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Abstra
t
Fore
asts of rainfall from Numeri
al Weather Predi
tion (NWP) models are not yetas a

urate as they are for other predi
ted �elds like temperature or pressure. The highspatio-temporal variability of su
h a �eld as well as the errors implied by sub-grid s
alepro
esses limit 
onsiderably its predi
tability.Probabilisti
 fore
asts are a way to take this inherent un
ertainty into a

ount, andmany methods have re
ently been developed to ta
kle this issue. Among these diverseapproa
hes, a low-budget pro
edure using a spatio-temporal neighbourhood was intro-du
ed by Theis et al (2005). Its parti
ularity is to use only information readily availablefrom the Dire
t Model Output (DMO), and for this reason we 
hose to reprodu
e themethodology to post-pro
ess the Met O�
e Uni�ed Model's outputs.The variable sele
ted to be post-pro
essed was the rainfall rate, in order to verifythe fore
asts against radar observations. On
e the initial neighbourhood method was
orre
tly implemented and provided reasonable results, a few modi�
ations 
on
erningthe distribution of weights in both spa
e and time dimensions were tested. In order to
onsider di�erent weather 
onditions, two distin
t 
ase studies were used: A 
onve
tiveepisode and a frontal system.The main result of the proje
t was the 
ase-dependent aspe
t of the pro
edure'sperforman
e, and the fa
t that a Gaussian distribution of weights in spa
e 
ould improvethe subje
tive interpretation of the post-pro
essed �eld.
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Chapter 1
Introdu
tion
1.1 Fore
asting rainfallOut of all information given by a weather fore
ast, pre
ipitation is 
ertainly the onemany users are most interested in. Motivations for this interest are diverse and involvegreat se
urity and e
onomi
 
on
erns. Even though it is not the main fo
us of this proje
tit is important to realise how strongly our lives 
an be a�e
ted by the e�
ien
y of su
ha fore
ast: Food supplies, espe
ially in developing 
ountries, depend on the produ
tivityof lo
al agri
ulture and this produ
tivity 
an be highly improved by an a

urate fore
astof the rainfall. On this e
onomi
 side we 
an also mention hydroele
tri
ity managementand the ne
essity of estimating energy produ
tion properly. Even more important arethe issues where human lives are at risk, and �ood fore
asting is perhaps the area whi
hwould bene�t the most from any progress in rainfall predi
tion: Warning systems arebased on hydrologi
al numeri
al models whi
h are 
oupled with atmospheri
 ones to givea pre
ipitation fore
ast over a drainage basin (Benoit and Pellerin 2000, Jasper and Kauf-mann 2003). Therefore the whole pro
edure is extremely dependent on the a

ura
y ofthe initial rainfall predi
tion, and unfortunately the time s
ale for whi
h this fore
astremains reliable is often too short for preventive a
tion to be taken in 
ase of se
uritythreats (Krzysztofowi
z et al. 1993).This great need for a

ura
y does not mat
h the a
tual e�
ien
y of rainfall fore
asts,and pre
ipitation �eld is one of the least su

essfully simulated by Numeri
al Weather6



Predi
tion (NWP) models. The Working Group on Numeri
al Experimentation of theWorld Meteorologi
al organisation has underlined that although the major NWP mod-els operationally used have made some important progress re
ently, they still experien
esome di�
ulties when it 
omes to produ
ing some Quantitative Pre
ipitation Fore
asts(Erbert et al. 2003). The spatial and temporal s
ales 
onsidered as well as the diversity ofphysi
al pro
esses involved (large s
ale as
ent of moist air, 
onve
tion, orographi
 lifting)are some of the many parameters whi
h in�uen
e the level of predi
tability. Cassati, Rossand Stephenson (2004) have applied a new method 
alled the intensity-s
ale approa
h totest the in�uen
e of pre
ipitation intensity and spatial s
ale on the performan
e of theNIMROD operational system. Their 
on
lusions were that poorer skills were obtained insmall-s
ale events (<40km) involving lo
alised intense pre
ipitation.Walser et al (2004) have applied an ensemble method (see se
tion 2.1) to a mesos
alemodel, in order to investigate the predi
tability dependen
e of Quantitative Pre
ipitationFore
asts (QPF) to some of these parameters. Using a 
loud-resolving model with amesh size of 3km they were able to show that even though modern e�orts to de
reasethe grid length to a few kilometres lead to better representation of 
onve
tive 
ells, itdoes not ne
essarily imply any predi
tability improvement. In fa
t the rapid growth oferror due to the 
haoti
 aspe
t of the atmosphere (Lorenz 1963), and more spe
i�
allyhere of its moist dynami
 
omponent lowers this predi
tability at small spatial s
ales. Aspreviously parametrised sub-grid s
ale phenomenon be
ome more realisti
ally modelled inhigh resolution NWP models they tend to help the growth of small perturbations, leadingto poorer predi
tability. Even though this de
rease in predi
tability should be seen as aprogress in the representation of the nonlinear behaviour of the atmospheri
 dynami
s atthese s
ales, it suggests that the a

ura
y of pre
ipitation fore
ast will probably not besigni�
antly improved in the years to 
ome. Furthermore, they were able to show thateven at larger s
ales (up to 100km) 
onve
tive episodes still a
t to limit the predi
tability,meaning that realisti
 modelling of 
onve
tion might require a di�erent approa
h to thefore
ast interpretation at all s
ales.
7



1.2 Added value of probabilisti
 fore
astsBe
ause of this unavoidable un
ertainty in the NWP models' output, taking a deter-ministi
 approa
h to rainfall fore
asting is not desirable and a probabilisti
 information
an be useful in both the 
on
eption and the interpretation of these fore
asts. Figure 1.1,obtained with the method explained in 
hapter 3, gives an example of su
h an output.The left hand part is the dire
t model output of rainfall rate obtained with the Met O�
e4-km grid Uni�ed Model, and the right hand one shows the probability of ex
eeding athreshold value of 5.10−4kg.m2.s−1 (
orresponding to all 
oloured areas on the left-handplot).

