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Abstract 
 

Assimilation of observations acts as an essential part in convective-scale numerical weather 

prediction (NWP). However, an increasingly dense observing network is providing a vast 

quantity of daily observing data, imposing computational challenges to the data assimilation 

(DA) system. Understanding the contribution of each observation in DA benefits the 

deployment and selection of observations in the real world. This thesis uses the observational 

influence matrix as a diagnostic tool to monitor the sensitivity of analysis to the observations 

in the presence of convection and precipitation. A set of ‘twin experiments’ are conducted in 

an idealised fluid model developed by Kent et al., (2017). The model modifies the shallow 

water equations (SWEs) and is able to represent the dynamics of two basic scenarios: Rossby 

adjustment and non-rotating flow over topography. The self-sensitivities of each variable and 

the cross-sensitivities between variables are calculated and analysed at each assimilation cycle 

for both scenarios. 

Results show the overall influence of the observing system accounts for around 20% of the 

analysis, which is comparable to the typical observational influence in operational DA. 

Observations of pressure and rain mass are more valuable near convective cores while less 

influential in geostrophically-balanced regions. Similarly, the self-sensitivities of winds are 

large at places with dramatic variations of windspeed. It is shown that the observational density 

also impacts the behaviour of observations in DA. That is the observational influence is high in 

data-sparse regions while low in data-rich areas, which is attributed to the idea of ‘data 

redundancy’. Overall, observations of pressure are found to be the most influential type in this 

study, however their influence can be compensated by other observational types when removed 

from the observational system. Lastly, this study demonstrates the importance of a well-tuned 

system for the interpretation of the observational influence diagnostic. In the Rossby adjustment 

scenario, the ensemble spread is found to be insufficient, as such the observations are given 

progressively less weight in the data assimilation than they would have received with a well-

tuned ensemble. These results provide insight into how observations can be utilised in the most 

beneficial way for operational convective-scale DA.  

 

Key words: Observational influence, self-sensitivity, data assimilation, fluid model, Rossby 

adjustment, non-rotating flow over topography 
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Chapter 1 

Introduction 
 
This chapter provides an overview of the motivations behind the study of this thesis, 

illustrating the observational issues in data assimilation and the necessity for 

investigating the observational influence in the presence of convection. 

 

1.1 Motivation  

Accurately estimating the state of the atmosphere is never an easy problem. Usually 

one is provided with imperfect background information, model forecast, and separate 

real-time observations. Data assimilation (DA) offers a means to optimise the initial 

condition by combining the model forecast with meteorological observations, taking 

into account their respective uncertainties (Kent et al., 2017). Since satellites, radar and 

other innovations in observations are becoming much cheaper than before, today’s 

observing network is becoming ever denser, providing a vast quantity of daily 

observations, which imposes computational and scientific challenges to DA system and 

therefore forecast abilities. Hence, better knowledge is required on the important role 

of observations in DA, what kind of observations are most significant for weather 

prediction and where to put priorities and resources (Necker et al., 2019).  

 

Relevant studies have been conducted to investigate the value of observations in 

forecasts, based on a global view. For example, Cardinali et al., (2004) estimated that 

for a typical global forecast model, around 18% of the DA analysis is attributable to the 

assimilated observation, which means that for synoptic scales, observations act as an 

adjustment of the prior model forecast to make it closer to the truth, rather than a 

replacement. (The basis for making such an estimate is discussed in Section 3.3.2). 

However, few researches have focused on the observational influence in a limited 

region with convective activities. This raises questions about the observation influence 

on the forecast on a convective scale, which is much more difficult to resolve than large 

scales. Will the observations be more valuable to DA or not? It is worth investigating 

such a topic since measurement of observational influence benefits the understanding 
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of DA and hence the model forecast ability which is crucial particularly in coping with 

hazardous convective weather. 

 

1.2 Project aims 

In this study, a fluid dynamic model with its DA system proposed by Kent et al., (2017) 

is applied to assess the performance of DA, as well as the value of different 

observational variables (pressure, winds and rain mass) in the presence of convection 

and precipitation. Via the results of these experiments, the thesis aims to answer the 

following questions: 

 

1. How important are the observations of each variable in DA in convective 

regions?  What are the requirements for the observational density for the 

different variables?  

2. How much would the influence of the observing system change if one 

influential observational type is removed?  

3. How does the observation influence correspond to the accuracy of the analysis? 

Does each observation give optimal influence on the forecast? 

 

1.3 Outline 

The outline of this thesis is as follows. In section 2, a brief review of the evolution of 

forecasts of convective rainfall is given. Section 3 discusses in depth the construction 

and the dynamics of the idealised fluid model and the theory of ensemble Kalman 

filtering, along with the diagnostics for assessing the observational influence in DA 

system. The experimental design for different model scenarios and the set-up of the 

model parameters are presented in Section 4. The results addressing the above questions 

are discussed in detail in Section 5. Finally, section 6 provides a conclusion of the 

results, along with potential directions for further researches in the future. 
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Chapter 2  

How is convective rainfall forecasted? 

Damage from extreme convective rainfall disrupts normal life and imposes financial 

burdens of individuals and local society, indicating the importance of accurate forecast 

of convective-scale precipitation (Schroeer and Tye, 2019). However, the long 

evolution of weather forecasting proves that predicting weather has never been an easy 

task, especially at a convective scale. Numerical weather prediction (NWP) models 

have been utilised to produce rainfall forecast for more than 50 years (Clark et al., 2016). 

NWP can be simply defined as the process of predicting the weather based on the 

observations of current atmospheric conditions, as well as the ‘first guess’ of forecast 

models, which is generated from a previous short-term forecast using a numerical 

integration of physical laws representing atmospheric dynamics and thermodynamics 

(Clark et al., 2016).  

 

Traditional NWP models which focus on synoptic scales of motion, such as midlatitude 

cyclones and fronts, suffer from restrictions when simulating convective-scale 

processes. One of the biggest restrictions is that with horizontal grid spacing normally 

larger than 10 km, the physical laws inside the model are based on hydrostatic and 

geostrophic balance (White et al., 2005). However, these balances can no longer 

describe the convection since the vertical acceleration starts to affect the convective 

activities. Also, due to the low resolution, these large-scale models rely on convective 

parameterisation schemes to represent the impacts of deep convections on the synoptic-

scale flow. Normally the parameterisation schemes treat updrafts and downdrafts as 

plumes that entrain and detrain, based on the idea of mass conservation (Pradhan et al., 

2018). However, since the cloud evolution is parameterised and flow is not identifiable 

in model grids, the parameterisation of deep convections is regarded as a major source 

of uncertainties in large-scale models (Prein et al., 2015). For example, Prein et al., 

(2013) and Brockhaus et al., (2008) argued that the convection parameterisation leads 

to an underestimation of hourly precipitation intensities and the misrepresentation of 

the diurnal cycle of precipitation, and Berg et al., (2013) suggested that the frequency 

of weak precipitation event is normally overestimated in large-scale models.  
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NWP models have been largely improved due to the steady increase in computing 

power over the last few decades, allowing the running of operational NWP models with 

horizontal grid space being restricted to less than 4 kilometres (Sun et al., 2014). 

Models with higher resolutions provide the possibility of explicitly representing the 

convective activities without the need for convective parameterisation. This kind of 

models are referred to as convection-permitting models (CPMs) which operate on 

kilometer scale (Prein et al., 2015). CPMs manage to ‘see’ the evolution of convection, 

but cannot well represent individual convective storms, since deep convection with a 

typical horizontal scale of 1-5 km usually takes up very few grid points in the model. 

Hence it is ‘convection permitting’ rather than ‘convection resolving’.  

 

Unlike models using the convective parameterisation schemes, CPMs allow the 

unstable growth of convective clouds on the grid. In a typical convective process, 

release of latent heat through condensation may allow a few grid points of the model to 

become buoyant with respect to its surroundings, leading to the evolution of vertical 

circulations and then the formation of deep clouds. In practice, such models often 

contain a parameterisation of partial cloud cover, enabling condensation to occur when 

the ‘resolved’ flow (updraughts, cloud-scale downdraughts and larger-scale subsidence) 

is not yet saturated (Clark et al., 2016). In addition, CPMs allow a better representation 

of fine-scale orography and surface fields which is significant for the initiation of 

convection in mountainous areas or regions with heterogeneous land surfaces (Fosser, 

Khodayar and Berg, 2014; Prein et al., 2015). Figure 2.1 shows the benefit of predicting 

convection precipitation using CPMs. Each grid in the global model calculates the 

rainfall independently through a parameterisation scheme, resulting in a general 

likelihood and areas of presence of precipitation rather than the explicit description of 

what the convective cells would look like. In contrast, the UKV CPM with 1.5 km grid 

space manages to produce a more explicit location of lines of shower as well as small-

scale cells.  
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Figure 2.1: Case of convective precipitation over the UK on 8 July 2014 from (a) 

Radar, (b) Met UM Global model (T+12), (c) Euro 4 (T+12) and (d) UKV T+9 (1.5 

km convection-permitting model). From Clark et al., (2016). 

 

 

However, it also shown in Figure 2.1 that even a high-resolution model cannot produce 

perfect forecasts by comparing with the radar image. Lorenz (1963) demonstrated the 

chaotic characteristic of the atmosphere, which will lead to the rapid growth of small 

errors in the initial conditions. Thus, atmospheric predictability has an upper limit even 

if the forecast model and its physical laws are perfect. This emphasizes the necessity of 

regular re-initialisation of the model using updates from observations. Also, to assess 

the uncertainties of the forecast, an ensemble of forecasts is usually constructed to 

provide a range of possible solutions for further states.  
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Chapter 3 

Idealised fluid model and data assimilation 

3.1 Idealised fluid model 

3.1.1 Classical shallow water equations  

The shallow water equations (SWEs) are widely used to understand the dynamics of 

Earth’s atmosphere and oceans. They describe the motion of an incompressible thin 

layer of fluid of constant density in hydrostatic balance. A constant or variable Coriolis 

parameter may be used, and the layer is bounded by the bottom topography below and 

a free surface above (Zeitlin, 2007). The equations are derived from Navier-Stokes 

equations, assuming that the horizontal length scale is much larger than the vertical 

length scale, which means that the depth of flowing fluid, under the condition of mass 

conservation, is much less than the wavelength of disturbance brought to the free 

surface (Kent et al., 2017).  

