115◦E at 6 days in fig
5) while being cheaper to compute than the mesh of 30km polygons.
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0 1 2 3 4 5 6
time (days)

1e-07

1e-06

1e-05

0.0001

0.001

0.01

139km lat-lon
70km lat-lon
120km polygons
60km polygons
30km polygons

Figure 6. Root mean square normalised volumetric mean height errors (`2) of the barotrop-
ically unstable jet on fixed meshes relative to the finest reduced latitude-longitude mesh
(576×1152).

(b) Predictive Adaptive Meshing Results

The barotropically unstable jet is simulated with a mesh of polygons adapting
every T = 12 hours with a fixed time step of 5 minutes and a finest resolution
of 60km, simulating the 12 hours in advance using a coarse mesh and adapting
based on various critical values of the two refinement criteria, R = η =

√
ζ2+δ2

and R = |∇η| as defined in table 1. The coarse mesh consists of 2,562 quasi-

R Rrc Ruc shorthand

η 2×10−5s−1 ηc = (2, 2)×10−5s−1

η 4×10−5s−1 ηc = (4, 4)×10−5s−1

η 8×10−5s−1 ηc = (8, 8)×10−5s−1

η 2×10−5s−1 8×10−5s−1 ηc = (2, 8)×10−5s−1

|∇η| 1×10−10s−1m−1 |∇η|c = (1, 1)×10−10s−1m−1

|∇η| 2×10−10s−1m−1 |∇η|c = (2, 2)×10−10s−1m−1

|∇η| 4×10−10s−1m−1 |∇η|c = (4, 4)×10−10s−1m−1

|∇η| 1×10−10s−1m−1 4×10−10s−1m−1 |∇η|c = (1, 4)×10−10s−1m−1

Table 1. Various refinement criteria and their critical values used in the adaptive mesh

simulations of the atmosphere

uniform polygons (2,550 hexagons and 12 pentagons) with an approximate distance
of 480km in between cell centres. For each 12 hour period, 8 time steps of 90 minutes
are simulated on the coarse mesh which leads to a maximum flow CFL number of
about 0.9 and a maximum gravity wave CFL number of about 2 and 144 time steps
of 5 minutes are simulated on the adapted mesh which leads to a maximum flow
CLF number of about 0.4 and a maximum gravity wave CFL number of about 0.9.
As an example of the coarse mesh results, the simulated vorticity which is resolved
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12 H. Weller

on the coarse mesh and the injected, unreseloved vorticity which is purely advected
on the coarse mesh are shown in figure 7 from initialisation at 5.5 days until 6
days. These simulations are evidently not as accurate as the fine mesh results and

√

ξ2+δ2 initialised at 5.5 days

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

√

ξ2+δ2 injected at 5.5 days

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

√

ξ2+δ2 simulated until 6 days

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

√

ξ2+δ2 advected until 6 days

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

s
−1

0 2e−05 4e−05 6e−05 8e−05 0.0001 0.00012

Figure 7. Solutions on the coarse mesh initialised at 5.5 days and simulated until 6 days
using the refinement criteria, R = ηc = (4, 4)×10−5s−1

so cannot predict precisely where resolution will be needed. But the crests of the
waves are expanding polewards and the troughs in between the waves are expanding
to the south. So increased resolution will be created to the north and resolution
will be decreased in the troughs.

The vorticity fields at day 6 using all of the refinement criteria and critical
values are shown in figure 8 which also shows contours of the mesh resolution used to
simulate between days 5.5 and 6. All of the refinement criteria used give qualitatively
similar results to the fixed mesh solution in figure 8 apart from |∇η|c = (4, 4)×
10−10s−1m−1 which leads to a mesh which is too coarse. The height errors relative to
the mesh of fixed 60km polygons at six days are shown in figure 9. (Comparison with
results from fixed 60km polygons is not comparison with a referene solution but it
is comparison with the best achievable solution using an adaptive mesh with the
same minimum cell size.) This confirms the excessive errors using the refinement
criterion |∇η|c = (4, 4)×10−10s−1m−1 due to the triggering of spurious barotropic
instability where the mesh is non-uniform and too coarse.

