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Abstract

Forecasts of rainfall from Numerical Weather Prediction (NWP) models are not yet
as accurate as they are for other predicted fields like temperature or pressure. The high
spatio-temporal variability of such a field as well as the errors implied by sub-grid scale

processes limit considerably its predictability.

Probabilistic forecasts are a way to take this inherent uncertainty into account, and
many methods have recently been developed to tackle this issue. Among these diverse
approaches, a low-budget procedure using a spatio-temporal neighbourhood was intro-
duced by Theis et al (2005). Its particularity is to use only information readily available
from the Direct Model Output (DMO), and for this reason we chose to reproduce the

methodology to post-process the Met Office Unified Model’s outputs.

The variable selected to be post-processed was the rainfall rate, in order to verify
the forecasts against radar observations. Once the initial neighbourhood method was
correctly implemented and provided reasonable results, a few modifications concerning
the distribution of weights in both space and time dimensions were tested. In order to
consider different weather conditions, two distinct case studies were used: A convective

episode and a frontal system.

The main result of the project was the case-dependent aspect of the procedure’s
performance, and the fact that a Gaussian distribution of weights in space could improve

the subjective interpretation of the post-processed field.
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Chapter 1

Introduction

1.1 Forecasting rainfall

Out of all information given by a weather forecast, precipitation is certainly the one
many users are most interested in. Motivations for this interest are diverse and involve
great security and economic concerns. Even though it is not the main focus of this project
it is important to realise how strongly our lives can be affected by the efficiency of such
a forecast: Food supplies, especially in developing countries, depend on the productivity
of local agriculture and this productivity can be highly improved by an accurate forecast
of the rainfall. On this economic side we can also mention hydroelectricity management
and the necessity of estimating energy production properly. Even more important are
the issues where human lives are at risk, and flood forecasting is perhaps the area which
would benefit the most from any progress in rainfall prediction: Warning systems are
based on hydrological numerical models which are coupled with atmospheric ones to give
a precipitation forecast over a drainage basin (Benoit and Pellerin 2000, Jasper and Kauf-
mann 2003). Therefore the whole procedure is extremely dependent on the accuracy of
the initial rainfall prediction, and unfortunately the time scale for which this forecast
remains reliable is often too short for preventive action to be taken in case of security

threats (Krzysztofowicz et al. 1993).

This great need for accuracy does not match the actual efficiency of rainfall forecasts,

and precipitation field is one of the least successfully simulated by Numerical Weather



Prediction (NWP) models. The Working Group on Numerical Experimentation of the
World Meteorological organisation has underlined that although the major NWP mod-
els operationally used have made some important progress recently, they still experience
some difficulties when it comes to producing some Quantitative Precipitation Forecasts
(Erbert et al. 2003). The spatial and temporal scales considered as well as the diversity of
physical processes involved (large scale ascent of moist air, convection, orographic lifting)
are some of the many parameters which influence the level of predictability. Cassati, Ross
and Stephenson (2004) have applied a new method called the intensity-scale approach to
test the influence of precipitation intensity and spatial scale on the performance of the
NIMROD operational system. Their conclusions were that poorer skills were obtained in

small-scale events (<40km) involving localised intense precipitation.

Walser et al (2004) have applied an ensemble method (see section 2.1) to a mesoscale
model, in order to investigate the predictability dependence of Quantitative Precipitation
Forecasts (QPF) to some of these parameters. Using a cloud-resolving model with a
mesh size of 3km they were able to show that even though modern efforts to decrease
the grid length to a few kilometres lead to better representation of convective cells, it
does not necessarily imply any predictability improvement. In fact the rapid growth of
error due to the chaotic aspect of the atmosphere (Lorenz 1963), and more specifically
here of its moist dynamic component lowers this predictability at small spatial scales. As
previously parametrised sub-grid scale phenomenon become more realistically modelled in
high resolution NWP models they tend to help the growth of small perturbations, leading
to poorer predictability. Even though this decrease in predictability should be seen as a
progress in the representation of the nonlinear behaviour of the atmospheric dynamics at
these scales, it suggests that the accuracy of precipitation forecast will probably not be
significantly improved in the years to come. Furthermore, they were able to show that
even at larger scales (up to 100km) convective episodes still act to limit the predictability,
meaning that realistic modelling of convection might require a different approach to the

forecast interpretation at all scales.



1.2 Added value of probabilistic forecasts

Because of this unavoidable uncertainty in the NWP models’ output, taking a deter-
ministic approach to rainfall forecasting is not desirable and a probabilistic information
can be useful in both the conception and the interpretation of these forecasts. Figure 1.1,
obtained with the method explained in chapter 3, gives an example of such an output.
The left hand part is the direct model output of rainfall rate obtained with the Met Office
4-km grid Unified Model, and the right hand one shows the probability of exceeding a
threshold value of 5.107*kg.m?.s™! (corresponding to all coloured areas on the left-hand

plot).

0.0062 0.50

0,0000 L_lo.00

Figure 1.1: Direct model output for rainfall rate in kg.m=2.s7! (left) and post processed
output for probability of exceeding 5.107*kg.m=2.s7! (right).

This type of information provides the user with a measure of the likelihood of the
prediction, giving a more realistic view of the model’s abilities. Allan H. Murphy (1991)
discusses the use of such probabilistic information as a link between the forecaster’s
judgement and the rational decision making process which follows. When looking at
NWP outputs, operational forecasters try to estimate how confident they can be in the
result, using their experience and knowledge as well as any recent observations they can
gather (radar or satellite imagery, analysis charts) or other models” output. The main ar-
gument introduced in the discussion concerns the difficulty of translating the forecaster’s

subjective view of the situation in a quantitative way. The focus of the paper is on the
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Occurrence

NO YES
NO 0 L
Action
YES C C+L-1,

Table 1.1: Expense matrix

forecast of rare events, and in this kind of situation the forecaster is only offered two
possibilities: occurrence or non-occurrence. When an event has been forecast but did
not occur it is referred to as a type 1 error, whereas the other situation where it was
not forecast but actually happened is referred to as a type 2 error. It has been observed
that when confronted to an ambiguous situation, the perspective of possible impacts on
the user drives the forecaster to issue type 2 error forecasts more often. This common
feeling that a type 2 error is more serious has lead to a significant level of over-forecasting
and probabilistic forecast could help solve this issue by illustrating more realistically the

forecaster’s feeling.

Apart from the forecaster, users would also benefit widely from probabilistic infor-
mation: Decision makers who base their actions on the likelihood of a weather event all
have complex and different consequences to these actions, and a probability of occur-
rence would suit better this diversity. By giving a categorical yes/no forecast we force
them all to the same decision no matter what their costs are: To differentiate this wide
variety of users, the cost-loss relationship they face is often referred to. In a study by
D.S.Richardson (1999) on the relative economic value of the ECMWEF ensemble predic-
tion system, this type of decision model is presented in the following way: Each preventive
action is characterised by a cost C|, the lost following a non protected action is noted L
and the portion of the loss reduced when acting is L; (see expense matrix in table 1.1).

The aim of the decision maker is of course to minimise his expense, and if he is not
given any hint (only climatological information available) the only reasonable choice is
to either always or never act depending on the global cost of each option. If O represents
the number of times the event occurs, always acting leads to an expense of C+O(L —L;)
whereas never acting to OL. Therefore without any hint the forecaster should always act

if C+O(L—L;) < OL and never act otherwise. Any forecast should offer a way to reduce
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this expense F.;,. A common way to estimate the efficiency of a forecast is through the
Relative Value RV which relates the reduction in expense provided by the forecast to a

hypothetical perfect one (for which the expense would be Epe; et = O(C' + L — Ly)):

Eclim - Eforecast
RV = 1.1
Eclim - Eperfect ( )

RV can be seen as a percentage of what the savings using a perfect forecast would be:
If the use of a perfect forecast leads to an expense reduction of S, a forecast of Relative

Value RV will save the user 100RV% of S.

Using this Relative Value as an index, D.S. Richardson has compared the skills of
both deterministic and probabilistic forecasts. When considering deterministic systems,
RV can be expressed as a function of the cost/loss ratio o = %, providing a way to take
into account different users’ concerns. The main conclusion is that the forecast is not
equally useful for all, and if some users with a cost/loss ratio of o between 0.1 and 0.5
do benefit from a positive value of RV, others with bigger o would not find any help in

the forecast: The value of the prediction strongly depends on the user’s a.