 

Based on a Cartesian 𝑓-plane where dynamical variables are independent along one 

coordinate, the standard SWEs for variations only in the 𝑥 coordinate can be described 

by the following equations (see Kent et al., (2017)):  

 

𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢) = 0,                                                                       (3.1a) 

𝜕𝑡(ℎ𝑢) + 𝜕𝑥(ℎ𝑢2 + 𝑝(ℎ)) − 𝑓ℎ𝑣 = −𝑔ℎ𝜕𝑥𝑏                             (3.1b) 

𝜕𝑡(ℎ𝑣) + 𝜕𝑥(ℎ𝑢𝑣) + 𝑓ℎ𝑢 = 0,                                                    (3.1c) 

where ℎ = ℎ(𝑥, 𝑡) represents the space- and time-dependent fluid depth, 𝑏 = 𝑏(𝑥) is 

the given height of bottom topography (so that the height of free surface is expressed 

as ℎ(𝑥, 𝑡) + 𝑏(𝑥)), 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) are the horizontal wind velocity in the zonal and 

meridional directions, 𝑝(ℎ) is the effective pressure term, with the standard form as 

𝑝(ℎ) =
1

2
𝑔ℎ2 , and 𝑓  and 𝑔  are Coriolis parameter and gravitational acceleration 

respectively. Compared to a purely one-dimensional model, this series of equations add 

features of transverse flow 𝑣  and Coriolis effects, allowing the simulation of more 
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sophisticated dynamics relevant to rotating fluids, such as geostrophic wind, while 

remaining computationally inexpensive.  

 

3.1.2 Modified shallow water model 

Kent et al., (2017) proposed a modified rotating shallow water (modRSW) model, 

mimicking the conditional instability and the transport of moisture through a rain mass 

fraction term ‘ 𝑟 ’. Moreover, the binary ‘on-off’ nature of convective cloud and 

precipitation, which is hard to resolve in most NWP models, is simulated in the form 

of two specific threshold heights. When fluid heights exceed certain thresholds, it can 

be seen as the onset of convection or precipitation and the classical shallow water 

dynamics are transformed into a simplified cumulus convection. The equations 

contained in modRSW model can be written as: 

 
𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢) = 0,                                                                        (3.2a) 

𝜕𝑡(ℎ𝑢) + 𝜕𝑥(ℎ𝑢2 + 𝑃) + ℎ𝑐0
2𝜕𝑥𝑟 −  𝑓ℎ𝑣 = −𝑄𝜕𝑥𝑏,                 (3.2b) 

𝜕𝑡(ℎ𝑣) + 𝜕𝑥(ℎ𝑢𝑣) + 𝑓ℎ𝑢 = 0,                                                     (3.2c) 

𝜕𝑡(ℎ𝑟) + 𝜕𝑥(ℎ𝑢𝑟) + ℎ𝛽𝜕𝑥𝑢 + 𝛼ℎ𝑟 = 0,                                      (3.2d) 

where the mass (Eq 3.2a) and ℎ𝑣 momentum (Eq 3.2c) equations remain unchanged 

compared to the classical SWEs of the previous subsection. The ℎ𝑢  momentum 

equation (Eq 3.2b) includes a ‘rainwater mass potential’, 𝑐0
2𝑟, and modified effective 

pressure terms P and Q, which are defined as:  

  

𝑃(ℎ; 𝑏) =  {
 𝑝(𝐻𝑐 − 𝑏),          𝑓𝑜𝑟 ℎ + 𝑏 >  𝐻𝑐 ,                       

𝑝(ℎ),                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 
        (3.3a) 

 

𝑄(ℎ; 𝑏) =  {
 𝑝′(𝐻𝑐 − 𝑏),         𝑓𝑜𝑟 ℎ + 𝑏 >  𝐻𝑐 ,                       

𝑝′(ℎ),                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                 
        (3.3b) 

Moreover, an equation for the rain mass fraction 𝑟 (Eq 3.2d) is added to close the 

system, including advection and source and sink terms. The ‘rain switch’ term  𝛽 is 

expressed as below: 
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 𝛽 = {
𝛽,                      𝑓𝑜𝑟 ℎ + 𝑏 > 𝐻𝑟 𝑎𝑛𝑑 𝜕𝑥𝑢 < 0,      
0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                          

                  (3.4) 

 

The positive constants 𝛼  and 𝛽  determine respectively the rates of removal and 

production of model ‘precipitation’ (which is represented via the rain mass fraction 𝑟). 

𝐻𝑐 and 𝐻𝑟 (𝐻𝑐 < 𝐻𝑟) are critical heights for the onset of convection and precipitation 

respectively (see Figure 3.1). 

 

When ℎ + 𝑏 < 𝐻𝑐  and r equals to zero initially, the model is restricted to the classical 

shallow model (Eq 3.1), and there is no model ‘rain’. The first modification to the 

classical shallow water model occurs whilst the free surface height ℎ + 𝑏 exeeds 𝐻𝑐 in 

Eq 3.3, enabling the representation of cumulus convection. Initiation of convection in 

nature occurs when air parcels reach their level of free convection (LFC), where the 

latent heat is released due to condensation, causing the air parcel to achieve positive 

buoyancy and accelerate further upwards. This rising mechanism is represented through 

modifying the pressure terms (Eq 3.3) here: the modified pressure above 𝐻𝑐 (which can 

be regarded as LFC), namely 𝑝(𝐻𝑐 − 𝑏) =
1

2
𝑔(𝐻𝑐 − 𝑏)2, is lower than the standard 

pressure 𝑝(ℎ) =
1

2
𝑔ℎ2 at the same height, owing to which the model is more easily able 

to reach some large values of h. Also, this in a sense implies the fluid is forced to rise, 

although a rising motion cannot be explicitly represented by the model since the SWEs 

do not contain the vertical velocity.   
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Figure 3.1.  Schematic of free surface height (top) and model ‘rain’ 𝑟 (bottom). The 

black dotted lines (𝐻𝑐 < 𝐻𝑟) are threshold heights for convection and precipitation. 

From Kent et al., (2020). 

 

 

Model ‘precipitation’ is produced (𝑟 > 0) when the height of free surface exceeds the 

second threshold 𝐻𝑟 , which is slightly higher than 𝐻𝑐  in order to ensure that 

precipitation occurs later than the onset of free convection. Meanwhile, there is also a 

requirement for horizontal wind convergence (𝜕𝑥𝑢 < 0) for precipitation to form. The 

tunable parameter 𝛽 (in Eq 3.4) controls the amount of precipitation produced. Once 

the model ‘rain’ forms, it feeds back to the ℎ𝑢 momentum equation (Eq 3.2b) through 

term ℎ𝑐0
2𝜕𝑥𝑟 (𝑐0

2 is tunable and controls the strength of the feedback), and is reduced 

through a linear sink term associated with the tunable parameter 𝛼 (Eq 3.2d). It is 

demonstrated in Kent et al., (2017) that the model ‘rain’ 𝑟 can be thought of as the mass 

fraction of precipitated water that is active in the system, which is different from natural 

rain.  
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3.1.3 Model scenarios 

The modRSW model applied in this project is designed to cover two major scenarios: 

(i) Rossby adjusted rotating flow and (ii) non-rotating flow over topography, both of 

which have rich histories of research in shallow water theory (Ford, 1994; Ward et al., 

2010).  

 

Rossby adjustment dynamics illustrate the evolution of free surface height when a 

disturbance caused by a transverse jet is imposed on an initial rest state. The height field 

in the model evolves rapidly to adjust the initial momentum imbalance, including 

emitting gravity waves and shocks away from the jet core, before reaching geostrophic 

balance. Gravity waves are known to be generated also by deep convection and can 

give possible feedbacks on the initiation of convection, implying that the models based 

on SWEs are suitable to investigate the convective-scale phenomenon (Jewtoukoff, 

Plougonven and Hertzog, 2013; Kent et al., 2017).  

 

Figure 3.2 shows an example of gravity waves found in the experiments in Kent et al., 

(2017): low-amplitude gravity waves can be seen propagating to the left of the 

convective cores in the left graph and in the Hovmoller plot of the evolution of h (the 

middle graph). Also, in real situations, multicellular convection systems can occur: 

these are most commonly found in midlatitudes and are characterised by repeated 

development of new cells along the gust front, which enables the survival of a large 

convective system (Markowski and Richardson, 2011; Kent et al., 2017). This 

mechanism of this positive feedback can be basically represented in the model, as the 

gravity wave instigated here propagates to the left and can act to initiate a new region 

of weak convection and rainfall separated from the major convection. This is shown in 

the Hovmoller plot of the evolution of rainfall (the right graph in Figure 3.2) (see detail 

in Kent et al., (2017)).  
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Figure 3.2: Time evolution of the height profile ℎ(𝑥, 𝑡) (left) and the hovmoller plot 

of the evolution of the height profile ℎ(𝑥, 𝑡) (middle) and the rainfall 𝑟(𝑥, 𝑡) (right). 

Adapted from Kent et al., (2017). 

 

 

Motivated by the experiments of Rossby adjustment scenario in Kent et al., (2017) and 

Kent et al., (2020), the shape of the initial profile of transverse v(x) used for this thesis 

is that employed by Kent et al., (2017): 

 

𝑁𝑣(𝑥) =
(1 + tanh(4𝑥 + 2))(1 − tanh(4𝑥 − 2))

(1 + tanh (2))2
, 

which produces four transverse jets with opposite directions. The initial conditions are 

ℎ(𝑥, 0) + 𝑏(𝑥, 0) = 1, ℎ𝑢(𝑥, 0) = ℎ𝑟(𝑥, 0) = 0, and ℎ𝑣(𝑥, 0) = 𝑁𝑣(𝑥) (Figure 3.3). 

The height of topography 𝑏(𝑥) is zero throughout the domain to simplify the case. 

 

ℎ
(𝑥

,𝑡
) 

0    0.25    0.5    0.75    1 

                       x 

(3.5) 

0    0.25    0.5    0.75    1 

 

 

                       xx 

x x 
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Figure 3.3: The initial conditions of variables in the rotating flow case. From the top 

to bottom: h(x)+b(x), u(x), r(x), and v(x). 