Figure 9 shows that both the |∇η| criteria and |η| criteria give similar errors
for the area covered by the finest resolution. This can be understood with reference
to figure 8 which shows that in most places, high magnitudes of vorticity are co-
located with high vorticity gradients. The exception to this is in the wave troughs
on the southern flank of the jet at ∼ 300◦E and ∼ 0◦ where near uniform values of
non-zero vorticity are present. This then leads to the |∇η| criteria diagnosing lower
mesh density here than the η criteria. This leads to the |∇η| refinement criteria
giving meshes with fewer cells for the same errors as confirmed in figure 10 which
shows the number of cells as a function of time and the volumetric mean root mean
square error relative to the fixed uniform mesh. The errors of the fixed uniform

Article submitted to Royal Society



Predicting Mesh Density 13

163,842 quasi-uniform polygons

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

ηc = (2, 2)×10−5s
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

|∇η|c = (1, 1)×10−10s
−1

m
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

ηc = (4, 4)×10−5s
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

|∇η|c = (2, 2)×10−10s
−1

m
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

ηc = (8, 8)×10−5s
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

|∇η|c = (4, 4)×10−10s
−1

m
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

ηc = (2, 8)×10−5s
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

|∇η|c = (1, 4)×10−10s
−1

m
−1

90˚E 140˚E 190˚E 240˚E 290˚E 340˚E 30˚E 80˚E
0˚

20˚N

40˚N

60˚N

80˚N

relative vorticity (s−1) −0.00012 −8e−05 −4e−05 0 4e−05 8e−05 0.00012

Figure 8. Relative vorticity of the barotropically unstable jet of after 6 days on various
adaptive meshes. Contours show resolution, solid 80km, small dashed 160km, medium
dashed, 320km, long dashed 640km. Labels above plots show the refinement criteria.
Quasi-uniform mesh has approximate resolution 60km.

mesh of 60km polygons is also plotted relative to the reduced latitude-longitude
mesh of 35km resolution.

From figures 9 and 10, resolution depending on both the resolved and unresolved
components is clearly important. The large differences in errors between using,
for example, |∇η|c = (4, 4)×10−10s−1m−1 and (1, 4)×10−10s−1m−1 clearly show the
benefit of using a sufficiently low criterion for the resolved component. But if the
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Figure 9. Height errors of the adaptive mesh solutions relative to mesh of 163,842 quasi-u-
niform polygons of approximate resolution 60km after 6 days on various adaptive meshes.
Contours show resolution, solid 80km, small dashed 160km, medium dashed, 320km, long
dashed 640km. Labels above plots show the refinement criteria.

critical value for the unresolved component is too low (eg (1, 1)×10−10s−1m−1 then
high mesh density is predicted to be needed over too much area.

The initial jump in error for the adaptive mesh runs in figure 10 is larger than the
fixed quasi-uniform run with the same finest resolution because the initial gravity
wave adjustment phase which leads to this initial error consists of gravity waves
propagating globally which are not resolved by the adaptive mesh runs. The errors
then remain constant for a few days and the type of mesh refinement dictates when
the errors start to grow. The |∇η|c = (4, 4)×10−10s−1m−1 criterion which leads to
very few cells throughout the run leads to the earliest increase in errors and the
largest errors throughout. The errors in comparison to the fixed uniform mesh run
are larger than the errors of the fixed uniform mesh run and we can conclude that
this adaptation criterion is inadequate. The next cheapest adaptation criterion is
ηc =(8, 8)×10−5s−1. This is much larger than the value of critical relative vorticity
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Figure 10. Number of cells and root mean square volumetric mean height error relative to
mesh of 163,842 quasi-uniform polygons of approximate resolution 60km. The RMS error
labelled “uniform” is relative to the finest reduced latitude-longitude mesh.

of 3×10−5s−1 used by St-Cyr et al. [2008] and the errors start to increase after about
four days for this simulation, half a day earlier than the other simulations.