On the other hand, when given a probabilistic forecast, the user has the ability to
choose a threshold value for his actions (act when the event is predicted with a probability
of 70% for instance), and it is this ability that makes the forecast specific to each user’s
needs. As the threshold value varies, the relationship between RV and « is modified,
and therefore decision makers can spot the threshold that would give them the optimum
RV. For instance, it has been shown in the study that users with a value of a = 0.1
(meaning important losses involved in case of occurrence) would benefit from a Relative
Value of 0.4 if they act when the forecast probability is 10% or more but would not
receive any useful information from it if they waited until the probability is 50% : Giving
the same forecast to all users is not a reasonable option. Therefore, these two studies

suggest that the use of probabilistic information in weather forecasting would not only
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help the forecasters provide a realistic judgement of the situation, but also enable the

users to optimise their decision making process.

The aim of this project is to forecast the probability of precipitation exceeding given
threshold values, using NWP model’s direct outputs. The way in which these probabilities
should be estimated is still an open question, and the next chapter will focus on different
recent methods designed for this purpose. The procedure as well as the data used for our
different experiments will be presented in chapter 3, followed by results obtained during
two different case studies: Chapter 4 will present a convective episode and chapter 5 a
frontal system. Finally, the main conclusions regarding the project as well as the future

possible lines of work will be discussed in chapter 6.
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Chapter 2

Overview of different methods

In the previous chapter we exposed the difficulties inherent to Quantitative Precipita-
tion Forecasting (QPF), and argued that probabilistic information offers some flexibility
for both the forecaster and the user. Here we will review some methods which provide
a probabilistic QPF without the help of a forecaster. Particular attention will be paid
to the neighbourhood approach in section 2.3 since it will be the basis for the present

project.

2.1 Ensemble forecasting

Due to recent progress in the field of high performance computing and the development
of massively parallel machines, ensemble forecasting techniques have received particular
interest in the recent years. The basis of such methods is to run multiple forecasts start-
ing from slightly different initial conditions, called ensemble members. This approach
offers a way to take into account different evolution scenarios and therefore to assess the
uncertainty in the model forecast: If all runs converge to a similar result, the level of
confidence for the prediction can be high, whereas if they tend to have very different
behaviours it will be poorer. The spread of the ensemble members therefore represents
a measure of the predictability. Since the atmospheric system has a tremendous number
of degrees of freedom, the members can only partly represent all uncertainty possibilities
and the choice of the perturbations in the initial condition is a key issue. Fields which are

commonly perturbed are temperature, humidity and horizontal wind components, and
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the actual perturbation procedure differs from one study to another. The experiment
by Walser et al (2004) mentioned in introduction uses a lagged technique, in which the
initialisation times of 6 different runs are separated by one hour. When all runs have
been initialised, the deviation from the ensemble mean is amplified for the selected fields
(temperature, wind, humidity) leading to different initial atmospheric states for the sim-
ulation. Other methods do not consider any time lag but focus more on the amplification
procedure to realistically match observed analysis errors. A popular one introduced by
Mullen and Baumhefner (1989) separates the large scale error from the small scale one
in order to take into account the fact that the noise due to initial perturbation equals

the signal for small scales (Du et al. 1997, Bright and Mullen 2002).

Although ensemble methods were originally designed to take into account the evolu-

tion of baroclinic perturbations in medium range forecasts (6 to 10 days), some recent
studies have tackled the issue of mesoscale predictability of precipitation using similar
approaches with limited area models (Walser et al 2004, Bright and Mullen 2002, Marsigli
et al 2001, Du et al 1997). In this studies ensemble systems are a way to consider other
growth mechanisms like those linked to moist physics and convection, as mentioned in
section 1.1.
Du et al (1997) used a similar method to Mullen and Baumhefner (1989) to produce
some probabilistic quantitative precipitation forecasts from a mesoscale model. They
considered the 6 hours accumulated precipitation amounts and they divided the possible
outputs into 5 categories (p < 0.01 inch ; 0.01 inch< p < 0.10 inch etc...). Then, for
each grid point they computed a probability of being in each of the categories based on
the population of ensemble members: They used 25 members so if there are 5 members
in each category for instance, their probability would only be of 20% for each, meaning
poor confidence. On the other hand if 20 of them are in the same category, it would be
attributed a probability of 80% , expressing a high level of confidence in the forecast.

This ensemble prediction approach is probably the most commonly used to produce
probabilistic outputs from NWP, however it requires an amount of computer power which
is not always available and for this reason some alternative methods are sometimes pre-

ferred.
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2.2 Statistical methods

Statistical methods refer to forecast techniques which draw a relationship between
a set of variable to infer the value of one or a few others. The parameters used for
the prediction are called predictors and the ones actually predicted the predictands.
Applequist et al (2002) have applied and compared several different statistical models
to predict the probability of precipitation exceeding a certain threshold after 24 hours
(predictand). For each of the 5 models they used (linear regression, discriminant analysis,
logistic regression, neural network and the classifier system), the procedure was to use a
training data set to first select the best predictors and then to identify the coefficients or
rules that would provide the best fit between predictors and predictand. The data used
for the selection of the predictors was composed of synoptic and upper air analyses, as
well as 6-hourly precipitation forecasts up to 24 hours. Altogether they considered more
than 200 potential predictors including model variables as well as derived quantities
like humidity or temperature advection, and binary variables for rain exceeding given
thresholds. To rank and choose the predictors, the selection procedure uses the Brier
Skill Score (BSS) which is based on the following Brier Score (BS) originally defined as
twice this value by Brier (1950).

n

> (e — o) (2.1)

k=1

BS =

SIS

Here, n represents the number of forecasts, y; the forecast probability and oy the ac-
tual observation (o, = 1 when event observed and 0 otherwise). A good forecast method
should therefore keep the BS score as low as possible, by having high probabilities when
or = 1 and low ones otherwise. The BSS is then a measure of the forecast improvement
over climatology, normalised by a hypothetical perfect forecast, so higher BSS corre-

sponds to better forecasts:

BSS = BSforecast - BSclimatology —1_ M

= 2.2
BSperfect - BSclimatology BSclimatology ( )
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Although the stepwise selection differs slightly from one model to another (fewer
predictors were considered for the neural network and classifier system, and a different
stopping rule for the linear regression), the algorithm is still the same: First choose a
single predictor which provides the best BSS with the training data set, then look in the
remaining ones for the combination that would best improve this BSS and so on until
the BSS can not significantly be improved anymore. Depending on the statistical model,
2 to 6 predictors were chosen, and the ones selected with greatest frequency were the
24h accumulated precipitation forecast, binary variables for rain and relative humidity
exceeding given thresholds and a layered averaged value of relative humidity after 12

hours.

2.3 The neighbourhood approach

The method which will be referred to as the neighbourhood approach in the rest of the
study was introduced by Theis et al (2005) in an attempt to provide some probabilistic
QPF with a low-budget procedure. In effect, all the methods we considered so far offer
some heavy constraints in one way or another: The subjective post processing of Direct
Model Outputs (DMO) into a probabilistic forecast requires the experience of a qualified
team (see section 1.2) and the use of ensemble methods is only possible with great com-
puter power. Statistical methods might not require as much power, but the amount of
data set needed to build the model is not always available either. Consequently, the main
objective of this procedure is to use the information already available from the model
output to obtain the QPF.

To illustrate their method, they post processed outputs of precipitation accumulation
obtained with the German DWD lokal modell, which has a horizontal grid spacing of
7km and a domain of 325 x 325 grid points. To begin with, a neighbourhood is computed
around each grid point in the spatial domain, as shown in figure 2.1 for the X-Y plane,
and then a similar procedure selects points from previous and successive model runs in
order to take into account the time dimension as well. However, the way in which this
time procedure is done is not clear from the paper: Although it is clearly stated in the

text that the size of the neighbourhood is held fixed at all lead times of the simulation, a
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diagram similar to figure 2.1 but in the X-T plane suggests that the diameter is actually
decreased when moving away in the time dimension. This contradiction will be further

discussed in chapter 3 when trying to reproduce the method.

Yo +5Dy_|

Yo _|

e N
— |

Yo-5Dy |

| | | X
\ \ \

Xo - 5Dx Xo Xo + 5Dx

Figure 2.1: Example of a spatial neighbourhood with a diameter of 10 grid points (70km).

The next stage is then to go through all the grid points inside the neighbourhood (in
both space and time) and count the ones for which the DMO exceeds a given threshold.
The probability of exceedance is finally obtained by dividing this number by the total

number of points inside the neighbourhood.