 

 

The thesis also considers a case of non-rotating flow over topography. For that case, a 

superposition of sinusoids is considered as the underlying surface, which is defined as: 

 

𝑏(𝑥) = {
∑ 𝑏𝑖

3
𝑖=1 ,     for 𝑥𝑝 < 𝑥 < 𝑥𝑝 + 0.5

0,                elsewhere                       
,                              (3.6a) 

with 𝑏𝑖 = 𝐴𝑖 (1 + cos (2𝜋(𝑘𝑖(𝑥 − 𝑥𝑝) − 0.5))),                      (3.6b) 

where 𝑥𝑝 = 0.1, 𝑘 = {2, 4, 6}, and 𝐴 = {0.1, 0.05, 0.1}. In the non-rotating case, as the 

transverse velocity v is zero, only three variables are taken into account: h, u, and r, and 

the flow is purely one-dimensional in space. The initial conditions of these variables 

are shown in Figure 3.4, where ℎ(𝑥, 0) + 𝑏(𝑥, 0) = 1, ℎ𝑢(𝑥, 0) = 1, and ℎ𝑟(𝑥, 0) = 0.  
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Figure 3.4: The initial conditions of variables in the non-rotating flow case. From the 

top to bottom: h(x)+b(x), and r(x). The black line in the top panel shows the shape of 

topography b(x). 

 

 

A series of numerical experiments based on these two scenarios have been conducted 

by Kent et al., (2017) and the outputs clearly illustrate aspects of convection and 

precipitation, highlighting the well-designed dynamics of the model. Also, it has been 

demonstrated by Kent et al., (2020) that the model provides an idealised testbed for 

studying the DA system in the presence of convection and precipitation, and hence it 

provides an approach to investigate the key questions of this project.  

 

3.2 Data assimilation: Ensemble Kalman Filter 

Data assimilation is the process of combining imperfect observations with prior 

knowledge (e.g. previous model forecasts) to obtain a more realistic estimate of the 

state of the system and the associated uncertainties (Katzfuss et al., 2016). According 

to Ha and Snyder (2014), the Ensemble Kalman Filter (EnKF) is a sophisticated 

statistical method of DA that directly extracts the dynamical information from previous 

forecasts and obtains the weighting of observations and model background via 

inhomogeneous background error covariances. The EnKF follows the same conceptual 
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framework as the Kalman filter, however the state distribution is represented by an 

‘ensemble’, which is propagated forward through time and updated when new data is 

added in. The ensemble representation is a form of dimension reduction, which leads 

to computational feasibility even for very high-dimensional systems (Katzfuss et al., 

2016). Figure 3.5 is an example of ensemble trajectories of forecast, analysis and truth 

in the model, which shows the basic data assimilation problem: adjusting the forecast 

via perturbed observations to better estimate the true state. 

 

 

 

Figure 3.5: An example snapshot of forecast (a), analysis (b) and the truth (green 

lines) in the non-rotating flow case at t = 0.432 in this project. Only three variables 

(h+b, u, r) are present. The light pink and blue lines show each ensemble member of 

the forecast and analysis respectively. The black line in the top panel is topography b 

and the green dots with error bars are pseudo-observations. The analysis ensemble 

mean (the bright blue line) shows less discrepancies to the truth than forecast 

ensemble mean (the bright pink line), indicating the effect of adding observations.  

 

 

The Monte Carlo approach to EnKF starts from creating a finite number of 

perturbations to the initial condition, which is the same as the size of ensemble 

(Stephenson and Doblas-Reyes, 2000). The ensemble attempts to sample the 

probability density function (pdf) of the true state. As is typical in Monte Carlo 

approaches, the best estimation of the state in a linear system is present as the ensemble 

mean �̅� which denotes the model state:  

(a) (b) 
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�̅� =
1

𝑁
∑ 𝑿𝑗

𝑁
𝑗=1 ,                                                     (3.7) 

where 𝑿𝑗 is the state of the  𝑗𝑡ℎ member of the ensemble. The forecast error covariance 

is then calculated through the finite ensemble: 

 

𝑷𝑒
𝑓

=
1

𝑁−1
∑ (𝑿𝑗 − �̅�)𝑁

𝑗=1 (𝑿𝑗 − �̅�)𝑇 =
1

𝑁−1
𝑿𝑿𝑇 ,                       (3.8) 

where the forecast errors are derived from the perturbations from the ensemble mean 

rather than the truth. 

 

EnKF consists of a forecast step and an analysis step at each time step. During the 

forecast step, for an N-member ensemble, the forecast state of the  𝑗𝑡ℎ member 𝑿𝑗
𝑓
 at 

time 𝑡𝑖 is determined from the analysis 𝑿𝑗
𝑎 at time 𝑡𝑖−1 as propagated forwards in time 

with the (imperfect) forecast model ℳ (see Kent et al., (2017)): 

 

𝑿𝑗
𝑓(𝑡𝑖) = ℳ[𝑿𝑗

𝑎(𝑡𝑖−1)] , 𝑗 = 1, … , 𝑁.                                   (3.9) 

Then, in the analysis step, observations are merged with information from the previous 

forecast step to give a best estimation (analysis state) of the truth. In this step, a 

randomly perturbed observational vector 𝒚𝑗  at 𝑡𝑖  is assimilated into the system, 

yielding the analysis state at 𝑡𝑖: 

 

𝑿𝑗
𝑎(𝑡𝑖) = 𝑿𝑗

𝑓(𝑡𝑖) + 𝑲𝑖 (𝒚𝑗 − 𝑯𝑖𝑿𝑗
𝑓(𝑡𝑖)),                             (3.10) 

𝑲𝑖 = 𝑷𝑖
𝑓

𝑯𝑖
𝑇(𝑯𝑖𝑷𝑖

𝑓
𝑯𝑖

𝑇 + 𝑹)−1,                                     (3.11) 

where 𝑲𝑖 is the Kalman Gain matrix, representing the weight of observations to the 

analysis, 𝑷𝑖
𝑓

 is the forecast error covariance matrix updated through the Monte Carlo 

method during the 𝑖𝑡ℎ cycle of DA, and 𝑯𝑖 is the linear observation operator, which 

maps from model space to observational space to allow direct comparison between the 

two. The analysis error covariance 𝑷𝑖
𝑎 is linked to 𝑷𝑖

𝑓
 through an identity matrix 𝑰, the 

gain matrix 𝑲𝑖 and the linear observation operator 𝑯𝑖: 
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𝑷𝑖
𝑎 = (𝑰 − 𝑲𝑖𝑯𝑖 )𝑷𝑖

𝑓
,                                                (3.12) 

As for a stochastic update, the observations are treated as a perturbed ensemble as: 

 

𝒚𝑗 = 𝒚 + 𝝐𝑗
𝑜 ,    𝝐𝑗

𝑜~𝒩(0, 𝑹),                                       (3.13) 

where the distribution of the observational vector 𝒚𝑗  has the mean equal to the 

measured observation 𝒚  and the error 𝝐𝑗
𝑜  following a Gaussian distribution with 

covariance matrix 𝑹. R is chosen to represent the uncertainty in the observations, which 

includes instrument error and uncertainty in the observation operator. 

 

It is worth mentioning that according to Stephenson and Doblas-Reyes (2000), an 

ensemble with finite size is likely to converge slowly and to under-sample the true pdf 

of the atmospheric state particularly when the number of degrees of freedom of the 

model is much larger. Hence, the Monte-Carlo nature of EnKF could lead to sampling 

error since there are finite number of ensemble members in the forecast model ℳ, 

typically at 10 to 100, which is much smaller than the number of degree of freedom in 

the model (Kent et al., 2020). Ensemble inflation techniques are applied to mitigate the 

problems caused by under-sampling, attempting to maintain a sufficient ensemble 

spread, for example by artificially adding random Gaussian perturbations 

𝜂𝑗 ~ 𝒩(0, 𝛾𝑎
2𝑸) during the forecast step (Eq 3.9): 

 

𝑿𝑗
𝑓(𝑡𝑖) = ℳ[𝑿𝑗

𝑎(𝑡𝑖 − 1)] + 𝜂𝑗 , 𝑗 = 1, … , 𝑁,                           (3.14) 

where the model error matrix Q is prescribed from some knowledge of the modelling 

system and 𝛾𝑎  is a tuneable parameter controlling the overall magnitude of the sample 

perturbations (Kent et al., 2017).  

 

Ensemble error and spread 

The accuracy of ensemble performance can be quantified by the root mean square error 

(RMSE) of the ensemble as well as the ensemble spread (SPR). They can be computed 

either for the for the forecast or the analysis so that the ensemble at both stages can be 

verified. The RMSE is defined as: 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (�̅�𝑘 − 𝑥𝑘

𝑡 )2𝑛
𝑘=1 , where �̅�𝑘 =

1

𝑁
∑ 𝑥𝑘,𝑗 ,𝑁

𝑗=1                   (3.15) 

and �̅�𝑘 can be the ensemble mean of the kth component of either the analysis or the 

forecast vector, and 𝑥𝑘
𝑡  is the kth component in the truth (the nature run) vector 𝒙𝑡. In 

addition, the SPR among ensemble members is derived from the root mean square 

difference between the ensemble mean and ensemble members, which for the forecast 

can be expressed as:  

 

𝑆𝑃𝑅_𝑓𝑐 =  √
1

𝑁−1
∑

1

𝑛
𝑁
𝑗=1 ∑ (𝑥𝑘,𝑗 − �̅�𝑘)2𝑛

𝑘=1 ≡ √
1

𝑛
𝑇𝑟(𝑃𝑒

𝑓
),                    (3.16) 

where the Tr (𝑃𝑒
𝑓
) means the trace of the forecast error covariance matrix, calculated 

by the sum of the diagonal values, and 𝑥𝑘,𝑗 denotes the forecast vector. Similarly, for 

the analysis: 

 

𝑆𝑃𝑅_𝑎𝑛 =  √
1

𝑁−1
∑

1

𝑛
𝑁
𝑗=1 ∑ (𝑥𝑘,𝑗 − �̅�𝑘)2𝑛

𝑘=1 ≡ √
1

𝑛
𝑇𝑟(𝑃𝑒

𝑎),                    (3.17) 

where 𝑥𝑘,𝑗 is from the analysis vector, and 𝑃𝑒
𝑎 is the analysis error covariance matrix. 

Comparison of the SPR and RMSE statistics provides a simple but important diagnostic 

on the reliability and suitability of the generated ensemble in the EnKF (Kent et al., 

2020): the magnitude of SPR of an ideal ensemble is expected to be the same as the 

RMSE at the same lead time in order to adequately represent the uncertainty during the 

forecast (Stephenson and Doblas-Reyes, 2000). Since the study focuses on the 

observational influence on analysis, the RMSE and SPR of analysis will be compared 

for evaluating the sufficiency of spread of analysis ensemble after assimilating the 

observations in Section 5.  