Figure 1.1: Dire
t model output for rainfall rate in kg.m−2.s−1 (left) and post pro
essedoutput for probability of ex
eeding 5.10−4kg.m−2.s−1 (right).This type of information provides the user with a measure of the likelihood of thepredi
tion, giving a more realisti
 view of the model's abilities. Allan H. Murphy (1991)dis
usses the use of su
h probabilisti
 information as a link between the fore
aster'sjudgement and the rational de
ision making pro
ess whi
h follows. When looking atNWP outputs, operational fore
asters try to estimate how 
on�dent they 
an be in theresult, using their experien
e and knowledge as well as any re
ent observations they 
angather (radar or satellite imagery, analysis 
harts) or other models' output. The main ar-gument introdu
ed in the dis
ussion 
on
erns the di�
ulty of translating the fore
aster'ssubje
tive view of the situation in a quantitative way. The fo
us of the paper is on the8



O

urren
eNO YESNO 0 LA
tion YES C C + L − L1Table 1.1: Expense matrixfore
ast of rare events, and in this kind of situation the fore
aster is only o�ered twopossibilities: o

urren
e or non-o

urren
e. When an event has been fore
ast but didnot o

ur it is referred to as a type 1 error, whereas the other situation where it wasnot fore
ast but a
tually happened is referred to as a type 2 error. It has been observedthat when 
onfronted to an ambiguous situation, the perspe
tive of possible impa
ts onthe user drives the fore
aster to issue type 2 error fore
asts more often. This 
ommonfeeling that a type 2 error is more serious has lead to a signi�
ant level of over-fore
astingand probabilisti
 fore
ast 
ould help solve this issue by illustrating more realisti
ally thefore
aster's feeling.Apart from the fore
aster, users would also bene�t widely from probabilisti
 infor-mation: De
ision makers who base their a
tions on the likelihood of a weather event allhave 
omplex and di�erent 
onsequen
es to these a
tions, and a probability of o

ur-ren
e would suit better this diversity. By giving a 
ategori
al yes/no fore
ast we for
ethem all to the same de
ision no matter what their 
osts are: To di�erentiate this widevariety of users, the 
ost-loss relationship they fa
e is often referred to. In a study byD.S.Ri
hardson (1999) on the relative e
onomi
 value of the ECMWF ensemble predi
-tion system, this type of de
ision model is presented in the following way: Ea
h preventivea
tion is 
hara
terised by a 
ost C, the lost following a non prote
ted a
tion is noted Land the portion of the loss redu
ed when a
ting is L1 (see expense matrix in table 1.1).The aim of the de
ision maker is of 
ourse to minimise his expense, and if he is notgiven any hint (only 
limatologi
al information available) the only reasonable 
hoi
e isto either always or never a
t depending on the global 
ost of ea
h option. If O representsthe number of times the event o

urs, always a
ting leads to an expense of C +O(L−L1)whereas never a
ting to OL. Therefore without any hint the fore
aster should always a
tif C+O(L−L1) ≤ OL and never a
t otherwise. Any fore
ast should o�er a way to redu
e9



this expense Eclim. A 
ommon way to estimate the e�
ien
y of a fore
ast is through theRelative Value RV whi
h relates the redu
tion in expense provided by the fore
ast to ahypotheti
al perfe
t one (for whi
h the expense would be Eperfect = O(C + L − L1)):
RV =

Eclim − Eforecast

Eclim − Eperfect

(1.1)
RV 
an be seen as a per
entage of what the savings using a perfe
t fore
ast would be:If the use of a perfe
t fore
ast leads to an expense redu
tion of S, a fore
ast of RelativeValue RV will save the user 100RV% of S.Using this Relative Value as an index, D.S. Ri
hardson has 
ompared the skills ofboth deterministi
 and probabilisti
 fore
asts. When 
onsidering deterministi
 systems,

RV 
an be expressed as a fun
tion of the 
ost/loss ratio α = C
L
, providing a way to takeinto a

ount di�erent users' 
on
erns. The main 
on
lusion is that the fore
ast is notequally useful for all, and if some users with a 
ost/loss ratio of α between 0.1 and 0.5do bene�t from a positive value of RV , others with bigger α would not �nd any help inthe fore
ast: The value of the predi
tion strongly depends on the user's α.On the other hand, when given a probabilisti
 fore
ast, the user has the ability to
hoose a threshold value for his a
tions (a
t when the event is predi
ted with a probabilityof 70% for instan
e), and it is this ability that makes the fore
ast spe
i�
 to ea
h user'sneeds. As the threshold value varies, the relationship between RV and α is modi�ed,and therefore de
ision makers 
an spot the threshold that would give them the optimum

RV . For instan
e, it has been shown in the study that users with a value of α = 0.1(meaning important losses involved in 
ase of o

urren
e) would bene�t from a RelativeValue of 0.4 if they a
t when the fore
ast probability is 10% or more but would notre
eive any useful information from it if they waited until the probability is 50% : Givingthe same fore
ast to all users is not a reasonable option. Therefore, these two studiessuggest that the use of probabilisti
 information in weather fore
asting would not only10



help the fore
asters provide a realisti
 judgement of the situation, but also enable theusers to optimise their de
ision making pro
ess.The aim of this proje
t is to fore
ast the probability of pre
ipitation ex
eeding giventhreshold values, using NWPmodel's dire
t outputs. The way in whi
h these probabilitiesshould be estimated is still an open question, and the next 
hapter will fo
us on di�erentre
ent methods designed for this purpose. The pro
edure as well as the data used for ourdi�erent experiments will be presented in 
hapter 3, followed by results obtained duringtwo di�erent 
ase studies: Chapter 4 will present a 
onve
tive episode and 
hapter 5 afrontal system. Finally, the main 
on
lusions regarding the proje
t as well as the futurepossible lines of work will be dis
ussed in 
hapter 6.