The verification procedure uses observed precipitation data from rain gauges to as-
sess the skill of the method . The comparison is based on the Brier Skill Score (BSS)
described in section 2.2 (see equations 2.1 and 2.2), but instead of having a climatological
score as a reference in the BSS they chose to use the DMO score: This is obtained by
transforming the deterministic output so that a probability of 100% is given when the
forecast exceeds the selected threshold and 0% otherwise. In that way the BSS reflects

the improvement of the method against the DMO. The influence of different parameters
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such as the threshold value or the neighbourhood size were investigated, and all results
lead to a positive value of the BSS (between 0.2 and 0.4), meaning that their method
always outperforms the DMO. Perhaps the most interesting result of this study is the fact
that of all neighbourhoods considered, the larger one (140km diameter) always leads to
the best improvement. This suggests that some useful information on the predictability
can still be found as far as 70 km away from the actual forecast location, and is to be
related to the experiment by Walser et al (2004) which showed that predictability might
be limited at scales up to 100km in convective situations.

The second part of the verification procedure uses the Relative Value (RV) (see equation
1.1) to represent the user’s interest in the forecast. No matter what the cost/lost ratio is,
the RV of the neighbourhood method is always higher than the DMO one. Furthermore,
by post-processing the model output, the neighbourhood technique provides a widening
of the curve representing the RV as a function of the cost/lost ratio: The post processed

forecast would be beneficial to more users (see section 1.2).

In a study on the influence of model resolution on the skill of precipitation forecasts
Roberts (2006) used a neighbourhood approach as a verification method. As shown in
figure 2.2, he suggested that the range for the neighbourhood size should be bound. The
lower limit representing the size for which the skill starts to be acceptable and the upper
one the size at which the output has been smoothed out to much. In effect, when the
neighbourhood size is increased too much, it leads to a smoothing of the forecast field
which decreases the added value of a high resolution model. However, like the desired
skill level, this upper level strongly depends on the user’s needs: Flood forecasters for

instance do benefit from a forecast over a wide area since they deal with river catchements.

In his discussion about the verification method N.Roberts also suggests that the av-
eraging procedure giving the exceedance probability could perhaps be modified by using
a Gaussian distribution of weights inside the neighbourhood, in order to give more im-
portance to grid points close to the centre. Even though he believes that the method
should stay as simple as possible and that the global improvement in the results would

not justify the added complexity, some benefit could nonetheless be gained in the way
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Figure 2.2: Skill of the forecast as a function of the neighbourhood size.

the probabilistic field is represented: Plots would show fewer discontinuities and a more

circular shape around high probability areas.
After this quick overview of possible methods to obtain a probabilistic QPF, next

chapter will now focus on the way to implement our own method, based on the neigh-

bourhood approach by Theis et al (2005).
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Chapter 3

Methodology

The aim of this chapter is to expose the procedure used to postprocess NWP outputs of
rainfall rates into a probabilistic quantitative precipitation forecast. After a presentation
of the model and verification data used, we will focus on the neighbourhood based method
implemented as well as on different modification performed in the hope of improving the

forecast skills.

3.1 Model and data

The NWP model used in the study is the non-hydrostatic version of the Met Office
Unified Model (UM), with a grid length of 4km. The model domain includes the southern
half of the UK as well as the coast of northern France in order to capture thunderstorms
moving across the Channel. One particularity of this 4km grid model is that although
the convective part of the rainfall is mainly explicitly resolved, a convection scheme is
still included as a complement to the dynamic component. This version of the UM is
still in an experimental stage, but has been running and archiving data for almost a year
now. Corresponding to model runs at 03, 09, 15 and 21UTC every day, this archived
data contains the analysis fields at the time of the run as well as forecasts with lead times
of one and a half, three and four and a half hours ahead. In following sections of the
report, this one and a half hour gap between these output times will be referred to as
a time step (even though it does not correspond to the model’s time step), and will be

noted D;. All model data used in case studies were obtained through the Joint Centre
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for Mesoscale Meteorology (JCMM), thanks to Changgui Wang.

Composite radar data, easily available from the British Atmospheric Data Centre

(BADC) were chosen to verify the method against observations. This data derived from
composites of single radar sites is represented on a 5km grid, and therefore the direct
comparison with model outputs is only possible after interpolating the data into the
model’s 4km grid. This part of the procedure was realized by Dr. R.Plant, with a linear
interpolation between nearest points on the 5km radar grid.
Unlike rain gauges which represent the accumulation of rainfall over time, radar images
give an instantaneous picture of the precipitation field and are a tool to measure its
intensity distribution at a given time. Consequently, the selected forecast field has to
represent similar characteristics, and the rainfall rate seems to be the most appropriate
quantity: Both its large scale and convective components were summed to obtain the
variable used in the post-processing procedure.

One particularity of this variable choice is that it might lead to some poorer skill
for the DMO. In effect, when rainfall accumulation is used like in most of the studies
referenced in chapter 2, a time averaging is implicitly involved and small delays in the
model’s forecast (mis-timing) do not penalise the calculated skill if they remain in the
accumulation period. In the present study however, the model output is considered as an
instantaneous image and compared to observed radar data, therefore similar mis-timings
will be considered as model errors and the DMO skill will suffer from it. Figure 3.1 gives
an example of a situation where the model correctly identified the overall pattern of the

precipitation field but failed to represent the detailed structure accurately.
Because of this additional difficulty in forecasting rainfall rates, the use of a proba-

bilistic post-processing method should lead to an even better improvement than when

accumulations are considered.
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0.0100

Figure 3.1: Direct Model Output of rainfall rates (left) and corresponding radar image
(right).

3.2 Initial procedure

Since the basis of the method is the neighbourhood approach (Theis et al 2005) the
obvious first step of the project was to implement and test it on the Unified Model’s
outputs. Details of the selected case studies will be given in chapters 4 and 5, and here
we will focus on the technical aspect of the procedure.

As explained in section 2.3, the probability of exceeding threshold value Thr at grid point
(70, Yo, to) is obtained by first building a neighbourhood around it in both space and time
dimensions , and then dividing the number of points exceeding Thr by the total number
of points inside the neighbourhood. The description of the algorithm computing it will
be described step by step, starting with spatial considerations first and then extending

the concept with a time neighbourhood.

3.2.1 Spatial neighbourhood

For every grid point (xg, yo) in the domain, a circular neighbourhood similar to figure
2.1 needs to be built. This is done by comparing the distance between (z¢, o) and its
surrounding points, to the neighbourhood radius. The algorithm responsible for this part

of the procedure is represented in a simplified way in table 3.1 , where a represents the
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Loop over the whole domain

doig=a+1,N, —« except the border for which

dojo=a+1,N,—« no probability is computed.
doi=1y— a,ig+ « Loop around surrounding points
doj=7j0—a,jo+« to build the neighbourhood.
Compute distance between (g, jo) and (7, j) From Pythagoras theorem,

If distance < a then (i, j) is in the neighbourhood | distance is:\/(i —i9)2 + (j — Jjo)?

Check if DMO(i,j) exceeds threshold

end do
end do probability for (ig, jo) is:
points exceeding threshold

compute probability for (i, jo)

end do
end do

Table 3.1: Algorithm used to build a neighbourhood and compute the probability of
exceedance with the initial method.

circle radius, N, and N, the domain size, A the grid length and DMO(i,j) the model
rainfall rate for grid point (z = iA,y = jA). Since no complete neighbourhood can be
built for points at the edges of the domain, the probability was fixed to zero on a band of
length « along the border. It is also important to notice that from now on all distances
will be expressed in number of grid points, meaning that the corresponding length in
kilometres is obtained by multiplying by A = 4km. Similarly the notation (i,j) will be
often used to designate grid point (x,y) = (1A, jA).

3.2.2 In time

As discussed earlier in section 2.3, the way in which the time dimension is added to
the spatial neighbourhood is not really clear from the paper by Theis et al (2005). The
main contradiction comes from a diagram showing an elliptic shape in the X-T plane
like the one on figure 3.2, which suggests that the spatial radius of the neighbourhood
decreases as we move away from time tj, whereas in the text it is actually stated that

this radius is kept fixed at all lead times (corresponding to the blue rectangle on the X-T
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plane). When considering the problem from a physical point of view, modifying the spa-
tial size of the neighbourhood would make more sense if the radius increased with time
instead of decreasing: Some information might be spread out into a wider area around
point (xg,yo). Therefore the procedure will keep a fixed neighbourhood size at all times,

as expressed by the blue rectangle on figure 3.2.