 

3.3 Quantifying the value of observations  

Approaches have been derived to evaluate the value of observations in DA schemes for 

the better understanding of the DA system itself (Baker and Daley, 2000; Cardinali et 

al., 2004). These techniques attempt to quantify the partition of the influence assigned 

to the observations and the background respectively, as well as the amount of 

information extracted by all the available data or specific types of observations. In this 
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project, the observational influence matrix developed from Cardinali et al., (2004) is 

applied to assess the value of observation. 

 

3.3.1 Classical statistical definitions of influence matrix and self-

sensitivity 

The method is based on the idea that in least-squares (LS) regression, any change in 

observation 𝒚𝑖  gives a proportional effect on the corresponding predicted value �̂�𝑖 , 

which is expressed as the linear combination of observed 𝒚𝑖  (Velleman and Welsh, 

1981). For an ordinary linear regression model, the response of predicted vector �̂� to 

observational vector 𝐲 can be written as: 

 

       �̂� = 𝐒𝐲,                                                     (3.18) 

where 𝐒  is the influence matrix, denoting the rate of change of �̂�  with respect to 

variations of 𝐲. Thus, it can be easily derived that: 

 

𝐒 =
𝜕�̂�

𝜕𝐲
 

and the off-diagonal (𝑖 ≠ 𝑗) and diagonal (𝑖 = 𝑗) elements are thus: 

  𝑆𝑖𝑗 =
𝜕ŷ𝑗

𝜕y𝑖
 , 

  𝑆𝑖𝑖 =
𝜕ŷ𝑖

𝜕y𝑖
 , 

where the 𝑖th diagonal element 𝑆𝑖𝑖 measures the self-sensitivity of ŷ𝑖 to y𝑖 at the same 

data point, whereas the off-diagonal elements denote the cross-sensitivity between two 

data points. It is discussed by Hoaglin and Welsh (1978) that the diagonal elements 

satisfy: 

 

0 ≤ 𝑆𝑖𝑖 ≤ 1                                                   (3.21) 

(3.20) 

(3.19) 
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with zero self-sensitivities (𝑆𝑖𝑖 = 0) implying no influence of observations to the 

analysis, while 𝑆𝑖𝑖 = 1  indicating that the analysis at that data point is entirely 

determined by the observations.  

 

3.3.2 Observational influence and self-sensitivity for a DA scheme 

The analysis step in the EnKF provides an optimal analysis state 𝐱𝑎 (the ensemble mean 

of 𝑿𝑗
𝑎  in Eq 3.10) by combining the observations y  with the forecast state 𝐱𝑓 (the 

ensemble mean of 𝑿𝑗
𝑓
 in Eq 3.10): 

𝐱a = 𝐱f + 𝐊(𝐲 − 𝐇𝐱f) 

= 𝐊𝐲 + (𝐈 − 𝐊𝐇)𝐱f,                                              (3.22) 

where the gain matrix 𝐊 = 𝐏f𝐇f(𝐇𝐏f𝐇T + 𝐑)−1  contains the information on the 

respective accuracies of observations (observational error covariance matrix R) and of 

the forecast (forecast error covariance matrix  𝐏f ), and 𝐈 is an identity matrix. The 

analysis state interpolated into observational space is then:  

 

�̂� = 𝐇𝐱a = 𝐇𝐊𝐲 + (𝐈 − 𝐇𝐊)𝐇𝐱f,                                     (3.23) 

with the observations and the background information weighted by HK and 𝐈 − 𝐇𝐊 

respectively. From Eqs 3.23 and 3.19, the analysis sensitivity with respect to 

observations is written as: 

𝐒 =
∂�̂�

∂𝐲
= 𝐇𝐊. 

Similarly, the analysis sensitivity with respect to the background information (in 

observation space) is thus: 

∂�̂�

∂(𝐇𝐱f)
= 𝐈 − 𝐇𝐊 = 𝐈 − 𝐒. 

Eqs 3.24 and 3.25 indicate that the observational influence on the analysis is 

complemented by the background influence. For example, if the analysis sensitivity 

with respect to the 𝑖th observation is 𝑆𝑖𝑖, then the influence of background information 

at same location and time will simply be 1-𝑆𝑖𝑖.  

 

(3.24) 

(3.25) 
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Figure 3.6 shows an example of the sensitivity matrix S from a snapshot in the 

simulation of the rotating flow case. Clearly, as for the four diagonal sub-matrices, the 

high values are highly centralised along the diagonals, implying that the self-

sensitivities are much important than the cross-sensitivities. Hence, the self-sensitivity 

of each variable is a key point to investigate in this thesis. The off-diagonal elements 

and the other sub-matrices represent the analysis sensitivity of one variable to another 

and show how the observational influence can spread further. This also indicates an 

interesting direction of research. Note that since different observations can have 

different units, the cross-sensitivities have the units of the corresponding unit ratios. 

Hence the cross-sensitivities of different pairs of observations are not directly 

comparable. However, self-sensitivities are pure numbers (no units) as in standard 

regression (Cardinali et al., 2004). 

 

 

Figure 3.6: An example sensitivity matrix S of the rotating flow case at t=0.432. The 

vertical and horizontal coordinates are the elements of the observations over the 

domain. The variables at vertical and horizontal coordinates represent the analysis and 

the observations respectively. The variables are observed each 2.5 km so there are 

total 800 elements for 4 variables given that the domain length is 500 km. 
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The global average observation influence diagnostic is defined as: 

 

𝑂𝐼𝐷 =
Tr(𝐒)

𝑝
, 

where the overall influence of all the observations is normalised by the total number of 

observations (𝑝). Cardinali et al., (2004) applied this diagnostic to ECMWF global 

NWP model and finds that the overall influence of observations is not very high (OID 

= 0.15), which means the observations actually act as an adjustment to the prior 

forecasts rather than completely replacing them. This is attributed to the fact that 

observations are too sparse and incomplete to describe the whole picture of the state, 

compared to the model system. Nevertheless, it should be noted that the model forecasts 

also contain the observational information from previous DA cycles.  

 

Moreover, Partial Influence (PAI) is another index of interest that measures the 

observation influence for any subset of data: 

 

𝑃𝐴𝐼 =
∑ 𝑆𝑖𝑖𝑖∈𝐼

𝑝𝐼
, 

where the subset I can be a particular observation type, a specific horizontal or vertical 

domain, or a specific meteorological variable, and 𝑝𝐼  is the number of data in I. In this 

project, the PAI of variables involved in the idealised fluid model (h, u, r, v) will be 

analysed. 

 

 

 

 

 

 

 

 

 

 

 

(3.26) 

(3.27) 
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Chapter 4 

Experimental design and set-up 

The following research of observational influence in the DA process is carried out via 

a so-called ‘twin experiment’ setting, where the model mainly generates three 

trajectories: model forecast which is totally determined by the background information, 

model analysis which is the production after assimilating the observations, and a nature 

run which can be seen as a synthetic truth. To mimic an operational DA process, the 

experiments are performed in an ‘imperfect’ model scenario, which means the forecasts 

are generated using a worse model configuration, such as with less well-specified model 

parameters or at lower resolutions (Kent et al., 2017). Furthermore, pseudo-

observations are created from the truth simulation with a specified error distribution 

before being assimilated into the forecast model at each DA cycle to produce model 

analysis. This setting allows the comparisons between the model analysis and forecast, 

and the truth. Also, it links the observational influence on the analysis to the real 

accuracy of analysis, providing a way for evaluating whether the influence is useful or 

not. In this chapter, the construction of the twin experiments will be described in detail, 

including the experimental design and the set-up of parameters.   

 

4.1 Experimental design 

The major question to be solved in this project, as proposed in Section 1.2, contains the 

following aspects: 

 

1. The questions on the factors that control the influence of the observations: 

a. How does the influence of the observations depend on the presence of 

convection?   

b. How does the density of the observations affect the influence? Can an 

optimal density be found? 

c. How does the observational information propagate in space and to 

different model variables? 

2. How does the observation influence correspond to the accuracy of the analysis? 

Does each observation give optimal influence on the forecast?  
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The experiments designed to investigate the above questions are conducted for both 

scenarios (non-rotating and rotating case). In order to test the observational influence 

in different environmental conditions (question a), the self-sensitivities (diagonals of 

HK matrix) at each grid point will be compared with the weather conditions at the same 

locations. Also, the PAI (Eq 3.27) and the overall observational influence (OID in Eq 

3.26) will be calculated under different observational densities (see Obs. density in 

Table 4.1) for question b. As for question c, the cross sensitivity among different 

variables will be investigated in order to find if the observations of one variable can 

influence the analysis of other variables. The experiment to accomplish this is to 

remove the observations of one or two specific variables and see how the rest of the 

observed variables would help to forecast the un-observed variables, which might give 

insights to ‘data thinning’ of real observations. Additionally, a high influence does not 

always guarantee a useful influence. To investigate this point, the RMSE (Eq 3.15) and 

SPR (Eq 3.17) of analysis will be applied to link the observational influence on the 

accuracy of the analysis. SPR shows the accuracy estimated by the analysis, based on 

the agreement of each ensemble member, while RMSE indicates the true accuracy of 

the analysis compared to the truth. A consistency between the two implies whether the 

observations are given the right weight in assimilation. Therefore, as mentioned in 

Section 3.2, RMSE and SPR should have the same magnitude for an optimal ensemble 

performance.  

 

4.2 Setting up an idealised forecast-assimilation system 

Currently, most operational high-resolution NWP models are equipped with fine 

horizontal grid spaces on the order of 1 km, due to which the convective-scale 

phenomena are simulated explicitly (Lean et al., 2008). With this in mind, the forecast 

grid size is set at ~2.5 km in this fluid model. Hence, given that the length of domain is 

𝐿0 = 500 km, the computational grid of each variable contains 𝑁𝑒𝑙 = 200 elements. 

Nevertheless, it is recognised that convective activities are still under-resolved even in 

the models with such resolutions (Tang et al., 2013). This deficiency of the model 

forecast is reflected in the twin experiments through generating the nature run with the 

resolution 4 times finer than the forecast model (𝑁𝑒𝑙 = 800 for the nature run). As 

shown in Figure 4.1, the forecast trajectories are smoother with un-resolved convective 

features while the truth shows sharper and more resolved convections and precipitations.  
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Figure 4.1: The example forecast trajectory (a) and the nature run (b) of model 

variables h (top), u (middle), and r (bottom) of non-rotating scenario at t = 0.432. The 

red dotted lines are the thresholds for convections and precipitation. 