11



Chapter 2
Overview of di�erent methods

In the previous 
hapter we exposed the di�
ulties inherent to Quantitative Pre
ipita-tion Fore
asting (QPF), and argued that probabilisti
 information o�ers some �exibilityfor both the fore
aster and the user. Here we will review some methods whi
h providea probabilisti
 QPF without the help of a fore
aster. Parti
ular attention will be paidto the neighbourhood approa
h in se
tion 2.3 sin
e it will be the basis for the presentproje
t.2.1 Ensemble fore
astingDue to re
ent progress in the �eld of high performan
e 
omputing and the developmentof massively parallel ma
hines, ensemble fore
asting te
hniques have re
eived parti
ularinterest in the re
ent years. The basis of su
h methods is to run multiple fore
asts start-ing from slightly di�erent initial 
onditions, 
alled ensemble members. This approa
ho�ers a way to take into a

ount di�erent evolution s
enarios and therefore to assess theun
ertainty in the model fore
ast: If all runs 
onverge to a similar result, the level of
on�den
e for the predi
tion 
an be high, whereas if they tend to have very di�erentbehaviours it will be poorer. The spread of the ensemble members therefore representsa measure of the predi
tability. Sin
e the atmospheri
 system has a tremendous numberof degrees of freedom, the members 
an only partly represent all un
ertainty possibilitiesand the 
hoi
e of the perturbations in the initial 
ondition is a key issue. Fields whi
h are
ommonly perturbed are temperature, humidity and horizontal wind 
omponents, and12



the a
tual perturbation pro
edure di�ers from one study to another. The experimentby Walser et al (2004) mentioned in introdu
tion uses a lagged te
hnique, in whi
h theinitialisation times of 6 di�erent runs are separated by one hour. When all runs havebeen initialised, the deviation from the ensemble mean is ampli�ed for the sele
ted �elds(temperature, wind, humidity) leading to di�erent initial atmospheri
 states for the sim-ulation. Other methods do not 
onsider any time lag but fo
us more on the ampli�
ationpro
edure to realisti
ally mat
h observed analysis errors. A popular one introdu
ed byMullen and Baumhefner (1989) separates the large s
ale error from the small s
ale onein order to take into a

ount the fa
t that the noise due to initial perturbation equalsthe signal for small s
ales (Du et al. 1997, Bright and Mullen 2002).Although ensemble methods were originally designed to take into a

ount the evolu-tion of baro
lini
 perturbations in medium range fore
asts (6 to 10 days), some re
entstudies have ta
kled the issue of mesos
ale predi
tability of pre
ipitation using similarapproa
hes with limited area models (Walser et al 2004, Bright and Mullen 2002, Marsigliet al 2001, Du et al 1997). In this studies ensemble systems are a way to 
onsider othergrowth me
hanisms like those linked to moist physi
s and 
onve
tion, as mentioned inse
tion 1.1.Du et al (1997) used a similar method to Mullen and Baumhefner (1989) to produ
esome probabilisti
 quantitative pre
ipitation fore
asts from a mesos
ale model. They
onsidered the 6 hours a

umulated pre
ipitation amounts and they divided the possibleoutputs into 5 
ategories (p < 0.01 in
h ; 0.01 in
h< p < 0.10 in
h et
...). Then, forea
h grid point they 
omputed a probability of being in ea
h of the 
ategories based onthe population of ensemble members: They used 25 members so if there are 5 membersin ea
h 
ategory for instan
e, their probability would only be of 20% for ea
h, meaningpoor 
on�den
e. On the other hand if 20 of them are in the same 
ategory, it would beattributed a probability of 80% , expressing a high level of 
on�den
e in the fore
ast.This ensemble predi
tion approa
h is probably the most 
ommonly used to produ
eprobabilisti
 outputs from NWP, however it requires an amount of 
omputer power whi
his not always available and for this reason some alternative methods are sometimes pre-ferred. 13



2.2 Statisti
al methodsStatisti
al methods refer to fore
ast te
hniques whi
h draw a relationship betweena set of variable to infer the value of one or a few others. The parameters used forthe predi
tion are 
alled predi
tors and the ones a
tually predi
ted the predi
tands.Applequist et al (2002) have applied and 
ompared several di�erent statisti
al modelsto predi
t the probability of pre
ipitation ex
eeding a 
ertain threshold after 24 hours(predi
tand). For ea
h of the 5 models they used (linear regression, dis
riminant analysis,logisti
 regression, neural network and the 
lassi�er system), the pro
edure was to use atraining data set to �rst sele
t the best predi
tors and then to identify the 
oe�
ients orrules that would provide the best �t between predi
tors and predi
tand. The data usedfor the sele
tion of the predi
tors was 
omposed of synopti
 and upper air analyses, aswell as 6-hourly pre
ipitation fore
asts up to 24 hours. Altogether they 
onsidered morethan 200 potential predi
tors in
luding model variables as well as derived quantitieslike humidity or temperature adve
tion, and binary variables for rain ex
eeding giventhresholds. To rank and 
hoose the predi
tors, the sele
tion pro
edure uses the BrierSkill S
ore (BSS) whi
h is based on the following Brier S
ore (BS) originally de�ned astwi
e this value by Brier (1950).
BS =

1

n

n
∑

k=1

(yk − ok)
2 (2.1)Here, n represents the number of fore
asts, yk the fore
ast probability and ok the a
-tual observation (ok = 1 when event observed and 0 otherwise). A good fore
ast methodshould therefore keep the BS s
ore as low as possible, by having high probabilities when

ok = 1 and low ones otherwise. The BSS is then a measure of the fore
ast improvementover 
limatology, normalised by a hypotheti
al perfe
t fore
ast, so higher BSS 
orre-sponds to better fore
asts:
BSS =