To+2Dt ——

To+Dt ——

To ——

To-Dt ——

To-Dt ——

Xo-6Dx Xo Xo+6Dx

\
<

Figure 3.2: Shape of the neighbourhood in the X-T plane.

From a practical point of view this will require the model rainfall rate data to be
stored in a three dimensional array DMO(i,j,n), where n represents the time index.

The procedure to check if the value exceeds the threshold will then become:

don=ny—0B,ng+ 0
check if DMO(i,j,n) exceeds threshold
end do

where [ refers to the time radius and n is the time index. As before, the notation

(i,j,n) will be often used to refer to point (iA, jA, nD;).
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This initial version of the code, representing the original method by Theis et al, was
tested on different case studies and gave satisfying results and skill scores (see chapters 4
and 5). It will therefore be used as a reference against which all following modifications

will be compared.

3.3 Additional experiments

The aim of this section is to present two modifications to the method which were
implemented in the hope of improving the value of the post-processed output. The
original motivation comes from the idea that all points should not be given the same
importance in the averaging procedure leading to the probability estimation, and the

distances in both time and space should be taken into account.

3.3.1 Spatial weighting distribution

In the reference method, the averaging procedure is done considering that any point
inside the neighbourhood accounts for an equal fraction of the probability. Whether the
threshold is exceeded at a grid point directly adjacent to (xg, o) or at a distance of «
does not make any difference, whereas exceedance at a distance of o+ 1 is not taken into
account. This characteristic is responsible for some discontinuities in the post-processed
field, and as suggested by N.Roberts (2006), a Gaussian distribution of the weights could
help improve this aspect of the procedure. Whether or not it will also improve the fore-
cast skill is not clear, and the different studies in following chapters will try to investigate
this question.

The Gaussian function is of the form g(x) = exp(—%), where the parameter ¢ de-
fines the sharpness of the curve. Figure 3.3 shows both the square function used in the
reference method (in blue) and the Gaussian (in red) as a function of the distance to
point (xg,yo). This example corresponds to a neighbourhood of radius 20 grid points

and illustrates the way in which a Gaussian approach should improve the discontinuity

problem: Points at distances a and a4 1 from the centre are now attributed very similar
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Figure 3.3: Example of Square and Gaussian weighting functions for a neighbourhood
radius of o = 20 grid points. The horizontal black line indicates the weight for a radius
of 2a.

To stay consistent with the reference method and enable direct comparison, the coef-
ficient ¢ should be chosen carefully: Both function must represent the same total amount
of weights, meaning that the areas below the curves should be equal. By expressing this

later condition as follows, it is possible to link ¢ to the radius .

+o00 2 +a
/ exp(——)dx = / ldx
oo c o

Which, following a few lines of calculation can be written in the form:

25



Even though this Gaussian distribution of weights in space does not correspond to
a neighbourhood anymore, its parameterisation is still linked to the circle of radius «
providing the same amount of weights. All comparisons of the two methods in chapters
4 and 5 will be based on this equation 3.1, and a Gaussian method of parameter ¢ will

be referred to through the corresponding «.

The algorithm for this modified method is slightly different from that in table 3.1 since
all points surrounding (g, jo) are now attributed a weight depending on their distance.
In order to save some running time, points situated at a distance of 2ac or more will not
be dealt with (they represent a weight of less than 0.05 as shown by the black horizontal
line on figure 3.3). The probability at grid point (i, jo) is now obtained by:

0,J0) — .
Zi,j W (i, j)

(3.2)

Where Z” corresponds to the sum over points at a distance smaller than 2o from
(10, J0), W (i, j) is the Gaussian weight at grid point (i,j), and EXC(i,j) is a binary array
representing the exceedance: EXC(i,j)= 1 when threshold is exceeded for point (i,j),
0 otherwise. An obvious downside of this Gaussian method is the extra running time
involved (due to the computation of the weights and the extended spatial loop required),
especially since the particularity of the neighbourhood approach was to be a low-cost

procedure.

3.3.2 Time weighting distribution

Following on the idea that all grid points in the spatio-temporal domain might not
be of equal importance in the estimation of a probability for point (zg, yo, to), a different
approach to the distribution of weights in time should be tested. Let us consider a time
radius of § = 3, like in the largest setting used by Theis et al. It seems reasonable to
consider that an output field 3 time steps away from the actual time of the forecast %
contains less information than the forecast field itself, and therefore it should be given

less weight. To do so, all points (x,y,t) have their weights reduced accordingly to the
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distance between t and ¢y. Figure 3.4 presents a weighting function linearly decreasing
with time, which reduces the Gaussian weights by a factor R(t). A grid point (i,j) in the
field at ¢, + 3D, would for instance have its weight reduced from W (i, j) to RsW (i, j)
(where Rj is the notation for R(t, + 3D;)).

R(®
A

to—3Dt to—-2Dt to-Dt to to+Dt to+2Dt to+3Dt

Figure 3.4: Reduction function using 3 time steps (in red). Blue arrows represent the
different possibilities of parameterisations.

Therefore, the new probability will now be:

Zi,j,n RnW(Zaja TL) X EXCO”])
Zi@n RnW(Z>]> n)

p'f’Ob('éo, j0> nO) -

where the time index n ranges from nyg — 3 to ng + .

Linear functions were chosen as a first guess to test the influence of this modification
because they are easy to parametrise (just one parameter, the slope). As illustrated by
the blue arrows on figure 3.4, there is of course a wide range of possible parameterisations
for this reduction function and one of the focusses of following chapters will be to try

and identify an optimum one.
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The main objectives of this section were first to explain the theoretical basis of the
procedure used in chapters 4 and 5 and secondly to quickly introduce the notations
and algorithm used in the fortran program given in appendix to help its understanding.

Several questions were raised about possible influences and benefits of the modifications:

e How will the choice of rainfall rates as a variable to post-process influence our

results?

e Will the use of a Gaussian weighting function help solve the discontinuity problem,

and if it does what will be the impact on the forecast skill score?
e What are the effects of the time averaging procedure on this skill score?

Case study of chapter 4 will now try to provide us with some first answers for a convective
episode, and chapter 5 will extend these answers to a different situation involving a frontal

system.
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Chapter 4

Case study number 1: Convective

situation.

This chapter presents the first case study on which the concepts described previously
were tested and compared to the reference neighbourhood method. This comparison
will be made step by step, starting from a single spatial field and progressively adding
adjacent ones in time. The situation exposed was selected for its convective aspect, partly
in order to test the potential of the Gaussian method to decrease the discontinuity issues

noted in the method by Theis et al (2005).

4.1 Initial experiment: 18" of May 2006 at 1800UTC.

As explained in section 3.1, the Unified Model’s data are archived every day at 03,
09, 15 and 21UTC and are available through the Joint Centre for Mesoscale Meteorology
(JCMM). This first experiment was built to represent a situation where a forecast at
1800UTC has to be issued from the model run at 1500UTC. Figure 4.1 shows the model’s
forecast at 1800UTC and the corresponding radar observations. This direct comparison
of the two outputs shows that the model has correctly identified the two major regions
of precipitation, namely the small band over Wales and Cornwall and the area of intense
rain over northern France and Belgium. However, the size of the area covered as well
as the amount of isolated convective cells were considerably underestimated. The other

available forecasts at 1630UTC and 1930UTC are represented in figure 4.2 to show the
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evolution of the situation.
Unlike following experiment which uses analysis field as part of the procedure (see section
4.2), this first case represents a real forecast situation where no observed information are

used other than from the model run at 1500UTC.

4.1.1 Only space: First results

In order to test and validate the methods on a simple case, this first experiment only
includes one model field, the one at forecast time ty; =1800UTC. The fact that there is
no time influence on the estimation of the probabilities makes the interpretation of the
results easier and helps spotting possible errors in the code. Furthermore, this direct
comparison of the two spatial weighting procedures offers an opportunity to tackle the
issue about discontinuity in the post-processed field formulated in section 3.3.1, and to

compare the first skill scores obtained.

Figure 4.3 presents outputs obtained with the Gaussian method (right hand side
plots) and the square one (left hand side plots) for two different thresholds: Top plots

show the probability of having rain rates over 10~*kg.m=2.s71

, corresponding to almost
all precipitation in the area, and bottom ones over 102kg.m~2.s71. The use of different
thresholds helps quantify the intensity of the expected precipitation and these results
show that although there is a high probability of having some rainfall in the western side
of the domain, most intense event could occur in the south-eastern part.