 

 

To further aid the realism of the experiments, Kent et al., (2017) adopts the Rossby 

number (𝑅𝑜) and the Froude number (𝐹𝑟) into the non-dimensional SWEs in order to 

achieve the comparison between quantities with different physical units. These two 

non-dimensional parameters describe the relative strength of rotation and fluid 

stratification compared to advection, and are expressed as below: 

 

𝑅𝑜 =  
𝑉0

𝑓𝐿0
,   𝐹𝑟 =

𝑉0

√𝑔𝐻0

 ,   

where 𝑉0, 𝐿0, and 𝐻0 are characteristic scales of velocity, domain length and height, 

with the typical values at 20 m/s, 500 km, and 500 m in this model. Large values of 

Rossby number indicates non-rotating flow when Coriolis parameter f is extremely 

small. We will consider two cases: one where the Rossby number is set to be infinite 

for non-rotating flow, and another where it is small (0.1) for rotating flow. Moreover, 

given that the domain length 𝐿0 = 500 km and velocity scale 𝑉0 = 20 m/s, the time 

scale for advection through the domain 𝑇0 is at ~25000 s, equals to ~6.94 hours. One 

hour is thus equal to ~0.144 non-dimensional time units.  

(a) Forecast 𝐱𝑓: 𝑁𝑒𝑙 = 200   (b) Nature run 𝐱𝑡: 𝑁𝑒𝑙 = 800 

(4.1) 
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Another key issue in DA experiments is the set-up of the initial ensemble (𝑿𝑗
𝑎(𝑡0) in 

Eq 3.10). As noted in Evensen (2007), the initial ensemble is supposed to cover as fully 

as possible the initial uncertainties of the model state. The ensemble is initiated with 

spatially uncorrelated random Gaussian perturbations (Zhang et al., 2004), which are 

then allowed to spin-up so that they exhibit the dynamical structure of the errors in the 

model (Houtekamer and Zhang, 2016). As such, a set of initial errors 𝝈𝑖𝑐 =

(𝝈ℎ
𝑖𝑐, 𝝈ℎ𝑢

𝑖𝑐 , 𝝈ℎ𝑟
𝑖𝑐 ) = (0.1, 0.005, 0)  is used to generate the initial ensemble for twin 

experiments here. The initially perturbed ensemble is thus: 

 

ℎ𝑗(𝑥, 0) = ℎ(𝑥, 0) + 𝜎ℎ
𝑖𝑐𝑧𝑗 , 𝑗 = 1, … , 𝑁,    where 𝑧𝑗~𝑁(0, 1), 

where  ℎ(𝑥, 0)  represents the initial fluid depth, and similarly for hu and hr. The 

subscript j the denote the spatial point. Note that the initial uncertainty for r variable is 

zero since the initial rain field is zero everywhere. Observations are then assimilated 

hourly over a 20-hour period, with a specific error 𝝈 =(𝜎ℎ, 𝜎𝑢 , 𝜎𝑟 , 𝜎𝑣) (see Table 4.2). 

The set-up of the experiments is based on the well-tuned parameters for experiments 

conducted in Kent et al., (2017) and Kent et al., (2020). Table 4.1 provides an overview 

of parameters used in the model and DA cycles (see Kent et al., (2020) for detail). 

 

Model parameters Filter parameters 

Rossby number, 𝑅𝑜 

(non-rotating/rotating) 

Froud number, 𝐹𝑟 

Boundary conditions 

Velocity scale V0 [ms−1] 

Height scale H0 [m] 

Domain length, 𝐿0 [km] 

Forecast 𝑁𝑒𝑙 , 

Nature run 𝑁𝑒𝑙
𝑡 , 

Convection threshold, 𝐻𝑐  

Precipitation threshold, 𝐻𝑟 

𝛼 

𝛽 

𝑐0
2 

∞/0.1 

 

1.1 

Periodic 

20 

500 

500 

200 

800 

1.02 

1.05 

10 

0.2 

0.085 

Update frequency, dt [hr] 

Ensemble size, N 

Number of DA cycles 

Obs. error 

(𝜎ℎ, 𝜎𝑢, 𝜎𝑟 , 𝜎𝑣) 

Obs. density, d [km] 

Initial ensemble 

perturbations 

(𝜎ℎ
𝑖𝑐 , 𝜎ℎ𝑢

𝑖𝑐 , 𝜎ℎ𝑟
𝑖𝑐 ,  𝜎ℎ𝑣

𝑖𝑐 ) 

 

1 

18 

20 

(0.1, 0.05, 0.005, 

0.05) 

 

(2.5, 5, 10, 25, 50) 

(0.05, 0.05, 0.0, 

0.05) 

 

 

 

Table 4.1: An overview of the model and assimilation parameters used in the twin 

experiments. 

(4.2) 
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Chapter 5  

The value of observations 

 
This chapter displays the results corresponding to the specific questions proposed in 

Chapter 4 in detail, including the dynamics in both scenarios (rotating flow and non-

rotating flow over topography), variations of observational influence in the presence of 

convection and with different observational densities, and the linkage of observational 

influence to the accuracy of the analysis.  

 

5.1 Rotating flow  

Within this section I explore the Rossby adjustment scenario where the fluid surface is 

disturbed from its initial constant height when adding a perturbation to the transverse 

velocity v(x). Figure 5.1 is the snapshot of the time evolution of free surface height, 

wind convergence, the rainfall, and the gradient of transverse velocity. It can be seen 

that the disturbance of v would cause perturbations in the other three fields from their 

calm initial conditions, and these perturbations oscillate throughout time. The 

production of the rain mass r(x) corresponds to the exceedance of precipitation 

threshold (𝐻𝑟 in Table 4.2), and to positive wind convergence −𝜕𝑥𝑢. The horizontal 

wind shear of transverse velocity −𝜕𝑥𝑣 is shown in order to illustrate ageostrophic 

conditions, and this is discussed shortly. The perturbations initiate slightly left to the 

locations of the initial negative jet and to the right of the positive jet, before generally 

propagating to both sides and getting weakened through time, implying the Rossby 

adjustment of fluid height to the initial disturbance in the model.  

 



27 

 

 

Figure 5.1: Hovmoller plot for rotating flow, highlighting the condition for initiation 

and the subsequent evolution of convection. From the top to bottom: h(x)+b(x), −𝜕𝑥𝑢, 

r(x), and −𝜕𝑥𝑣. 

 

 

Shallow water flow in perfect geostrophic balance between the pressure gradient and 

rotation satisfies the equation below: 

 

𝑔𝜕𝑥ℎ − 𝑓𝑣 = 0 and 𝑢 = 0.                                            (5.1) 

The difference between large-scale and convective-scale NWP is in some sense the 

difference between balanced and unbalanced dynamics. As for a traditional NWP 

model which focuses on synoptic scale phenomena, its DA system is based on 

geostrophic and hydrostatic balance. However, these balances are no longer feasible at 

convective scales, as vertical accelerations become increasingly significant in the flow. 
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Thus, there is an interesting point in this modRSW model: it captures the breakdown of 

these large-scale balances (Kent et al., 2017).  

 

Theoretically, due to the construction of effective pressure term (Eq 3.3a) and its 

gradient (Eq 3.3b), a disruption of the balance is expected to occur where convections 

happen. The top panel of Figure 5.2 is the real exceedance of convective threshold from 

the nature run, illustrating when and where the convection happens. The second and 

third panels plot the difference (Eq 5.1) derived from the nature run and model analysis 

respectively as a function of time and space. From the top two panels, the locations 

where the state is close to geostrophic balance or where this balance is broke are 

consistent with the occurrence of convections. Also, with the weakening of convections 

through time, the departure from geostrophic balance correspondingly becomes smaller 

and finally close to the balance, which again demonstrates the Rossby adjustment 

theory above.  

 

By comparing the result from the nature run (middle) and the model analysis (bottom), 

the DA process is helpful to fix the locations of breakdowns of geostrophic balance 

during the first few assimilation cycles, whereas the magnitude of each breakdown is 

much smaller than that of nature run, and many weak breakdowns during the second 

half period cannot be well resolved. Bannister, Migliorini and Dixon, (2011) attributes 

the geostrophic balance decays to the decrease in horizontal scale, which is also suitable 

to explain the difference here. The model generates its truth with a total number of grid 

points Nel = 800 through the domain while the analysis only has 200 elements, and the 

cores of the convections only occupy a few grid points across even in high resolution 

cases. Hence, the physical length of the convection at Nel = 800 cannot be resolved 

properly with Nel = 200, which affects the horizontal pressure gradient 𝜕𝑥ℎ. Thus, it is 

reasonable that instead of a very peaked departure in the truth, the analysis produces a 

weaker departure over a larger physical length. The example here verifies the ability of 

modRSW model in exhibiting the desirable feature of Rossby adjustment dynamics 

where the flow is far from the geostrophic balance in the presence of convections and 

precipitations whilst remaining close to balance in non-convective regions, and thus the 

model is feasible for the subsequent DA experiments on investigating the influence of 

observations.  
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Figure 5.2: Hovmoller plot of time evolution of free surface height (top), and the 

departure from geostrophic balance (𝑔𝜕𝑥ℎ − 𝑓𝑣) calculated from nature run (middle) 

and the model analysis with observational density at 2.5km (bottom). 

 

 

5.1.1 Analysis sensitivity to observations  

In order to find the relationship between the observational influence and the presence 

of convection, the self-sensitivities of each variable are extracted from each timestep 

and is exhibited in the right column of Figure 5.3. The comparison between the two 

columns in Figure 5.3 shows certain consistency between the locations of convection 

and the locations of large magnitudes of self-sensitivity of pressure and rain mass from 

the first and the third panels. Here note that the variation of h can in a sense represent 

the variation of pressure since it constructs the effective pressure term (Eq 3.3a). 
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Particularly, it can be seen from the rainfall panel that at each timestep, the observation 

of rain strongly affects its analysis in the vicinity of precipitation. This influence 

increases when getting close to the convective cores (e.g. for the rainfall at timestep ~ 

4 and x ~ 0.4, the observational influence reaches up to 50 %), and keeps higher than 

the surrounded steady regions throughout the lifetime of convections. 

 

 

 

Figure 5.3: Hovmoller plot of the evolution of convections in the model analysis (left 

column) and the self-sensitivity of each variable (right column) over 20 DA cycles. 

The variables are observed each 2.5 km. 