An adaptation criterion that appears to be an attractive compromise between
accuracy and efficiency from figures 8, 9 and 10 is |∇η|c = (1, 4)×10−10s−1m−1 as
the resolution is initially high and hence errors are initially low and errors do not
begin to grow until about 4.5 days. After 5 days the errors using this criterion grow
slightly more quickly than some of the other simulations but the number of cells
used grows very little, unlike the other criteria. This asymmetric criterion resolves
the initial features which are resolved on the coarse mesh prediction mesh well
because it uses the low value of |∇η|rc = 1×10−10s−1m−1 but does not resolve so
well the finer scale features which develop later in the simulation which are not well
represented on the coarse mesh because it uses |∇η|uc =4×10−10s−1m−1. This could
be an advantage for adaptive mesh modelling because if features continually cascade
to smaller scales until they are dissipated by molecular viscosity, mesh adaptation
criteria will put resolution everywhere unless criteria such as these which consider
more strongly the larger scales of the flow are used.

Using the favoured adaptation criterion of |∇η|c = (1, 4)× 10−10s−1m−1, the
vorticity before and after re-meshing at 5.5 days and the vorticity at 6 days are
shown in figure 11 and the mesh density is contoured. This shows the vorticity
of the jet filling up the region of finest mesh at 5.5 days before re-meshing. After
re-meshing new regions of fine mesh are created to the north in preparation for the
waves to grow northwards as is seen at day 6. Resolution is decreased in some of
the troughs on the southern flank of the jet due to the propagation of the waves
out of the fine mesh.

(c) The Benefits of Predictive Adaptive Meshing

The cost of predicting mesh density requirements on a coarse mesh (2,562 cells
in this case) is tiny in comparison to the refined mesh solutions which use tens of
thousands of cells. The cost of generating new unstructured meshes and mapping
solutions accurately between meshes has not been estimated as the mesh generation
has not been optimised and conservative mapping has not yet been done. This cost
is likely to be considerable which is the motivation for the infrequent adaptation.
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5.5 days, before re-meshing
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Figure 11. The mesh density (contours) before and after re-meshing at 5.5 days using the
|∇η|c = (1, 4)×10−10s−1m−1 criterion and the relative vorticity (colours) at 5.5 days before
and after interpolation and the vorticity simulated on the new mesh until 6 days

However if re-meshing and mapping is only done every 12 hours in comparison to
a time step of 5 minutes then this cost becomes insignificant.

The |∇η|c = (1, 4)×10−10s−1m−1 adaptation criterion leads to meshes with 26
to 48 thousand cells, 16% to 30% of the 163,844 cells of the quasi-uniform mesh of
polygons with the same finest resolution while the errors are very similar. This cost
saving is not enough to justify the use of adaptive meshing for weather or climate
forecasting alone. But for more realistic situations there could be greater benefits if
high resolution features are more sparsely distributed, for example fronts, tropical
cyclones and deep convection.

St-Cyr et al. [2008] compared finite volume and spectral element adaptive mesh
models using this test case and achieved accuracy very similar to their uniform
meshes using 21% of the adapting finite volumes or 23% of the adapting spectral
elements at day 6. This compares with AtmosFOAM which uses 21% of the cells
at day 6 using the |∇η|c = (1, 4)×10−10s−1m−1 adaptation criterion. However re-
meshing is done only every 12 hours using AtmosFOAM whereas St-Cyr et al.
[2008] adapt every time step (50 seconds) using their finite volume model or every
20 minutes (400 time steps) using their spectral element model. Läuter et al. [2007]
simulated a slower jet with a shallow water model adapting every time step and
found a 22% saving in number of cells at day 15 in comparison to a uniformly fine
mesh. The mesh density prediction gives a very impressive result; meshes with the
same density of cells are generated but re-meshing only needs to be done every 12
hours for this case as opposed to every 50 seconds or 20 minutes when adapting
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based on instantaneous criteria. This means that much more effort can be put into
the mesh to mesh mapping to ensure greatest accuracy as this does not need to be
done frequently.

6. Summary and Conclusions

A method of solving equations of motion on adapting meshes of polygons on the
sphere is presented. The aim is to calculate in advance where high resolution is
likely to be needed so that re-meshing need only be done infrequently. This reduces
the cost of re-meshing by up to the reduction in frequency, for example re-meshing
every 12 hours rather than every 20 minutes will reduce the cost of re-meshing by
up to a factor of 36. In practice the gain will be less than this because of the small
additional cost of the mesh density prediction step.