BSforecast − BSclimatology

BSperfect − BSclimatology

= 1 −
BSforecast

BSclimatology

(2.2)
14



Although the stepwise sele
tion di�ers slightly from one model to another (fewerpredi
tors were 
onsidered for the neural network and 
lassi�er system, and a di�erentstopping rule for the linear regression), the algorithm is still the same: First 
hoose asingle predi
tor whi
h provides the best BSS with the training data set, then look in theremaining ones for the 
ombination that would best improve this BSS and so on untilthe BSS 
an not signi�
antly be improved anymore. Depending on the statisti
al model,2 to 6 predi
tors were 
hosen, and the ones sele
ted with greatest frequen
y were the24h a

umulated pre
ipitation fore
ast, binary variables for rain and relative humidityex
eeding given thresholds and a layered averaged value of relative humidity after 12hours.2.3 The neighbourhood approa
hThe method whi
h will be referred to as the neighbourhood approa
h in the rest of thestudy was introdu
ed by Theis et al (2005) in an attempt to provide some probabilisti
QPF with a low-budget pro
edure. In e�e
t, all the methods we 
onsidered so far o�ersome heavy 
onstraints in one way or another: The subje
tive post pro
essing of Dire
tModel Outputs (DMO) into a probabilisti
 fore
ast requires the experien
e of a quali�edteam (see se
tion 1.2) and the use of ensemble methods is only possible with great 
om-puter power. Statisti
al methods might not require as mu
h power, but the amount ofdata set needed to build the model is not always available either. Consequently, the mainobje
tive of this pro
edure is to use the information already available from the modeloutput to obtain the QPF.To illustrate their method, they post pro
essed outputs of pre
ipitation a

umulationobtained with the German DWD lokal modell, whi
h has a horizontal grid spa
ing of7km and a domain of 325×325 grid points. To begin with, a neighbourhood is 
omputedaround ea
h grid point in the spatial domain, as shown in �gure 2.1 for the X-Y plane,and then a similar pro
edure sele
ts points from previous and su

essive model runs inorder to take into a

ount the time dimension as well. However, the way in whi
h thistime pro
edure is done is not 
lear from the paper: Although it is 
learly stated in thetext that the size of the neighbourhood is held �xed at all lead times of the simulation, a15



diagram similar to �gure 2.1 but in the X-T plane suggests that the diameter is a
tuallyde
reased when moving away in the time dimension. This 
ontradi
tion will be furtherdis
ussed in 
hapter 3 when trying to reprodu
e the method.

X

 Y

Xo + 5DxXo − 5Dx

Yo − 5Dy

Xo

Yo

Yo + 5Dy

Figure 2.1: Example of a spatial neighbourhood with a diameter of 10 grid points (70km).The next stage is then to go through all the grid points inside the neighbourhood (inboth spa
e and time) and 
ount the ones for whi
h the DMO ex
eeds a given threshold.The probability of ex
eedan
e is �nally obtained by dividing this number by the totalnumber of points inside the neighbourhood.The veri�
ation pro
edure uses observed pre
ipitation data from rain gauges to as-sess the skill of the method . The 
omparison is based on the Brier Skill S
ore (BSS)des
ribed in se
tion 2.2 (see equations 2.1 and 2.2), but instead of having a 
limatologi
als
ore as a referen
e in the BSS they 
hose to use the DMO s
ore: This is obtained bytransforming the deterministi
 output so that a probability of 100% is given when thefore
ast ex
eeds the sele
ted threshold and 0% otherwise. In that way the BSS re�e
tsthe improvement of the method against the DMO. The in�uen
e of di�erent parameters16



su
h as the threshold value or the neighbourhood size were investigated, and all resultslead to a positive value of the BSS (between 0.2 and 0.4), meaning that their methodalways outperforms the DMO. Perhaps the most interesting result of this study is the fa
tthat of all neighbourhoods 
onsidered, the larger one (140km diameter) always leads tothe best improvement. This suggests that some useful information on the predi
tability
an still be found as far as 70 km away from the a
tual fore
ast lo
ation, and is to berelated to the experiment by Walser et al (2004) whi
h showed that predi
tability mightbe limited at s
ales up to 100km in 
onve
tive situations.The se
ond part of the veri�
ation pro
edure uses the Relative Value (RV) (see equation1.1) to represent the user's interest in the fore
ast. No matter what the 
ost/lost ratio is,the RV of the neighbourhood method is always higher than the DMO one. Furthermore,by post-pro
essing the model output, the neighbourhood te
hnique provides a wideningof the 
urve representing the RV as a fun
tion of the 
ost/lost ratio: The post pro
essedfore
ast would be bene�
ial to more users (see se
tion 1.2).In a study on the in�uen
e of model resolution on the skill of pre
ipitation fore
astsRoberts (2006) used a neighbourhood approa
h as a veri�
ation method. As shown in�gure 2.2, he suggested that the range for the neighbourhood size should be bound. Thelower limit representing the size for whi
h the skill starts to be a

eptable and the upperone the size at whi
h the output has been smoothed out to mu
h. In e�e
t, when theneighbourhood size is in
reased too mu
h, it leads to a smoothing of the fore
ast �eldwhi
h de
reases the added value of a high resolution model. However, like the desiredskill level, this upper level strongly depends on the user's needs: Flood fore
asters forinstan
e do bene�t from a fore
ast over a wide area sin
e they deal with river 
at
hements.In his dis
ussion about the veri�
ation method N.Roberts also suggests that the av-eraging pro
edure giving the ex
eedan
e probability 
ould perhaps be modi�ed by usinga Gaussian distribution of weights inside the neighbourhood, in order to give more im-portan
e to grid points 
lose to the 
entre. Even though he believes that the methodshould stay as simple as possible and that the global improvement in the results wouldnot justify the added 
omplexity, some bene�t 
ould nonetheless be gained in the way17
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NeighnourhoodFigure 2.2: Skill of the fore
ast as a fun
tion of the neighbourhood size.the probabilisti
 �eld is represented: Plots would show fewer dis
ontinuities and a more
ir
ular shape around high probability areas.After this qui
k overview of possible methods to obtain a probabilisti
 QPF, next
hapter will now fo
us on the way to implement our own method, based on the neigh-bourhood approa
h by Theis et al (2005).
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Chapter 3
Methodology