 

 

As for those steady regions, however, the observational influence of both variables can 

be very weak. Cardinali et al., (2004) conducted experiments investigating the global 

influence of surface pressure and aircraft wind observations and found that in 

dynamically active regions (i.e. North Atlantic in their experiment), both types of 

observation have a large influence on analysis. The behavior of pressure and rainfall 

x x 
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observations here corresponds with the result in Cardinali et al., (2004), while the wind 

fields exhibit a quite different picture, in which the bright bands of strong self-

sensitivities of u(x) and v(x) show little relevance to the evolution of winds or the 

convection, indicating that the impact of wind observations in DA seems not relevant 

to the location of convective activities. Also, there are bands of strong influence away 

from the convective regions in pressure and rainfall fields, and the observational 

influence for convections with similar magnitudes can vary. Hence, although the 

observations seem more valuable near convective regions, the observational influence 

is not entirely determined by the convections.  

 

5.1.2 Effect of the density of observations 

What might also affect the performance of observations in DA system, and which 

observation are most informative in rotating flow? OID (Eq 3.26) are PAI (Eq 3.27) are 

appropriate diagnostics to quantify the overall influence of the whole observing system 

and the partial influence of each observed variable. The model is run throughout a 20-

hour DA period with observational densities varying from 2.5 km to 100 km. Figure 

5.4 illustrates the PAI of each variable and the OID at each observational density, from 

which we see that the order of the importance of observing the different variables is 

robust as the density is reduced: the observation of pressure is most valuable with the 

largest PAI (6 % to 28 %), followed by the observation of rainfall (5 % to 24 %) and 

the winds (2.5 % to ~23 %) (here we only consider the density below 100 km, although 

the influences of observation of winds might change the order at even lower densities 

according to their trends). Moreover, the overall influence of observations (OID) shows 

a range from 4 % to 25 %. This is comparable to the OID of 15% calculated by Cardinali 

et al., (2004) in the ECMWF’s global DA system.  
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Figure 5.4: The PAI of each variable and OID of the observational system at different 

observational densities. 

 

 

Furthermore, from the figure, the observational influence increases parabolically with 

the reduction of observational density, which is also similar to the result from Cardinali 

et al., (2004) that low-influence observations usually occur in data-dense areas while 

high-influence observations are in data-sparse regions. This can be explained by the 

idea of ‘data redundancy’ that in practical NWP systems, the observations within a grid 

cell could either contain the overlapping information from various observing 

instruments, or contain different information that presumably represents some sub-grid 

processes that cannot be resolved by the model (Oke et al., 2008). In this experiment, 

the information in the observation is spread in space and to the other variables via 

correlations in the forecast ensemble. The information will overlap if two observations 

are close to each other, leading to the reduction of the influence of both observations.  

 

Figure 5.5 shows an example of the spread of information along grid points for the 

variable v: the observations are of greatest importance to the analysis at corresponding 

grid points, but they also propagate information to the adjacent grid points. As the 

observations become sparser, the influences spread further with increasing magnitudes, 
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indicating that the decrease in data density will lead to the further spatial spread of 

observational information, as well as the rise in influence of individual observation at 

each grid point.  

 

 

 

Figure 5.5: The example v component of the K matrix, the sensitivity of the analysis 

of v (y axis) to observations of v (x axis), with different observational density (od) at 

2.5 km (left), 5 km (middle) and 25 km (right) at t = 0.432. For the K matrix, the x 

axis denotes the observation space depending on the observation density, which is 

different with the number of grid points of model analysis on the y axis. 

 

 

The difference of the information spread in wind fields and in h and r is a possible cause 

for the divergence of PAI lines between winds and h (and r) in Figure 5.4. The winds 

have broader features than convections and precipitations (see the evolution plots in 

Figure 5.3), which would result in long-range correlations in the ensemble, so that the 

spread of observational information is expected to be further in wind fields. When 

increasing the observational density, observations with a larger spread of information 

would lead to more overlapped information and strengthened ‘data redundancy’ and 

hence a more rapid reduction in observational influence. Thus, theoretically, the PAI of 

broader features (winds here) would increase more rapidly with the decrease in 

observational density compared to the PAI of h and r.  

 

However, the lines in Figure 5.4 show the opposite situation that the PAI increase more 

rapidly for r and h with decreased density of observations than for the winds. The 

Hovmoller plots of observational influence of r (Figure 5.6) show in detail the spread 

of information with two different observational densities in the presence of rainfall. 

Indeed, the observational influence increases in convective regions as the observation 

is less dense, but the changes seem insignificant compared to change in magnitudes for 

v when reducing the observational density (see the change of magnitudes of colour bars 

od = 2.5 km od = 5 km od = 25 km 

100 10 50 
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in Figure 5.5). Moreover, the regions of high values seem broader in the lower panel 

but this could be explained by the fact that the resolution of the plot has changed as less 

pixels are in the lower panel. This is consistent with the spatial propagation of 

information being limited where convection is initialised, so that denser observations 

still being able to provide independent information which would not cause too much 

variation in PAI. Therefore, the rapid increase in PAI for rain as the density is reduced 

seen in fig 5.4 is highly related to the large balanced regions where the spread of 

information is further, providing more overlapped information at high observational 

densities. Therefore, high-resolution observations seem more significant in convective 

regions than steady regions. 

 

 

    

Figure 5.6: Hovmoller plot of self-sensitivity of rainfall at observational density 

equals to 5 km (top) and 10 km (bottom). The x axis represents the index of 

observation throughout the domain.  

 

 

Furthermore, back to the parabolic trajectories in Figure 5.4, the PAI for most variables 

is more sensitive to the change of observational density in data rich areas but changes 

mildly when the observational intervals reach a certain value (e.g. 50 km for r). This 

gives inspiration for finding an optimal density of observations in NWPs, at which 

   self-sensitivity of r(x) 

 
 10                20                30                40 

observational index 

 20                40                  60               80 
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plenty of information can be provided with a minimum cost of producing the 

observations. The idea of optimal sampling will further be discussed in Section 6. 

 

5.1.3 Cross sensitivity between observations  

Investigations of the cross-sensitivity benefits the understanding of the how the 

information of one observation type propagate to the other variables. The cross-

sensitivities of the variables in rotating flow is exhibited in Figure 5.7. We see that the 

cross-sensitivities between h and r are highly consistent with the regions of convection 

(see Figure 5.1), implying that observation of r strongly constrains the analysis of h and 

vice versa. The other cross-sensitivities do not appear to show such a strong signal. In 

the following section we investigate how the observation influence changes if 

observations of pressure, the most informative observational type from section 5.1.2, 

are removed out of the system.  

 

In Figure 5.8 the PAI of the observations is recalculated after the extraction of h 

observations. We see that the influence of the remaining variables increases 

parabolically with the drop of observational density, similar with the situation when all 

the variables are present. Notably, the removal of the h observations does not 

significantly affect the OID, implying that the loss of the value brought by one 

observation will be compensated by other types of observations. Moreover, the 

influence of the observations of winds in this new system, particularly the transverse 

wind, is more sensitive to the variation of observational density, compared to the 

previous observational system. This change highlights the interactions between the 

influence of h and v, which will be discussed further below.  
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Figure 5.8: The PAI of each variable and OID of the observational system at different 

observational densities with the removal of observations of h, and the OID when h is 

observed (the dotted line). 

 

 

According to the comparison of the analysis sensitivity of h to the observation of r with 

and without the presence of observed h (Figure 5.9), the analysis of h depends highly 

on the observation of rainfall close to the convections after removing the observation 

of h, which means the observations of rainfall contributes to the analysis of h at 

convective scales. Whereas in regions away from the convection, the sensitivities 

remain close to zero, implying that the observation of r is not so useful in terms of 

providing a kind of replacement to h observation. Besides, the higher influence in 

convective regions than in steady regions also confirms the conclusion from section 

5.1.2 that the information propagating across variables has a limited spatial spread in 

unbalanced regions.  
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Figure 5.9: Hovmoller plot of sensitivity of analysis of pressure to the observation of 

rain mass with (left) and without (right) the observation of pressure. The 

observational interval is 2.5 km. 

 

 

Another interesting interaction lies between the observational influence of h and v. As 

discussed above, the PAI of v increases rapidly when the observation of h is excluded, 

indicating the potentially rising influence of v observations to the analysis of h. This is 

also demonstrated in the top two graphs in Figure 5.10 which shows the change of the 

sensitivity of analysis of h to the v observations after removing the h observations. 

Obviously, the value increases for some regions, which means the same perturbations 

in the observations of v would lead to a larger variation of analysed h, so that the 

analysis of h becomes more sensitive to the observations of v. Moreover, in rotating 

flow, h and v are linked by geostrophic balance (Eq 5.1) in steady regions. Therefore, 

theoretically in these regions the observation of v will be more beneficial to the analysis 

of h, compared to places with large departure from geostrophic balance, and vice versa. 

However, this is not clear in figure 5.10 particularly for the sensitivity of analysis of v 

to h observations (the bottom graphs). This may be because unlike the occurrence of 

rainfall which is directly controlled by h exceeding the thresholds, in geostrophic 

balance, v is directly associated with only the gradient of h rather than h itself. Also, it 

is not strictly balanced over the steady regions due to the occurrence of small 

disturbances which are unobvious compared to the very large departure of geostrophic 

balance in convective regions.  
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Figure 5.10: Hovmoller plot of sensitivity of analysis of h to the observation of v with 

(top left) and without (top right) the observation of h, and the sensitivity of analysis of 

v to the observation of h with (bottom left) and without (bottom right) the observation 

of v. The observational interval is 2.5 km. 

 

 

5.1.4 Ensemble performance and the accuracy of the analysis   

Within this section we explore the link between observational influence and the 

accuracy of the analysis. As described in Section 4, SPR and RMSE are applied to test 

whether observations are assimilated in the right way to improve the accuracy of the 

analysis. Firstly, we consider the relationship between ensemble spread and the 

observational influence. According to Eq 3.11, the gain matrix K is directly calculated 

from the forecast error covariance 𝑷𝑒
𝑓

 which is derived from the model forecast 

ensemble: the increase in 𝑷𝑒
𝑓
 will lead to a corresponding increase in K and hence the 

influence matrix HK. Then the self-sensitivities should be related to the SPR_fc which 

approximates to √
1

𝑛
𝑇𝑟(𝑃𝑒

𝑓
) (Eq 3.16). This relationship is confirmed in Figure 5.11, in 

which the SPR_fc and self-sensitivities of the four variables in rotating flow are plotted. 
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High observational influence occurs where the SPR_fc is large, implying that the 

observation becomes more valuable where large disagreement between forecast 

ensemble members occurs. Moreover, Eq 3.12 links the observational influence to the 

analysis error covariance 𝑷𝑒
𝑎 , as well as to the SPR_an (Eq 3.17). Eq 3.12 can be 

transformed into: 𝑷𝑒
𝑓

− 𝑷𝑒
𝑎 = 𝐊𝐇𝑷𝑒

𝑓
, indicating that the largest observation influence 

is expected to be found where the largest reduction in analysis spread compared to the 

forecast spread occurs. It is also demonstrated in the middle column of Figure 5.11 that 

the reduction in SPR_an is large compared to SPR_fc where SPR_fc and self-

sensitivities are large. This means when the forecast error covariance is large, the role 

of observations is more significant in reducing the analysis error covariance.  