The prediction of mesh density is done by mapping the latest conditions onto
a coarse mesh and thus solving the equations of motion cheaply until the next re-
meshing time. Refinement criteria are accumulated on the coarse mesh over this
simulation so that a locally refined mesh can be generated in order to simulate this
period again more accurately, starting from the latest conditions mapped directly
from old to new refined meshes.

Two refinement criteria, Rr and Ru, are accumulated simultaneously on each
coarse mesh in order to determine where fine resolution will be needed (where
subscript r refers to the component of the flow which is resolved on the coarse
mesh and subscript u the component which may not be well resolved on the coarse
mesh). Two formulations for R have been tested, R = η =

√
ζ2 + δ2 where ζ is the

relative vorticity and δ is the divergence and R = |∇η|. The resolved component, Rr

is simply calculated from the solution on the coarse mesh at every coarse mesh time
step. Ru is calculated initially for the latest time on the locally refined mesh and,
for each coarse mesh cell, the maximum value over each fine mesh cell whose centre
lies within the coarse mesh cell is taken and this value is injected into the coarse
mesh cell. These injected values are then advected passively on the coarse mesh and
refinement criteria are again accumulated at each time step. A combination of the
two refinement criteria determines the mesh density for generating a new locally
refined mesh for simulating the flow accurately.

It was expected that mesh density prediction together with infrequent adapta-
tion would lead to higher simulation costs at the expense of reduced re-meshing and
mapping costs due to the generation of meshes with significantly more cells than
adaptation based on instantaneous values. However this has not been found to be
the case for the test case studied: meshes have a similar density of cells in compar-
ison to adaptive mesh models which re-mesh much more frequently [Läuter et al.,
2007, St-Cyr et al., 2008]. The prediction of the mesh density requirements means
that high resolution mesh is created in regions before it is needed which has great
accuracy advantages – in particular it means that these simulations are accurate
even using simple, non-conservative and non-bounded mesh to mesh interpolation.

Weller et al. [2009] have shown that there may be accuracy advantages in using
unstructured meshes to simulate the global atmosphere due to the possibility of
using spatially smoothly varying refinement rather than abrupt block structured
refinement with 2:1 cell splitting. If this is used with occasional re-meshing and
mesh density prediction as described here then adaptive unstructured meshes may
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also prove efficient and higher order numerical schemes which can be expensive
to set up on unstructured meshes [eg Läuter et al., 2008] can also be used cost-
effectively.

Extending the mesh density prediction technique to three dimensions leads to
some interesting questions: if mesh adaptation is to be uniform in the vertical direc-
tion, should simulations to predict mesh density requirements be two dimensional
representations of the 3D atmosphere? This would ensure very low cost of the mesh
density prediction. It may work for some barotropic features of the mid-latitudes
but probably not for baroclinic states or tropical disturbances. So the mesh density
prediction will probably need to be 3D in order to predict a 3D mesh with 2D
refinement. But, given the value of current weather and climate predictions which
use coarse resolution, coarse resolution will probably be effective for mesh density
prediction.

Adaptive meshing could be particularly beneficial for resolving deep tropical
convection, one of the weakest sub-grid scale parameterizations in current climate
models. However it is not clear how to diagnose where to place resolution before
convection breaks out, as convection can only break out with realistic timing where
resolution is already high. This problem may be surmountable if current convection
parameterizations are re-tuned to predict mesh density requirements rather than
using them to predict convection. This could fit in easily alongside the mesh density
prediction method presented here.

Finally, the infrequent re-meshing made possible by mesh density prediction will
make domain decomposition and parallelisation more efficient as cells will need to
be moved between processors less frequently during the load balancing necessary
on re-meshing.

To conclude, infrequent mesh adaptation and mesh density prediction will make
adaptive modelling of the atmosphere more efficient and will allow for more accurate
mapping on adaptation. This comes at a small additional cost of the mesh prediction
step and potentially some additional cost of having larger areas with high mesh
resolution, although this has not been found for the test case presented.
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