The aim of this 
hapter is to expose the pro
edure used to postpro
ess NWP outputs ofrainfall rates into a probabilisti
 quantitative pre
ipitation fore
ast. After a presentationof the model and veri�
ation data used, we will fo
us on the neighbourhood based methodimplemented as well as on di�erent modi�
ation performed in the hope of improving thefore
ast skills.3.1 Model and dataThe NWP model used in the study is the non-hydrostati
 version of the Met O�
eUni�ed Model (UM), with a grid length of 4km. The model domain in
ludes the southernhalf of the UK as well as the 
oast of northern Fran
e in order to 
apture thunderstormsmoving a
ross the Channel. One parti
ularity of this 4km grid model is that althoughthe 
onve
tive part of the rainfall is mainly expli
itly resolved, a 
onve
tion s
heme isstill in
luded as a 
omplement to the dynami
 
omponent. This version of the UM isstill in an experimental stage, but has been running and ar
hiving data for almost a yearnow. Corresponding to model runs at 03, 09, 15 and 21UTC every day, this ar
hiveddata 
ontains the analysis �elds at the time of the run as well as fore
asts with lead timesof one and a half, three and four and a half hours ahead. In following se
tions of thereport, this one and a half hour gap between these output times will be referred to asa time step (even though it does not 
orrespond to the model's time step), and will benoted Dt. All model data used in 
ase studies were obtained through the Joint Centre19



for Mesos
ale Meteorology (JCMM), thanks to Changgui Wang.Composite radar data, easily available from the British Atmospheri
 Data Centre(BADC) were 
hosen to verify the method against observations. This data derived from
omposites of single radar sites is represented on a 5km grid, and therefore the dire
t
omparison with model outputs is only possible after interpolating the data into themodel's 4km grid. This part of the pro
edure was realized by Dr. R.Plant, with a linearinterpolation between nearest points on the 5km radar grid.Unlike rain gauges whi
h represent the a

umulation of rainfall over time, radar imagesgive an instantaneous pi
ture of the pre
ipitation �eld and are a tool to measure itsintensity distribution at a given time. Consequently, the sele
ted fore
ast �eld has torepresent similar 
hara
teristi
s, and the rainfall rate seems to be the most appropriatequantity: Both its large s
ale and 
onve
tive 
omponents were summed to obtain thevariable used in the post-pro
essing pro
edure.One parti
ularity of this variable 
hoi
e is that it might lead to some poorer skillfor the DMO. In e�e
t, when rainfall a

umulation is used like in most of the studiesreferen
ed in 
hapter 2, a time averaging is impli
itly involved and small delays in themodel's fore
ast (mis-timing) do not penalise the 
al
ulated skill if they remain in thea

umulation period. In the present study however, the model output is 
onsidered as aninstantaneous image and 
ompared to observed radar data, therefore similar mis-timingswill be 
onsidered as model errors and the DMO skill will su�er from it. Figure 3.1 givesan example of a situation where the model 
orre
tly identi�ed the overall pattern of thepre
ipitation �eld but failed to represent the detailed stru
ture a

urately.Be
ause of this additional di�
ulty in fore
asting rainfall rates, the use of a proba-bilisti
 post-pro
essing method should lead to an even better improvement than whena

umulations are 
onsidered.
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Figure 3.1: Dire
t Model Output of rainfall rates (left) and 
orresponding radar image(right).
3.2 Initial pro
edureSin
e the basis of the method is the neighbourhood approa
h (Theis et al 2005) theobvious �rst step of the proje
t was to implement and test it on the Uni�ed Model'soutputs. Details of the sele
ted 
ase studies will be given in 
hapters 4 and 5, and herewe will fo
us on the te
hni
al aspe
t of the pro
edure.As explained in se
tion 2.3, the probability of ex
eeding threshold value Thr at grid point
(x0, y0, t0) is obtained by �rst building a neighbourhood around it in both spa
e and timedimensions , and then dividing the number of points ex
eeding Thr by the total numberof points inside the neighbourhood. The des
ription of the algorithm 
omputing it willbe des
ribed step by step, starting with spatial 
onsiderations �rst and then extendingthe 
on
ept with a time neighbourhood.3.2.1 Spatial neighbourhoodFor every grid point (x0, y0) in the domain, a 
ir
ular neighbourhood similar to �gure2.1 needs to be built. This is done by 
omparing the distan
e between (x0, y0) and itssurrounding points, to the neighbourhood radius. The algorithm responsible for this partof the pro
edure is represented in a simpli�ed way in table 3.1 , where α represents the21



Loop over the whole domaindo i0 = α + 1, Nx − α ex
ept the border for whi
hdo j0 = α + 1, Ny − α no probability is 
omputed.do i = i0 − α, i0 + α Loop around surrounding pointsdo j = j0 − α, j0 + α to build the neighbourhood.Compute distan
e between (i0, j0) and (i, j) From Pythagoras theorem,If distan
e < α then (i, j) is in the neighbourhood distan
e is:√(i − i0)2 + (j − j0)2Che
k if DMO(i,j) ex
eeds thresholdend doend do probability for (i0, j0) is:
ompute probability for (i0, j0)
points ex
eeding thresholdnumber of points in neighbourhoodend doend doTable 3.1: Algorithm used to build a neighbourhood and 
ompute the probability ofex
eedan
e with the initial method.
ir
le radius, Nx and Ny the domain size, ∆ the grid length and DMO(i,j) the modelrainfall rate for grid point (x = i∆, y = j∆). Sin
e no 
omplete neighbourhood 
an bebuilt for points at the edges of the domain, the probability was �xed to zero on a band oflength α along the border. It is also important to noti
e that from now on all distan
eswill be expressed in number of grid points, meaning that the 
orresponding length inkilometres is obtained by multiplying by ∆ = 4km. Similarly the notation (i,j) will beoften used to designate grid point (x, y) = (i∆, j∆).