 

   
Figure 5.11: Hovmoller plot of SPR of the forecast (left column), the difference 

between SPR_fc and SPR_an (middle column), and self-sensitivity (right column) of 

each variable, with the observational interval at 2.5 km. 

 

 

Moreover, the pressure and rain mass rows in the same figure exhibit the signals of 

convections, implying that forecasting the convection and precipitation is a large source 
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of uncertainty in the system. The observations are important in constraining this and 

leading to a larger reduction in analysis uncertainty. It is more predictable in terms of 

the large balanced areas as the ensemble has less uncertainty there and the observations 

are less weighted in DA. When looking at the wind panels, however, the observations 

are of significance particularly near x = 0.6, and in the same region the SPR_fc also 

shows large discrepancy which is not related to the occurrence of convections or any 

ageostrophic features. This suggests the ensemble does not provide a true reflection of 

the model uncertainty especially in wind fields.  

 

As for the analysis system, RMSE is a diagnostic to evaluate the analysis accuracy 

compared to the truth, according to which we can estimate where the spread of the 

analysis ensemble is expected to be sufficient. As mentioned in Section 4, the spread 

should be comparable to the RMSE for the ensemble to adequately estimate the error. 

As shown in Figure 5.12, the RMSE for h and r captures the features of departures from 

geostrophic balance, showing a larger inaccuracy of model analysis in these regions. If 

the ensemble spread is accurate then we would expect the SPR and hence observational 

influence to be high in the same regions where the RMSE is high. Therefore, the 

magnitude of difference between RMSE and SPR is expected to be zero. However, 

from the right column of figure 5.12, we see that as for the difference in h and r panels, 

it is close to zero in most steady regions, while particularly large in convective regions. 

Also, the magnitudes of difference in convective regions are comparable to the RMSE, 

indicating an extremely insufficient spread there. This can also be confirmed by 

comparing the RMSE with the Hovmoller plots of SPR in the same figure: the SPR at 

convective cores can be ten times less than RMSE. Therefore, the observation has less 

influence in convective regions than it would do if the spread correctly represented the 

RMSE. On the other hand, the SPR is comparable with RMSE over the remaining 

balanced regions, and both of them are at a small magnitude, indicating that although 

the observation influence is small, the observations are assimilated in an optimal way. 

Similarly, for the wind variables the spread in the ensemble underestimates the RMSE. 

However, the RMSE for winds corresponds less with the features of convections, and 

the difference between RMSE and SPR is distributed more evenly through the domain.  
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Figure 5.12: The RMSE of analysis (left column), the SPR of analysis (middle 

column), and the deference between the RMSE and SPR_an (right column) for four 

variables. 

 

 

The spatially averaged SPR and RMSE of the variables at each DA cycle are plotted in 

Figure 5.13. The two lines are divergent throughout the assimilation period for each 

variable, with the SPR remaining at a constant small value, illustrating that the 

ensemble spread is insufficient compared to its error. As the observational influence 

depends on the SPR rather than RMSE, it can be concluded that because the SPR 

systematically underestimates the forecast uncertainty then the observations will have 

systematically less influence than they should in a well-tuned system. Therefore, the 

observation influence diagnostic may have limited value when used to make decisions, 

for example, about the design of future observing networks. 
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Figure 5.13: The mean RMSE and SPR of analysis of the variables at each timestep. 

 

 

In operational NWP, the problem of not having enough spread in the ensemble due to 

the under-sampling is common. Bonavita et al., (2012) found the global-averaged 

spread of the ECMWF ensemble DA system to be half the value of forecast error, and 

Houtekamer and Zhang (2016) similarly found that only a quarter of the error variance 

of ensemble mean is explained by the ensemble spread. To compensate for this, the 

ensemble perturbations can be inflated to maintain sufficient spread. Within these 

experiments, the choice of inflation parameters is based on the DA experiment in Kent 

et al., (2017). This results in the magnitude of SPR being only at around 1/3 of that of 

RMSE for most variables, indicating that inflation factors are not well tuned for this 

case. It is hard to find an inflation factor that is optimal in all the cases due to the 

changes in variables and model dynamics, but fortunately, using the same inflation 

factors, a better tuned example is provided in the next case of non-rotating flow over 

topography. 
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5.2 Non-rotating flow over topography 

The observing system for non-rotating case is simpler than rotating scenario, as the 

transverse velocity is removed from the system. In the same way, we start with the 

dynamic of the scenario. Figure 5.14 shows the free surface height h(x)+b(x) > Hr, and 

wind convergence −𝜕𝑥𝑢 > 0, as well as the evolution of rain r(x) through time. The 

production of precipitation requires both the exceedance of threshold heights and the 

wind convergence, and the rate of rain is proportional to the strength of wind 

convergence. Also, there are black dots in wind panel showing extremely large wind 

convergence that propagates to the right. From the top panel, it can be seen that the free 

surface height exceeds the precipitation threshold mainly in two regions: one is directly 

above the ridge (the ridges are located from x~0.2 to x~0.5, see Figure 3.4), and the 

other is downstream from the ridge where the wave propagates to the right. Rain 

correspondingly propagates with the convective columns. This matches very well with 

the lee-side enhancement mentioned in Houze (1993) that the propagation of deep 

convections and clouds downstream from the ridge is a characteristic orography-

induced phenomenon, confirming the well-built model dynamics. 

 

Figure 5.14: Hovmoller plot for non-rotating flow over topography, highlighting the 

condition for initiation and the sequent evolution of convection. From the top to 

bottom: h(x)+b(x), −𝜕𝑥𝑢, and r(x).  
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It should be noted here that the production and removal of rain is controlled by the 

parameters 𝛼 and 𝛽 in (Eq 3.2d), and water mass potential coefficient 𝑐0
2 in (Eq 3.2d). 

Using different values of these parameters would lead to different solutions not only 

for rain but also for other variables, due to the coupling in (Eq 3.2b). Therefore, they 

can be tuned for different DA experiments as desired.  

 

5.2.1 Analysis sensitivity to observations 

The observational system for nonrotating flow is slightly simpler than that for rotating 

scenario, with only three variables being detected: h(x)+b(x), 𝑢(𝑥), and r(x). Figure 

5.15 shows the evolution of the convection as well as the self-sensitivities of each 

variable. Unlike the rotating case, the observational influence of h seems random and 

irrelevant to the exceedance of threshold, with a highlighted band over x ~ 0.8 

throughout the period. As discussed in the rotating case, the abnormal concerns put by 

the ensemble over a fixed location is likely to be caused by the imperfect set-up of the 

model, which will be further investigated in Section 5.2.3. 

 

 

Figure 5.15: Hovmoller plot of the analysis of evolution of convections (left column) 

and the self-sensitivity of each variable (right column) over 20 DA cycles. The 

variables are observed every 2.5 km. 
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As for the wind panels, the evolution plot of u(x) shows bands of strong winds 

propagating to the right. The serration-like lower sides of the bands denote the sudden 

large convergence of wind, consistent to the black dots in −𝜕𝑥𝑢 panel in Figure 5.14. 

However, due to the block of the topography, the wind does not vary too much over the 

region of ridges. The self-sensitivities of u exhibit points of high values in the right half 

of the graph, corresponding to the strong wind convergence in the left column. The 

value remains small over the ridges where windspeed has weaker variation, indicating 

that the observational influence is sensitive to the dramatic changes of wind speed. On 

the other hand, it is hard to find a correspondence between the onset of precipitation 

and the self-sensitivities of r. The self-sensitivities capture only a few signals of 

precipitation (e.g. the precipitation at the first timestep between x=0.6-1), while the 

values in the remaining areas seems irrelevant with convections. However, since the 

performance of observations are directly related to the SPR of forecast, it might be 

helpful to take the behavior of ensemble spread into account. The effect of convections 

to the ensemble and observational influence will be further discussed in 5.2.3. 

 

The overall influence of each variable is calculated for non-rotating flow as well. Figure 

5.16 shows the PAI of each variable and the overall influence of the observation system 

with different observational densities. Similar to the rotating case, pressure is still the 

most informative variable in the observational system, followed by the rain mass and 

the winds. The observational influence increases as the observational density is reduced, 

which has already been explained as the result of data redundancy. Also, the lines are 

close to each other for high densities, indicating that the observational influence is less 

associated to variable types when the observation is dense enough to resolve the main 

features of the convection. However, unlike the rotating case, the increasing rates of h 

and r behave more gently. This is because the convections and rainfall in this case are 

more continuous in terms of both spatial and time, compared to the isolated convections 

in rotating case. The information provided by the observations is independent and has 

limited spread within the large convective areas, which limits the increasing rate of PAI.  

 

Furthermore, in practice some high-resolution satellites take measurements every 0.25-

0.5 degree, which equals to the observational interval at around 25-50 km in 

midlatitudes. The overall influence at this interval in the figure varies from around 17% 
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to 20%, similar to rotating case. However, the non-rotating scenario has also been tested 

by Kent et al., (2020), with the OID for observational interval at 50 km being 

approximately 30 %, and he also noted that the OID comparable to operational 

convective-scale NWP is typically between 20% - 40%. The result here and of rotating 

case are slightly below the typical interval but are still realistic, because the 

observational density in data-sparse regions could reach hundreds of kilometers in 

operational system, and the OID calculated at 100 km (~26 %) is within the typical 

interval.  

 

 

Figure 5.16: The PAI of each variable and OID of the observational system at 

different observational densities. 