One first obvious and encouraging result when looking at these plots is that the Gaus-
sian approach has turned the contours from a rectangular to a circular shape, which gives
the field a more continuous aspect, as we hoped. By looking more carefully at the areas
of higher probabilities, it can also be noticed that the Gaussian outputs provide bigger
values over more localised regions: The south-eastern corner of the bottom plots is a
good example of such a situation since the reference method predicts a lower probability

over an extended region. From a forecaster’s point of view it can be argued that a more

specific prediction is easier to use, and should therefore be prefered if the skills are similar.

Following on this idea, the Brier Skill Scores of both methods have been computed,
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Figure 4.1: Direct Model Output of rainfall rates at 1800UTC on the 18" of May (top)
and corresponding radar observations (bottom). Rates are given in kg.m?.s™1.
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0.0100

Figure 4.2: Direct Model Output of rainfall rates at 1630UTC (left) and 1930UTC (right)
on the 18" of May.

and the results are presented in figure 4.4. In order to be consistent with the study by
Theis et al the very same BSS was implemented, using the DMO score as a reference
instead of the climatological one (see equation 2.2 for details). As discussed earlier, this
score provides a measure of the improvement obtained when using the post-processing
method. It is expressed as a percentage of what the maximum improvement would be if
a perfect forecast could be used.

A first interesting result is that the scores obtained range between 0.4 and 0.72 which
is considerably higher than in the study by Theis et al. This significant improvement
over the DMO can be explained by the choice of rainfall rates instead of accumulation
as the variable to post-process (see section 3.1). The graph showing the evolution of
the BSS as a function of the threshold value (left hand side) was realised with a neigh-
bourhood radius of 15 grid points. It provides a way to test the model on two different
types of competences: The first one is the ability to detect the areas of precipitation
without considering the intensity values, and the second one the ability to correctly po-
sition more intense individual cells. When looking at small thresholds, almost all the
precipitation in the domain is considered, and therefore the focus is on the identification
of the precipitation area. When higher thresholds are selected, most light rain areas are
removed and the difficulty becomes to accurately position the remaining localised cells.

The BSS increases with the threshold value, meaning that when very low thresholds are
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Figure 4.3:
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Exceedance probability with a threshold of 107*kg.m~2.s™! (top) and

1073kg.m~2.s~! (bottom) obtained with a neighbourhood radius of 20 grid points. Fields
on the right hand side were obtained using a Gaussian weighting function, and the others
with a square one.
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Figure 4.4: Brier Skill scores of the two methods (Gaussian in green and Square in red)
as a function of threshold value (left) and neighbourhood size (right).
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considered (10™*kg.m™2.s7' or 5.1073kg.m~2.5s7"') the model does recognise the overall
pattern of precipitation correctly. Once these light rain areas are removed due to higher
thresholds, the misplacement errors start to be identified and the improvement provided

by the smoothing is getting higher.

Right hand side of the figure shows the evolution of the BSS with the neighbourhood
radius « for a threshold value of 1073kg.m™2.s7!. As expressed by N.Roberts (2006), the
BSS keeps on increasing with «, but the slope is bigger for a below 15 than after. The
outputs corresponding to these different sizes are shown in figure 4.5 where the threshold
was fixed to 1073kg.m™2.s71 but values of o vary between 10 and 25 grid points (40 to
100kms). The smoothing phenomenon discussed by N.Roberts is clearly noticeable, with
high probability values falling from 0.4 to 0.15 as « increases. We already argued with
figure 2.2 of section 2.3 that the optimum value of o depends on the user’s needs, and
since here most of the improvement in the BSS is obtained before oo = 15 (figure 4.4),
this neighbourhood size of 15 will be selected as a standard for the following experiments.
Furthermore, this corresponds to a diameter of 120kms, which is in the same range of

sizes that what was used by Theis et al.
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Figure 4.5: Probability of exceeding 1073kg.m~2.s~! obtained using the Gaussian method

with different neighbourhood sizes: Radius is 10 gird points for top left plot, 15 for top
right, 20 for bottom left and 25 for bottom right.
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Figure 4.6: Difference in BSS between the two method (Square-Gaussian) as a function
of the threshold value (left) and the neighbourhood radius (right). Left hand plot was
obtained with a fixed radius of 15 grid points and right hand one with a threshold of
1073kg.m=2.s7L.

The final aspect to discuss in figure 4.4 is the relative behaviour of the two curves:
The reference method always outperforms the Gaussian one, but the difference does not
seem significant. To further investigate this point the difference between the two BSS
was plotted on figure 4.6 as a function of both threshold (left) and neighbourhood radius
(right). The left hand plot, obtained for e = 15, shows a rather steady difference of about
0.01, meaning that the reference method increases the BSS one percent more than the
Gaussian method without real influence of the threshold value selected. The right hand
plot however, shows an exponential decrease of this difference with o and to pass below

this 1% over performance of the reference method a needs to be of 15 grid points at least.

This first experiment involving only the spatial dimension has provided us with some
interesting information about the two methods: If the Gaussian approach helps solving
the continuity issue and offers a more subjectively useful post-processed field, it scores
slightly lower than the reference one for all thresholds and all neighbourhood sizes tested.
However, providing a correct choice of parameters, this under performance is only around
1% of the BSS. This latter remark highlights the second important result of this section:
Parameters are to be chosen carefully. The neighbourhood size is crucial since it influences
the BSS and the level of smoothing in the post-processed field, and the threshold value

determines the type of event we are focussing on (localised intense rain or global pattern
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of precipitation). The following experiments will be performed using a Gaussian spatial
weighting function with o =15 and a threshold of 1073kg.m~2.s7!. This setting offers
a good compromise between the aspect of the output field (more continuous and with

limited smoothing) and the BSS value.

4.1.2 Space and Time

The objective of this second step of the experiment is to test the influence of the
time dimension on the probability estimation, and the corresponding skill score. To do
so, model outputs at 1630UTC (to-1) and 1930UTC (to+1) were added to the procedure
as explained in section 3.2.2 (no reduction function). The addition of a time parameter
leads to some further smoothing in the post-processed field, as shown by figure 4.7 where
both the outputs with (left) and without considering the time dimension (right) are
presented. If we now look at the effect on the BSS of this additional time dimension, it
is noticeable from figure 4.8 that once again the smoothing is associated with an increase
in the skill scores. The improvement is characterised by the gap between the green curve
showing the BSS for the Gaussian method with time dimension involved and the red
one showing similar BSS without time averaging. While this improvement seems to be
roughly independent of the selected threshold (right hand plot), it does vary with the
neighbourhood size (left hand plot): At small « the increase is considerably higher (up
to 8% increase for « = 5). This can explained by the fact that at large values of «
much smoothing has been done by the spatial averaging and therefore the additional
time averaging does not raise the BSS as much as it does for small values.

After these first few experiments on the influence of the different parameters involved
in the procedure one main conclusion seems to arise: The increase in the Brier Skill Score
obtained is often linked to a smoothing of the post-processed field. The level of smoothing
acceptable depends on each user’s need, but it is probably the main parameter to take

into account when using the method.

Finally, this first case study offered an opportunity to test the effect of the reduction
function mentioned in section 3.3.2 in a very simple way: Since we only have two extra

time fields available (to-1 and to+1) the reduction is given by the parameter R, of figure
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Figure 4.7: Exceedance probability for a threshold of 103kg.m=2.s71 with a—15. Left
hand plot was obtained with just the spatial dimension and right hand one with both
time and space.
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Figure 4.8: BSS for the Gaussian function with (in green) and without time dimension
(in red) as a function of a (left) and threshold value (right).
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3.4. The plot on figure 4.9 shows the evolution of the BSS as a function of this reduction
parameter, for the standard settings discussed earlier. The lower limit of the x-axis, rep-
resenting R;=0 corresponds to the procedure without time averaging and the upper one
(R1=1) to the procedure including adjacent outputs fully. Since the BSS increases and
reaches its best value for Ry=1 (2% improvement), there is no benefit from this reduction

function.
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Brier Skill Score
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0.4 0.6
Reduction parameter

—— BSS for the Gaussian method, with different
time parameterisations

Figure 4.9: BSS with different time reductions, for a=15 and a threshold of
1073kg.m=2.s7L.

The setting of this first test case does not enable further investigation on the influence
of a second time step in the procedure since time to+2 corresponds to the analysis file
at 2100UTC, which contains some observations. Using this field would not make much
sense in the context of a real forecast situation and therefore this first case was slightly
modified into a second case study to provide some further focus on the time dependence

of the BSS.
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4.2 Extended case: 18" of May 2006 at 1500UTC.