3.2.2 In timeAs dis
ussed earlier in se
tion 2.3, the way in whi
h the time dimension is added tothe spatial neighbourhood is not really 
lear from the paper by Theis et al (2005). Themain 
ontradi
tion 
omes from a diagram showing an ellipti
 shape in the X-T planelike the one on �gure 3.2, whi
h suggests that the spatial radius of the neighbourhoodde
reases as we move away from time t0, whereas in the text it is a
tually stated thatthis radius is kept �xed at all lead times (
orresponding to the blue re
tangle on the X-T22



plane). When 
onsidering the problem from a physi
al point of view, modifying the spa-tial size of the neighbourhood would make more sense if the radius in
reased with timeinstead of de
reasing: Some information might be spread out into a wider area aroundpoint (x0, y0). Therefore the pro
edure will keep a �xed neighbourhood size at all times,as expressed by the blue re
tangle on �gure 3.2.

X

T

To

To+2Dt

To−Dt

To+Dt

Xo Xo+6Dx

To−Dt

Xo−6DxFigure 3.2: Shape of the neighbourhood in the X-T plane.From a pra
ti
al point of view this will require the model rainfall rate data to bestored in a three dimensional array DMO(i,j,n), where n represents the time index.The pro
edure to 
he
k if the value ex
eeds the threshold will then be
ome:do n = n0 − β, n0 + β
he
k if DMO(i,j,n) ex
eeds thresholdend dowhere β refers to the time radius and n is the time index. As before, the notation(i,j,n) will be often used to refer to point (i∆, j∆, nDt).
23



This initial version of the 
ode, representing the original method by Theis et al, wastested on di�erent 
ase studies and gave satisfying results and skill s
ores (see 
hapters 4and 5). It will therefore be used as a referen
e against whi
h all following modi�
ationswill be 
ompared.
3.3 Additional experimentsThe aim of this se
tion is to present two modi�
ations to the method whi
h wereimplemented in the hope of improving the value of the post-pro
essed output. Theoriginal motivation 
omes from the idea that all points should not be given the sameimportan
e in the averaging pro
edure leading to the probability estimation, and thedistan
es in both time and spa
e should be taken into a

ount.3.3.1 Spatial weighting distributionIn the referen
e method, the averaging pro
edure is done 
onsidering that any pointinside the neighbourhood a

ounts for an equal fra
tion of the probability. Whether thethreshold is ex
eeded at a grid point dire
tly adja
ent to (x0, y0) or at a distan
e of αdoes not make any di�eren
e, whereas ex
eedan
e at a distan
e of α+1 is not taken intoa

ount. This 
hara
teristi
 is responsible for some dis
ontinuities in the post-pro
essed�eld, and as suggested by N.Roberts (2006), a Gaussian distribution of the weights 
ouldhelp improve this aspe
t of the pro
edure. Whether or not it will also improve the fore-
ast skill is not 
lear, and the di�erent studies in following 
hapters will try to investigatethis question.The Gaussian fun
tion is of the form g(x) = exp(−x2

c
), where the parameter c de-�nes the sharpness of the 
urve. Figure 3.3 shows both the square fun
tion used in thereferen
e method (in blue) and the Gaussian (in red) as a fun
tion of the distan
e topoint (x0, y0). This example 
orresponds to a neighbourhood of radius 20 grid pointsand illustrates the way in whi
h a Gaussian approa
h should improve the dis
ontinuityproblem: Points at distan
es α and α+1 from the 
entre are now attributed very similar24



weights.
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Figure 3.3: Example of Square and Gaussian weighting fun
tions for a neighbourhoodradius of α = 20 grid points. The horizontal bla
k line indi
ates the weight for a radiusof 2α.To stay 
onsistent with the referen
e method and enable dire
t 
omparison, the 
oef-�
ient c should be 
hosen 
arefully: Both fun
tion must represent the same total amountof weights, meaning that the areas below the 
urves should be equal. By expressing thislater 
ondition as follows, it is possible to link c to the radius α.
∫

+∞

−∞

exp(−
x2

c
)dx =

∫

+α

−α

1dxWhi
h, following a few lines of 
al
ulation 
an be written in the form:
c = 4

α2

π
(3.1)
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Even though this Gaussian distribution of weights in spa
e does not 
orrespond toa neighbourhood anymore, its parameterisation is still linked to the 
ir
le of radius αproviding the same amount of weights. All 
omparisons of the two methods in 
hapters4 and 5 will be based on this equation 3.1, and a Gaussian method of parameter 
 willbe referred to through the 
orresponding α.The algorithm for this modi�ed method is slightly di�erent from that in table 3.1 sin
eall points surrounding (i0, j0) are now attributed a weight depending on their distan
e.In order to save some running time, points situated at a distan
e of 2α or more will notbe dealt with (they represent a weight of less than 0.05 as shown by the bla
k horizontalline on �gure 3.3). The probability at grid point (i0, j0) is now obtained by:
prob(i0, j0) =

∑

i,j W (i, j) × EXC(i, j)
∑

i,j W (i, j)
(3.2)Where ∑

i,j 
orresponds to the sum over points at a distan
e smaller than 2α from
(i0, j0), W (i, j) is the Gaussian weight at grid point (i,j), and EXC(i,j) is a binary arrayrepresenting the ex
eedan
e: EXC(i,j)= 1 when threshold is ex
eeded for point (i,j),0 otherwise. An obvious downside of this Gaussian method is the extra running timeinvolved (due to the 
omputation of the weights and the extended spatial loop required),espe
ially sin
e the parti
ularity of the neighbourhood approa
h was to be a low-
ostpro
edure.3.3.2 Time weighting distributionFollowing on the idea that all grid points in the spatio-temporal domain might notbe of equal importan
e in the estimation of a probability for point (x0, y0, t0), a di�erentapproa
h to the distribution of weights in time should be tested. Let us 
onsider a timeradius of β = 3, like in the largest setting used by Theis et al. It seems reasonable to
onsider that an output �eld 3 time steps away from the a
tual time of the fore
ast t0
ontains less information than the fore
ast �eld itself, and therefore it should be givenless weight. To do so, all points (x, y, t) have their weights redu
ed a

ordingly to the26



distan
e between t and t0. Figure 3.4 presents a weighting fun
tion linearly de
reasingwith time, whi
h redu
es the Gaussian weights by a fa
tor R(t). A grid point (i,j) in the�eld at to + 3Dt would for instan
e have its weight redu
ed from W (i, j) to R3W (i, j)(where R3 is the notation for R(to + 3Dt)).