 

 

5.2.2 Cross sensitivity between observations 

In order to estimate the effect of a particular observational type, one way is to remove 

the relevant observations from the assimilation system and then compare the analysis 

performance against the control experiment containing all observations. Here the most 

informative observation type, h, is removed to evaluate its impact on the system and to 

the other variables. Figure 5.17 shows the PAI of u and r and the OID with and without 

h observations. After removing h observations, the influence of wind shows a notable 

increase, particularly at low observational density, indicating that the observation of u 

contributes a lot to the analysis of h which suppresses the observational influence of u 
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itself in the experiment containing h observations. Whereas the PAI of r firstly increases 

rapidly without the presence of h whilst drop to a lower value than the control 

experiment as the observations are less dense. The overall influence per observation 

increase after removing the h observations mainly due to the dramatic rise in the 

influence of u when the observational interval is larger than 10 km. However, when the 

observation interval is less than 10 km, removing observations of h has little effect on 

the OID. 

 

 

Figure 5.17: The PAI of u and r and the overall influence after removing the 

observation of h (solid lines) and the same diagnostics when all variables are observed 

(dotted lines). 

 

 

The impact of observations of u and r on the analysis of h can also be evaluate from the 

K matrix. As shown in the left column (in the presence of the observation of h) in Figure 

5.18, the diagnostic of sensitivity of analysis of h to the observation of u is mostly 

negative, while that of h to r is positive at most cases. This means the decrease of the 

observational value of u would cause an increase in the analysis of h, while the decrease 

in r would lead to the reduction in h. Dynamically this make sense: the convergence of 

the wind would lead to the lift of the free surface height, and the rate of rainfall is 

proportional to the strength of the convection which is controlled by the degree of the 

exceedance over the threshold. By comparing the left column with the right column 

where the observation of h is removed, the negative values become more negative and 
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the positive values are more positive, which means the same perturbation in the 

observations of the rest variables would lead to a larger variation of h so that the analysis 

of h becomes more sensitive to the observations of u and r.  

 

 

  

Figure 5.18: Hovmoller plot of sensitivity of analysis of h to the observation of u with 

(top left) and without (top right) the observation of h, and the sensitivity of analysis of 

h to the observation of r with (bottom left) and without (bottom right) the observation 

of h, with the observational interval at 2.5 km. 

 

 

5.2.3 Ensemble performance and analysis accuracy 

As being confirmed in rotating scenario, the observational influence is determined by 

ensemble spread of the forecast, and this is also verified for nonrotating case in Figure 

5.19, where the distribution of SPR_fc is highly consistent with that of self-sensitivities 

of each variable. In addition, the SPR of u and r panel successfully captures some 

features of large wind convergence and the rainfall by comparing with the evolution of 

u and r in Figure 5.15, illustrating that the EnKF puts uncertainties at rainfall regions 

and areas with strong wind convergence in this case. However, as for the h field, the 
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SPR does not show obvious features related to the exceedance of threshold, and the 

ensemble always puts special uncertainties over a few fixed grid points (e.g. the grid 

points around x=0.8), resulting in the unexpected high observational influence over the 

same locations. According to the similar features caused by an imperfect ensemble in 

rotating case, one factor here might be the imperfect additive inflation parameters 

applied in the experiment. 

 

 

Figure 5.19: Hovmoller plot of SPR of forecast (left column) and self-sensitivity (right 

column) of each variable for nonrotating flow, with the observational interval at 2.5 km. 

 

 

In order to test the performance of the EnKF in this case, the evolution of RMSE and 

the difference between RMSE and SPR at each assimilation cycle is plotted in Figure 

5.20. The RMSE captures features of convections and precipitations in the h and r 

panels, and features of strong wind convergence from the wind panel. Again, it 

confirms that predicting the convections or the strong wind perturbations are the major 

sources of uncertainties of the analysis. Therefore, the spread is supposed to be large in 
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the same regions for a well-tuned system. By referring to the difference, particularly 

for the rainfall panel, the difference between the RMSE and SPR shows very weak 

signals of precipitation, which means that the ensemble puts uncertainties exactly where 

the analysis has large error. The difference for u and h is obvious only at regions with 

very large wind convergence and exceedance of thresholds. The distribution of 

difference in the remaining regions is quite even with a small magnitude, indicating that 

the variables in balanced regions are more predictable using only background 

information. This indicates the spread is adequate enough for the stable and most 

convective conditions, although still need to improve at regions with very large 

meteorological variations.  

 

   

Figure 5.20: The RMSE of the analysis (the left column) and the deference between 

the RMSE and SPR of analysis (the right column) for three variables, with the 

observational interval at 2.5 km. 

 

 

 

Figure 5.21 illustrates the averaged RMSE and SPR over the domain at each timestep, 

from which the overall performance of the filter can be seen. The SPR for u and r seems 
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comparable with their RMSE, implying that the ensemble is providing an adequate 

estimation of the forecast error covariance. The SPR for h is slightly higher than the 

RMSE, which means the observations are over-considered by the ensemble. Therefore, 

observations of u and r are sufficiently taken into account and better used for 

forecasting the wind and rainfall than for analysing the pressure. This meanwhile 

explains the unexpected behaviour of SPR of h in the above figures that an imperfect 

set-up of the model will indeed cause the ensemble putting confidence or uncertainties 

at a wrong place. It seems hard to find a fixed set-up that can satisfy all the cases. 

Therefore, the parameters need to be tuned before each experiment.  

 

 

Figure 5.21: The mean RMSE (solid line) and SPR (dotted line) of model analysis for 

h (top), u (middle) and r (bottom) throughout time. 

 

 

Generally, there is better agreement between the SPR and RMSE compared to the 

rotating case, indicating that at this stage of the assessment, a good filter configuration 

and meaningful observational diagnostic can be achieved within this experimental set-

up. Overall, the observing system plays quite an important role in DA in this case, 

especially in convective regions, indicating the essentiality for putting higher resolution 

observations according to the OI diagnostic. 



53 

 

Chapter 6  

Conclusion and discussion 

This study explores the observational influence in a DA system of an idealised fluid 

model designed by Kent et al., (2017) in the presence of convection and precipitation. 

The model based on modified SWEs manages to simulate essential aspects of 

convective-scale dynamics, including the disruption of geostrophic balance and other 

features related to Rossby adjustment and non-rotating flow over topography. The 

questions outlined in Chapter 1 are investigated for both scenarios and the results are 

provided.  

 

How important are the observations of each variable in DA in convective areas? 

The observations of pressure and rain mass become increasingly valuable in the DA 

system closer to the convective cores, and the self-sensitivities of winds are large at 

places with dramatic variations of windspeed. Whereas the observations are less 

influential with the value less than 10 % in steady regions. This means that the model 

analysis in convective regions depends more strongly on the information provided by 

observations, while the variables in balanced regions are more predictable using only 

background information.  

 

What are the requirements for the observational density for the different variables? 

Following from the previous point, it is necessary to increase number of observations 

in areas with convection or large variations of wind, such as mountainous or coastal 

regions. However, it needs to be considered carefully how densely the observational 

network should be built, since the observational influence is high in data-sparse area 

and low in data-rich areas due to data redundancy. High density of observations will 

lead to the large overlap of information and hence limited influence of individual 

observation, as well as increasing computational cost. Moreover, the optimal density 

for observations of different variables depends on the scales of the corresponding 

features. The spread of information is further in board features (e.g. wind fields or 

steady regions) while being limited in high-resolution features (e.g. convections), 

affecting the corresponding observational influence. 
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How much would the influence of the observational system change if one 

influential observational type is removed?  

This study showed that each observational type is capable to influence the analysis of 

other variables, particularly for pressure and rain mass, and this influence increases in 

convective regions or when the observations of analysed variables are absent. 

Additionally, although the pressure is found to be the most informative observational 

type for both scenarios in this study, the loss of its influence caused by removing it from 

the observational system can be compensated by the rest of the observational types. The 

investigation of cross-sensitivities is insightful to the objective use of observations that 

are of greatest benefits in predicting the corresponding and other variables in 

operational NWP. This is helpful for handling the vast amount of observational data 

and easing the computational burden, while retaining the overall influence of 

observational system.  

 

How does the observation influence correspond to the accuracy of the analysis?  

The observational influence diagnostics (non-rotating case in this study) confirm that 

the observations are important in regions with convection and large variations of 

windspeed. Also, the observations are found to significantly reduce analysis errors 

compared to forecast errors in these regions. This gives an alternative way of choosing 

the particular regions to deploy and assimilate observations by judging the reduction in 

analysis error. The idea of adaptive observations (Majumdar, 2016) shows the similar 

concept that observations can be targeted in places where the analysis error are 

significantly reduced to prevent further rapid growth of forecast errors. 

 

Does each observation give optimal influence on the forecast? 

Lastly, this study tested the reliability of observational influence diagnostics by 

comparing the magnitudes of RMSE and SPR of the analysis. For a well-tuned system, 

the magnitudes of the two are supposed to be consistent to ensure that the ensemble 

spread is sufficient exactly where the analysis has errors, and hence the observations 

are optimally considered in DA. However, in the results of rotating case, the RMSE is 

divergent with the SPR, showing the insufficient spread of the ensemble caused by a 

less well-tuned system. Due to this the observations were given progressively less 

weight in data assimilation, and the observational diagnostics are thus less reliable. The 
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tuning of the experiment is a major limitation for the rotating case, as it is time intensive 

to find a set of parameters perfect for both cases.  

 

There are various limitations of this study in answering the above questions that should 

be noted: 

• The model is limited in its representation of the operational DA process because 

of simplified dynamics and types of observations. The model does not attempt 

to handle all types of convection that occur in the real world, such as the 

convection associated with fronts, which is common in UK.  

• The observational system is simple, containing only the observations of three 

or four variables distributed evenly throughout the domain. However, in real 

situations, observations of rainfall, for example, are typically performed using 

radar instruments that only return observations when rainfall is present so that 

the data is not continuous in time and its distribution is not even in space.  

• The conclusions so far are based only on a limited number of experiments using 

specific tuning parameters. The tuning of parameters needs more trials before 

each experiment to get a good DA performance.  

 

In future work the limitations of the simplified observational system could be addressed 

by simulating observations that more closely mimic the satellite or radar observational 

system. This could be achieved by setting nonuniform observations in space and time, 

and perhaps working with a radiative transfer model to construct a nonlinear 

observational operator (Kent et al., 2020). This is beyond the scope of this study but is 

something worth doing to improve the representativeness of the model to the real 

problems. With more time it would also be beneficial to run experiments under more 

scenarios to test the robustness of the results and to better tune the DA parameters. For 

example, these experiments can be extended in operational system to understand how 

the conclusions apply to operational models and observations. However, it can be 

foreseen that operational models would increase the difficulty in interpreting the 

observational influence since they contain more complicated dynamics and observing 

systems. 
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