This second case is in fact only an extension of the first one since it concerns the same
weather situation. The main difference is that we will now post-process the analysis field
at to=1500UTC. The motivation for this choice is to be able to use up to 6 output fields
adjacent in time (3 after to and 3 before ) without including an analysis field in one of
these forecast files. Figure 4.10 shows the content of the 2 files used and helps under-
stand the set up of this experiment. This approach is slightly unusual since it represents
a situation in which the forecast is issued from the analysis field, meaning that some
observation have been included in the process. However, if the post-processing procedure
improves the skills obtained with the analysis field it can be assumed that it would also

improve the ones obtained with a forecast file (and probably by a larger amount).

~_ 0900UTC: Analysis from first file

— Forecast at 1030UTC (to—3)

File number one: 0900UTC— | Forecast at 1200UTC (to-2)

— Forecast at 1330UTC (to-1)

~— | to=1500UTC: Analysis from second fil

— Forecast at 1630UTC (to+1)
File number two: 1500UTC—
— Forecast at 1800UTC (to+2)

— Forecast at 1930UTC (to+3)

Figure 4.10: Composition of the 2 files used for the extended experiment.

The analysis field before post-processing is shown in figure 4.11 with the radar ob-
servations at that same time, and the complete sequence of files used in this section are

shown in figure 4.12 on following page.
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Figure 4.11: Output from Analysis file at 1500UTC (top) and corresponding radar ob-
servation (bottom).
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Figure 4.12: Output fields from the different files considered in the experiment, from
1030UTC (top left) to 1930UTC (bottom right).
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To test the effect of the time range on the BSS, both the Gaussian and the square
methods were ran using successively 0,1,2 and 3 time steps with no reduction at all. The
results are presented in figure 4.13, and it is surprising to see that the use of a second and
a third time step does not contribute to raise the BSS further: If the fields immediately
after and before ¢, still provide some useful information (mainly on mis-timing errors),
files further away are too different to be used. Another interesting result is that even
though analysis data were used, the Brier Skill Scores obtained are still initially as high
as in case number 1 (around 0.6) but the main difference is found on the improvement
after one time step: Only 0.6% for the Gaussian here compared to 2% with the same

settings in previous experiment (see figure 4.9).
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Figure 4.13: BSS for the Gaussian method (green) and the square one (red) as a function
of the number of time steps used.

This situation where the BSS starts decreasing with the use of a second time step in
the procedure is an interesting case to test the influence of the reduction function with
different parameters. In order to spot an optimum parameterisation, a similar method
to the one used by Applequist et al (2002) in their search of best predictands was used
(see section 2.2): First run was made with only one time step but different values of R,
(similar to figure 4.9) in order to select the best parameter. Then a second run used
two time steps to try to identify the parameter Ry which would give the best BSS when
associated with R;, and finally the same method was used with a third run to get Rj.
The evolution of the BSS during these three runs is presented by figure 4.14, and the opti-

mum parameter are R;=1, Ro=0.2, and R3=0. This parameterisation only improves the

43



Brier Skill Score

Figure 4.14: Evolution of the BSS for the Gaussian method with different reduction
parameters. Top left plot shows the selection of parameter Ry, top right one the selection
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normal case with one time step by less than 0.1% and therefore can not be considered
as useful here, especially when the additional cost of finding the optimum parameters
is considered. However the decrease in BSS following the use of a second time step was
turned into an increase just by modifying the weights attributed to the fields at ¢, +2 and

to—2, showing that the reduction function could perhaps be useful in some different cases.

This extended case illustrates the fact that the way to handle the time dimension is
not straight forward: If the addition of one time parameter has proved to be beneficial
for the BSS, the second and third ones only decreased the performance. Furthermore,
the identification of an optimum parameterisation for the reduction function has shown
that even though the reduction method is not worth using here, the idea of decreasing

the weights accordingly to the distance in time could help improve the forecast.

45



Chapter 5

Case study number 2: Frontal system

The purpose of this new case study is to repeat the whole analysis with a frontal
system, in order to extend our conclusions to a wider range of weather conditions. As
previously, a first case corresponding to a real forecast situation will be presented and
then an extended version of it using the analysis will provide some additional data to

increase the time radius in the procedure.

5.1 Initial experiment: 07" of May 2006 at 0600UTC.

The forecast field which will be post-processed is presented in figure 5.1 with the cor-
responding radar observation at 0600UTC, and the outputs from the two other forecast
files used in this section (0430UTC and 0730UTC) are given in figure 5.2. This stationary
front laying on the east coast of the UK presents a totally different pattern of precipita-
tion than the previous case, with weaker values of rain rates but a higher density of cells
in the area covered. The comparison shows that the model has accurately positioned
the front, but underestimated its extent to the northern part of the domain. Values of
rainfall rates are similar in the major part of the area covered, but the regions of more

intense precipitation (in yellow) are slightly misplaced.
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Figure 5.1: Forecast field of rainfall rate (top) and corresponding radar observation
tom) on the 07" of May 2006 at 0600UTC.
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Figure 5.2: Forecast fields of rainfall rates at 0430UTC (left) and 0730UTC (right).

First post-processed fields obtained with the spatial dimension only, are presented in
figure 5.3 for both the Gaussian (right) and the square methods (left). The neighbour-
hood radius is still fixed to 15 grid points as a standard value and plots show results
for threshold values of 10™%kg.m™2.s7! (top) and 1073kg.m™2.s7! (bottom). As in case
number one, the square method tends to decrease the highest probability values, but the
discontinuity problem is not as important anymore since the overall pattern of the front
does offer some lines of abrupt changes: The advantage of the Gaussian output for a

forecaster is less obvious here than for a convective situation.

The evolution of the Brier Skill Score of the two methods with the threshold value
and the neighbourhood size is presented by figure 5.4 (top). The actual values of the
BSS are very similar to case number one, and the shape of the curve only presents small
differences: The plot of the BSS as a function of the neighbourhood radius for instance,
does not converge to a maximum value at high radius like it did previously, and there
is almost no increase between o =10 and o =15. Once again this highlights the idea
that parameters should be chosen accordingly to each user’s needs: If the user can deal
with a high level of smoothing in the post-processed field, large values of a should be
selected since they provide some additional increase in the BSS. On the other hand, if
the smoothing offers some difficulties in the subjective interpretation of the forecast, a

value of a =10 is probably the best choice since an increase to 15 grid points does not
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Figure 5.3: Probability of exceeding a rainfall rate of 107*kg.m 2s™! (top) and
1073kg.m=2.s7! (bottom). Left hand plots were obtained using the square function and
right hand ones the Gaussian function.
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improve the BSS considerably.
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Figure 5.4: BSS and error as a function of the threshold value (left) and the neighbour-
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exponential decrease with values of less than 1% almost immediately reached, meaning
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that the methods score similarly in the range of values used for our experiments.

This first part of the case has not lead to any major differences in the interpretation of
the Brier Skill Score, nor in the relative behaviour of the two methods tested. However,
the benefit of using a Gaussian method is not obvious since the discontinuities in the post-
processed field are not a real issue anymore. The extra cost (in running time) involved

when using the Gaussian approach is not justified by any significant improvement in this

study and the normal square method should therefore be preferred.
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5.2 Extended case: 07" of May 2006 at 0300UTC.

The experiment will now be slightly modified in the same way that in section 4.2, in
order to increase the number of forecast files in the procedure. Once again, the situation
we are tying to avoid is the one where some analysis data at a time greater than ¢, would
be used in the procedure. The field to be post-processed is presented by figure 5.5 with
the radar observation at the same time (0300UTC on the 7 of May). The sequence
on the following page (figure 5.6) corresponds to all the forecast fields available for the
experiment, and shows the evolution of the situation between the 6! at 2100UTC and

the 7" at 0730UTC.

This slow moving frontal system offers a new characteristic to test since the very same
part of the domain is affected during the whole sequence. Simulations using 0,1,2 and
3 time steps were ran for the two methods, and the results are presented by figure 5.7.
The improvement in BSS after one time step is slightly less than it was in the convective
case, but the major result here is that the use of a second step still increases its value.
This can probably be explained by the particularly slow motion of the front: While most
of the convective cells had moved or vanished 3 hours after the forecast time (or were not
yet present 3 hours before), the frontal system considered here is still in the same area
of the domain. Hence, some useful information about mis-timing errors can be obtained
from fields at ¢y + 2 and ¢ty — 2. The search for the optimum parameterisation of the
reduction function was ran in the same way that in section 4.2 and the results are shown
in figure 5.8. The parameters providing the higher BSS are Ry =1, Ry =1 and R3 =0
meaning that the optimum choice corresponds to the one using two time steps with 100%

of their outputs.