to to+Dt to+2Dtto−Dtto−3Dt

1

R1

R2

R3

R(t)

t
to−2Dt to+3DtFigure 3.4: Redu
tion fun
tion using 3 time steps (in red). Blue arrows represent thedi�erent possibilities of parameterisations.Therefore, the new probability will now be:

prob(i0, j0, n0) =

∑

i,j,n RnW (i, j, n) × EXC(i, j)
∑

i,j,n RnW (i, j, n)
(3.3)where the time index n ranges from n0 − β to n0 + β.Linear fun
tions were 
hosen as a �rst guess to test the in�uen
e of this modi�
ationbe
ause they are easy to parametrise (just one parameter, the slope). As illustrated bythe blue arrows on �gure 3.4, there is of 
ourse a wide range of possible parameterisationsfor this redu
tion fun
tion and one of the fo
usses of following 
hapters will be to tryand identify an optimum one. 27



The main obje
tives of this se
tion were �rst to explain the theoreti
al basis of thepro
edure used in 
hapters 4 and 5 and se
ondly to qui
kly introdu
e the notationsand algorithm used in the fortran program given in appendix to help its understanding.Several questions were raised about possible in�uen
es and bene�ts of the modi�
ations:
• How will the 
hoi
e of rainfall rates as a variable to post-pro
ess in�uen
e ourresults?
• Will the use of a Gaussian weighting fun
tion help solve the dis
ontinuity problem,and if it does what will be the impa
t on the fore
ast skill s
ore?
• What are the e�e
ts of the time averaging pro
edure on this skill s
ore?Case study of 
hapter 4 will now try to provide us with some �rst answers for a 
onve
tiveepisode, and 
hapter 5 will extend these answers to a di�erent situation involving a frontalsystem.
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Chapter 4
Case study number 1: Conve
tivesituation.

This 
hapter presents the �rst 
ase study on whi
h the 
on
epts des
ribed previouslywere tested and 
ompared to the referen
e neighbourhood method. This 
omparisonwill be made step by step, starting from a single spatial �eld and progressively addingadja
ent ones in time. The situation exposed was sele
ted for its 
onve
tive aspe
t, partlyin order to test the potential of the Gaussian method to de
rease the dis
ontinuity issuesnoted in the method by Theis et al (2005).4.1 Initial experiment: 18th of May 2006 at 1800UTC.As explained in se
tion 3.1, the Uni�ed Model's data are ar
hived every day at 03,09, 15 and 21UTC and are available through the Joint Centre for Mesos
ale Meteorology(JCMM). This �rst experiment was built to represent a situation where a fore
ast at1800UTC has to be issued from the model run at 1500UTC. Figure 4.1 shows the model'sfore
ast at 1800UTC and the 
orresponding radar observations. This dire
t 
omparisonof the two outputs shows that the model has 
orre
tly identi�ed the two major regionsof pre
ipitation, namely the small band over Wales and Cornwall and the area of intenserain over northern Fran
e and Belgium. However, the size of the area 
overed as wellas the amount of isolated 
onve
tive 
ells were 
onsiderably underestimated. The otheravailable fore
asts at 1630UTC and 1930UTC are represented in �gure 4.2 to show the29



evolution of the situation.Unlike following experiment whi
h uses analysis �eld as part of the pro
edure (see se
tion4.2), this �rst 
ase represents a real fore
ast situation where no observed information areused other than from the model run at 1500UTC.4.1.1 Only spa
e: First resultsIn order to test and validate the methods on a simple 
ase, this �rst experiment onlyin
ludes one model �eld, the one at fore
ast time t0 =1800UTC. The fa
t that there isno time in�uen
e on the estimation of the probabilities makes the interpretation of theresults easier and helps spotting possible errors in the 
ode. Furthermore, this dire
t
omparison of the two spatial weighting pro
edures o�ers an opportunity to ta
kle theissue about dis
ontinuity in the post-pro
essed �eld formulated in se
tion 3.3.1, and to
ompare the �rst skill s
ores obtained.Figure 4.3 presents outputs obtained with the Gaussian method (right hand sideplots) and the square one (left hand side plots) for two di�erent thresholds: Top plotsshow the probability of having rain rates over 10−4kg.m−2.s−1, 
orresponding to almostall pre
ipitation in the area, and bottom ones over 10−3kg.m−2.s−1. The use of di�erentthresholds helps quantify the intensity of the expe
ted pre
ipitation and these resultsshow that although there is a high probability of having some rainfall in the western sideof the domain, most intense event 
ould o

ur in the south-eastern part.One �rst obvious and en
ouraging result when looking at these plots is that the Gaus-sian approa
h has turned the 
ontours from a re
tangular to a 
ir
ular shape, whi
h givesthe �eld a more 
ontinuous aspe
t, as we hoped. By looking more 
arefully at the areasof higher probabilities, it 
an also be noti
ed that the Gaussian outputs provide biggervalues over more lo
alised regions: The south-eastern 
orner of the bottom plots is agood example of su
h a situation sin
e the referen
e method predi
ts a lower probabilityover an extended region. From a fore
aster's point of view it 
an be argued that a morespe
i�
 predi
tion is easier to use, and should therefore be prefered if the skills are similar.Following on this idea, the Brier Skill S
ores of both methods have been 
omputed,30



Figure 4.1: Dire
t Model Output of rainfall rates at 1800UTC on the 18th of May (top)and 
orresponding radar observations (bottom). Rates are given in kg.m2.s−1.
31