The influence of adjacent fields in time on the averaging procedure is not clear but
seems to be case dependent: The number of fields to be used should be determined by
the type of weather event considered, and more particularly by the time scale over which

it might stay in the area of study.
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Figure 5.5: Analysis field of rainfall rate (top) and corresponding radar observation
(bottom) on the 07" of May 2006 at 0300UTC.
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Figure 5.6: Successive model forecasts of rainfall rates between the 6 at 2100UTC (top
left) and the 7" at 0730UTC (bottom right).
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Figure 5.7: BSS for the Gaussian method (green) and the square
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Figure 5.8: Evolution of the BSS for the Gaussian method with different reduction pa-
rameters. Top plot shows the selection of parameter Ry, bottom left one the selection of
parameter Ry and bottom right plot the selection of Rg.
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Chapter 6

Conclusions and further work

6.1 Conclusions

Precipitation forecasts suffer from an important predictability problem, and proba-
bilistic information are a way to take this unavoidable uncertainty into account. Among
the different methods leading to a probabilistic forecast, the neighbourhood approach
(Theis et al, 2005) was selected for its low-budget characteristic. While building our own
procedure to test a similar approach on the Met Office Unified Model, a few questions
arose and were formulated at the end of chapter 3. Using the results gathered during the

experiments of chapters 4 and 5, we will now try to provide some answers:

e How will the choice of rainfall rates as a variable to post-process influence our
results?
One particularity of this study was to use the model rain fall rate instead of the
more commonly used rainfall accumulation (Theis et al. 2005, Applequist et al.
2002). The extra variability involved due to the absence of time averaging (as
opposed to accumulations) has lead to larger values of the Brier Skill Scores: The
use of a neighbourhood post-processing method is even more beneficial to rainfall

rate’s outputs.

e Will the use of a Gaussian weighting function help solve the discontinuity problem,
and if it does what will be the impact on the forecast skill score?

The main motivation for the use of a Gaussian weighting function was to reduce the
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discontinuities in the output field which were produced by the initial neighbourhood
method. The convective case presented in chapter 4 provided us with a good
example of a situation where the Gaussian method did help solve this issue, but the
second case considered, involving a frontal system, failed to offer similar conclusions.
As far as the skill score is concerned, a slight under-performance of the Gaussian
approach was observed in all situations where the two methods were compared.
However this difference in Brier Skill Scores was smaller than 1% for the parameter

values selected during the experiments.

What are the effects of the time averaging procedure on this skill score?

The dependence of the BSS on the number of time steps used was perhaps the
most unpredictable aspect of the study: While the convective case showed that
only fields situated one and a half hours apart from time ty, were improving the
BSS, the frontal situation still benefited from fields up to three hours away. The
use of a reduction function to decrease the weights attributed to fields away from tg
did not offer any significant improvement, however it turned a decrease in BSS into
a small increase in the convective case and therefore the method could perhaps be
useful in some other situations: If the model output times were of 2 hours or more
for instance, the reduction function would provide a way to build some intermediate

time fields.

The best way to summarise these observations is to consider what would be the

optimum procedure, which of course depends strongly on the weather event considered.

In a convective situation, the Gaussian approach offers some subjective advantages to a

forecaster using the post-processed output, and since its under-performance in terms of

BSS is very small, it should be preferred to the initial method. The length of the time

radius should not be larger then 2 hours, in order to stick to the life time of the convective

cells considered.

For a frontal system however, the benefits of the Gaussian weighting function are less

obvious, and since it involves some extra costs in running time, the initial square function

should be selected instead. On the other hand, the larger time scale over which the front

remains in the area of study suggests the use of a wider time radius (3 to 4 hours).
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6.2 Further work

An interesting final aim for the project would be to have a completely automatic pro-
cedure post-processing all model runs. Since our conclusions suggest a case dependent
method, an important step would be to select a criteria for an automatic identification
of convective episodes. If the 12km version of the model was used, the convective scheme
would provide a good criteria, but since the 4km version mainly deals with convection
in its dynamic component, a different approach needs to be taken. One possibility could
be to identify a threshold value for the vertical velocity, and start using the convection

procedure when the velocity given by the model is higher than this threshold.

Another interesting area of work that has not been considered in this study is the
modification of neighbourhood shape in space. It would be interesting for instance to
produce an elliptic shape extending in the direction of the wind, to focus on points from
which the air is advected. Such a method capable of parameterising the shape would
also be extremely beneficial for flood forecasting purposes since the neighbourhood could
then be adapted to river catchements boundaries: Main concern for flood forecaster is to
estimate the accumulation of rain inside the catchements and the circular neighbourhood
method we have been using in this study would lead to some important errors at the

boundaries.
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Appendix: Fortran program

!Program to post-process direct model outputs

'using a neighbourhood approach

program neighb

implicit none

character(80)
character(80)
character(80)
character(80)

integer, parameter
real

integer

integer

integer

integer

integer, dimension(45)
logical

real

real

real

real, dimension(19)
real, dimension(7)
real, dimension(6)
integer, dimension(6)
real, dimension(:,:,:), allocatable

real, dimension(:,:), allocatable

.. constant,

:: 0BS1="rad050703Z.pp’

:: FILE1="20060506HS.21Z.pp’
:: FILE2="20060507HS.03Z.pp’
:: raintype

:: DX=4000

:: threshold, fact

i,10,j,30,n,n0

:: nlow,nup, tlevel
:: ERROR,NX,NY, alpha, beta
:: EXC, EVENT, EXCDMO

IHEAD, IHEAD2, IBADHEAD

:: END1
:: dist, radius, W1, SUMW1, W2, SUMW2,
:: PI, BS1, BS2, BSREF, BSS1, BSS2

constant2, W1BAK, W2BAK

:: RHEAD, RHEAD2, RBADHEAD

:: THR

:: CONST

:: NSIZE

:: LSRR, CORR, DATA

:: DUMMY, PROB1, PROB2, 0BS, RADAR

size

15k skok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok k



PI=4%ATAN(1.0)

printx, > #########
printx*, °’START’

print*, > #########

! Open files
OPEN(UNIT=51,FILE="BSBDAY’ ,FORM="FORMATTED’ ,STATUS="UNKNOWN’)
OPEN(UNIT=61,FILE=0BS1,FORM="UNFORMATTED’ ,STATUS="0LD’)
OPEN (UNIT=81,FILE=FILE1,FORM="UNFORMATTED’ ,STATUS="0LD’)
OPEN (UNIT=82,FILE=FILE2,FORM="UNFORMATTED’ ,STATUS="0LD’)
OPEN(UNIT=91,FILE="rates.pp’,FORM="UNFORMATTED’ ,STATUS="UNKNOWN’)
OPEN (UNIT=93,FILE=’DMOBDAY.pp’ ,FORM="UNFORMATTED’ ,STATUS="UNKNOWN’)
OPEN (UNIT=94,FILE=’pbsquare.pp’,FORM="UNFORMATTED’ ,STATUS="UNKNOWN’)
OPEN (UNIT=95,FILE=’pbgauss.pp’,FORM="UNFORMATTED’ ,STATUS="UNKNOWN’)

! Allocate arrays, read and write

READ (81) IHEAD , RHEAD
NX=IHEAD (19)
NY=IHEAD (18)
ALLOCATE (LSRR (NX,NY,4))
ALLOCATE (CORR (NX,NY,4))
ALLOCATE (DUMMY (NX,NY))
ALLOCATE (DATA(NX,NY,4))
ALLOCATE (PROB1 (NX,NY))
ALLOCATE (PROB2 (NX,NY))
ALLOCATE (RADAR (NX,NY))
REWIND(81)

READ (61) IBADHEAD ,RBADHEAD
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READ(61)radar (1:NX,1:NY)

!start reading first file
Do i=1,16

READ (81) IHEAD ,RHEAD

WRITE(92,%) i

WRITE(92,*) IHEAD,RHEAD

if (THEAD (42) .eq. 4203) then

WRITE(91) IHEAD,RHEAD

if (IHEAD(14) .eq. 0) then
READ(81)LSRR(1:NX,1:NY,1)
WRITE(91)LSRR(1:NX,1:NY,1)
elseif (IHEAD(14) .eq. 1) then
READ(81)LSRR(1:NX,1:NY,2)
WRITE(91)LSRR(1:NX,1:NY,2)
elseif (IHEAD(14) .eq. 4) then
READ(81)LSRR(1:NX,1:NY,3)
WRITE(91)LSRR(1:NX,1:NY,3)
elseif (IHEAD(14) .eq. 5) then
READ(81)LSRR(1:NX,1:NY,4)
WRITE(91)LSRR(1:NX,1:NY,4)
endif

elseif (THEAD(42) .eq. 5205) then
WRITE(91) IHEAD,RHEAD
if (IHEAD(14) .eq. 0) then
READ(81)CORR(1:NX,1:NY,1)
WRITE(91)CORR(1:NX,1:NY,1)
elseif (IHEAD(14) .eq. 1) then
READ (81)CORR(1:NX,1:NY,2)
WRITE(91)CORR(1:NX,1:NY,2)
elseif (IHEAD(14) .eq. 4) then
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READ(81)CORR(1:NX,1:NY,3)
WRITE(91)CORR(1:NX,1:NY,3)
elseif (IHEAD(14) .eq. 5) then
READ(81)CORR(1:NX,1:NY,4)
WRITE(91)CORR(1:NX,1:NY,4)
endif
else
READ (81)DUMMY (1:NX,1:NY)
endif

enddo

!start reading second file

Do i=1,16
READ (82) THEAD ,RHEAD
if (THEAD (42) .eq. 4203) then
WRITE(91) IHEAD,RHEAD

if (IHEAD(14) .eq. 0) then
READ(82)LSRR(1:NX,1:NY,5)
WRITE(91)LSRR(1:NX,1:NY,5)
elseif (IHEAD(14) .eq. 1) then
READ(82)LSRR(1:NX,1:NY,6)
WRITE(91)LSRR(1:NX,1:NY,6)
elseif (IHEAD(14) .eq. 4) then
READ(82)LSRR(1:NX,1:NY,7)
WRITE(91)LSRR(1:NX,1:NY,7)
elseif (IHEAD(14) .eq. 5) then
READ(82)LSRR(1:NX,1:NY,8)
WRITE(91)LSRR(1:NX,1:NY,8)
endif

elseif (IHEAD(42) .eq. 5205) then
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WRITE(91) IHEAD,RHEAD
if (IHEAD(14) .eq. 0) then
READ(82)CORR(1:NX,1:NY,5)
WRITE(91)CORR(1:NX,1:NY,5)
elseif (IHEAD(14) .eq. 1) then
READ(82)CORR(1:NX,1:NY,6)
WRITE(91)CORR(1:NX,1:NY,6)
elseif (IHEAD(14) .eq. 4) then
READ(82)CORR(1:NX,1:NY,7)
WRITE(91)CORR(1:NX,1:NY,7)
elseif (IHEAD(14) .eq. 5) then
READ(82)CORR(1:NX,1:NY,8)
WRITE(91)CORR(1:NX,1:NY,8)
endif
else
READ (82)DUMMY (1:NX,1:NY)
endif

enddo

B sk skeok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk sk ok ok sk ok sk ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok k

!Compute a neighbourhood around grid point (i0,jO,n0)

raintype=’SUM’
nlow=3

n0=5

nup=7

B sk ok ook KoK oo KRR SR KKK K oK KK KK KK oK KK oK KoK K KKK KKK o KK oK KK oK K oK K K KK oK KK oK K KK Kok KK o oK
if (raintype .eq. ’CON’) then
do i=nlow,nup

DATA(:,:,i)=CORR(:,:,1i)
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enddo

elseif (raintype .eq. ’LS’) then

do i=nlow,nup
DATA(:,:,i)=LSRR(:,:,1i)

enddo

elseif (raintype .eq. ’SUM’) then

do i=nlow,nup
DATA(:,:,1i)=CORR(:,:,i)+LSRR(:,:,1)
enddo

endif

13k sk ok sk ok sk ok sk ok 3k ok 3k ok 3k ok ok 5k ok 5k ok 3k ok 3k ok 3k >k 3k >k 3k ok 3k ok 3k >k 3k >k 3k >k 3k ok 3k >k 5k >k 3k >k 3k >k 3k >k 5k >k 3k >k 5k >k 3k >k 5k >k 5k %k 5k %k 5k %k k
THR=(/1.0E-4, 5.0E-4, 10.0E-4, 15.0E-4, 20.0E-4, 25.0E-4, 30.0E-4/)
CoNST=(/ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0/)

NSIZE=(/ 5, 10, 15, 20, 25, 30 /)

1ok ok ok sk ok ook ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok

do tlevel=1,6

threshold=THR(tlevel)
threshold= 1.0E-3
constant2=CONST(tlevel)
lalpha=NSIZE(tlevel)

alpha=15

printx,’ ’
PILAnt* , 2k kokkokokkoskokok ok ok okok ok ook ok ok ok ok ok ok ok ok Kok ok Kok ok sk ok ok sk ok Kok ok ok )

printx, * 7’
print*, ’threshold is ’,threshold
print*, ’spatial radius is ’,alpha

print*, ’time constant is ’,constant2
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constant=(4*(alpha)**2) /PI

print*, ’Space constant is ’,constant

PROB1=0
PROB2=0
BS1=0
BS2=0
BSREF=0

size=0

do iO=alpha+1,NX-alpha

do jO=alphat+l,NY-alpha

size=size+l
SUMW1=0.
SUMW2=0.
EXC=0

W1=0.

W2=0.

do i=alpha+1,NX-alpha

do j=alpha+1l,NY-alpha

dist=((i-10) **2+(j-jO)**2)**0.5
IF(dist.gt.2*alpha) CYCLE
If(dist .le. alpha) Wi=1.
W1BAK=W1

W2=exp ((-dist**2)/constant)

W2BAK=W2
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do n=nlow,nup

W1=W1BAK

W2=W2BAK
1W2=(1-(abs (n-n0) *constant2)) *W2

If (abs(n-n0) .eq.1) W2=W2
If (abs(n-n0) .eq.2) W2=W2
If (abs(n-n0) .eq.3) W2=W2xconstant2

If (DATA(i,j,n) .ge. threshold) then
EXC=1

else

EXC=0

endif

PROB1(i0, j0)=PROB1 (i0, jO) +W1*EXC
SUMW1=SUMW1+W1

PROB2(i0, j0)=PROB2(i0, jO) +W2+EXC
SUMW2=SUMW2+W2

enddo

enddo
enddo

PROB1(i0, jO)=PROB1(i0, jO)/SUMW1
PROB2(i0, jO)=PR0OB2(i0, jO) /SUMW2
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EVENT=0
if (RADAR(i0,jO) .ge. threshold) EVENT=1
EXCDM0O=0

if (DATA(iO,jO,n0) .ge. threshold) EXCDMO=1

BS1=BS1+(PROB1(i0, jO)-EVENT) *%2
BS2=BS2+(PROB2(i0, jO) -EVENT) **2
BSREF=BSREF+ (EXCDMO-EVENT) **2

enddo

enddo

BS1=BS1/size
BS2=BS2/size
BSREF=BSREF/size
BSS1=1-BS1/BSREF
BSS2=1-BS2/BSREF

'write direct model output for DATA
'!do n=nlow,nup

! write(93) IHEAD,RHEAD

! write(93)DATA(1:NX,1:NY,n0)
'write probabilities

! write(94)IHEAD,RHEAD

! write(94)PROB1(1:NX,1:NY)

! write(95) IHEAD ,RHEAD

! write(95)PROB2(1:NX,1:NY)

1ok ok ok sk sk ook ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok sk ok ok ok ok ok ok ok

WRITE(51,%*)alpha, BS1, BS2, BSREF, BSS1, BSS2, BSS1-BSS2
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print*, ’Brier score (theis et al):’,BS1
print*, ’Brier score (gaussian):’,BS2

print*, ‘’reference score:’,BSREF

print*, ’Brier skill score (theis et al):’,BSS1
print*, ’Brier skill score (gaussian):’,BSS2

print*, ‘’difference BSS1-BSS2: ’, BSS1-BSS2

lenddo ! tlevel

1 sk sk sk sk sk ok sk sk sk 3k sk ok ok sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk 3k sk sk ok sk sk sk sk 3k sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk 3k sk ok sk sk sk sk sk 3k 3k ok ok ok sk sk sk 3k sk sk ok ok ok
CLOSE(51)
CLOSE(81)
CLOSE(82)
CLOSE(91)
CLOSE(92)
CLOSE(93)
CLOSE(94)

WRITE(*,*) ’neighb v1.1 COMPLETED SUCCESSFULLY’

WRITE(*,%*) ’EXECUTION TERMINATED’

END PROGRAM
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