Figure 4.2: Dire
t Model Output of rainfall rates at 1630UTC (left) and 1930UTC (right)on the 18th of May.and the results are presented in �gure 4.4. In order to be 
onsistent with the study byTheis et al the very same BSS was implemented, using the DMO s
ore as a referen
einstead of the 
limatologi
al one (see equation 2.2 for details). As dis
ussed earlier, thiss
ore provides a measure of the improvement obtained when using the post-pro
essingmethod. It is expressed as a per
entage of what the maximum improvement would be ifa perfe
t fore
ast 
ould be used.A �rst interesting result is that the s
ores obtained range between 0.4 and 0.72 whi
his 
onsiderably higher than in the study by Theis et al. This signi�
ant improvementover the DMO 
an be explained by the 
hoi
e of rainfall rates instead of a

umulationas the variable to post-pro
ess (see se
tion 3.1). The graph showing the evolution ofthe BSS as a fun
tion of the threshold value (left hand side) was realised with a neigh-bourhood radius of 15 grid points. It provides a way to test the model on two di�erenttypes of 
ompeten
es: The �rst one is the ability to dete
t the areas of pre
ipitationwithout 
onsidering the intensity values, and the se
ond one the ability to 
orre
tly po-sition more intense individual 
ells. When looking at small thresholds, almost all thepre
ipitation in the domain is 
onsidered, and therefore the fo
us is on the identi�
ationof the pre
ipitation area. When higher thresholds are sele
ted, most light rain areas areremoved and the di�
ulty be
omes to a

urately position the remaining lo
alised 
ells.The BSS in
reases with the threshold value, meaning that when very low thresholds are32



Figure 4.3: Ex
eedan
e probability with a threshold of 10−4kg.m−2.s−1 (top) and
10−3kg.m−2.s−1 (bottom) obtained with a neighbourhood radius of 20 grid points. Fieldson the right hand side were obtained using a Gaussian weighting fun
tion, and the otherswith a square one.
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Figure 4.4: Brier Skill s
ores of the two methods (Gaussian in green and Square in red)as a fun
tion of threshold value (left) and neighbourhood size (right).33




onsidered (10−4kg.m−2.s−1 or 5.10−3kg.m−2.s−1) the model does re
ognise the overallpattern of pre
ipitation 
orre
tly. On
e these light rain areas are removed due to higherthresholds, the mispla
ement errors start to be identi�ed and the improvement providedby the smoothing is getting higher.Right hand side of the �gure shows the evolution of the BSS with the neighbourhoodradius α for a threshold value of 10−3kg.m−2.s−1. As expressed by N.Roberts (2006), theBSS keeps on in
reasing with α, but the slope is bigger for α below 15 than after. Theoutputs 
orresponding to these di�erent sizes are shown in �gure 4.5 where the thresholdwas �xed to 10−3kg.m−2.s−1 but values of α vary between 10 and 25 grid points (40 to100kms). The smoothing phenomenon dis
ussed by N.Roberts is 
learly noti
eable, withhigh probability values falling from 0.4 to 0.15 as α in
reases. We already argued with�gure 2.2 of se
tion 2.3 that the optimum value of α depends on the user's needs, andsin
e here most of the improvement in the BSS is obtained before α = 15 (�gure 4.4),this neighbourhood size of 15 will be sele
ted as a standard for the following experiments.Furthermore, this 
orresponds to a diameter of 120kms, whi
h is in the same range ofsizes that what was used by Theis et al.

34



Figure 4.5: Probability of ex
eeding 10−3kg.m−2.s−1 obtained using the Gaussian methodwith di�erent neighbourhood sizes: Radius is 10 gird points for top left plot, 15 for topright, 20 for bottom left and 25 for bottom right.
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e in BSS between the two method (Square-Gaussian) as a fun
tionof the threshold value (left) and the neighbourhood radius (right). Left hand plot wasobtained with a �xed radius of 15 grid points and right hand one with a threshold of
10−3kg.m−2.s−1.The �nal aspe
t to dis
uss in �gure 4.4 is the relative behaviour of the two 
urves:The referen
e method always outperforms the Gaussian one, but the di�eren
e does notseem signi�
ant. To further investigate this point the di�eren
e between the two BSSwas plotted on �gure 4.6 as a fun
tion of both threshold (left) and neighbourhood radius(right). The left hand plot, obtained for α = 15, shows a rather steady di�eren
e of about0.01, meaning that the referen
e method in
reases the BSS one per
ent more than theGaussian method without real in�uen
e of the threshold value sele
ted. The right handplot however, shows an exponential de
rease of this di�eren
e with α and to pass belowthis 1% over performan
e of the referen
e method α needs to be of 15 grid points at least.This �rst experiment involving only the spatial dimension has provided us with someinteresting information about the two methods: If the Gaussian approa
h helps solvingthe 
ontinuity issue and o�ers a more subje
tively useful post-pro
essed �eld, it s
oresslightly lower than the referen
e one for all thresholds and all neighbourhood sizes tested.However, providing a 
orre
t 
hoi
e of parameters, this under performan
e is only around1% of the BSS. This latter remark highlights the se
ond important result of this se
tion:Parameters are to be 
hosen 
arefully. The neighbourhood size is 
ru
ial sin
e it in�uen
esthe BSS and the level of smoothing in the post-pro
essed �eld, and the threshold valuedetermines the type of event we are fo
ussing on (lo
alised intense rain or global pattern36



of pre
ipitation). The following experiments will be performed using a Gaussian spatialweighting fun
tion with α =15 and a threshold of 10−3kg.m−2.s−1. This setting o�ersa good 
ompromise between the aspe
t of the output �eld (more 
ontinuous and withlimited smoothing) and the BSS value.4.1.2 Spa
e and TimeThe obje
tive of this se
ond step of the experiment is to test the in�uen
e of thetime dimension on the probability estimation, and the 
orresponding skill s
ore. To doso, model outputs at 1630UTC (t0-1) and 1930UTC (t0+1) were added to the pro
edureas explained in se
tion 3.2.2 (no redu
tion fun
tion). The addition of a time parameterleads to some further smoothing in the post-pro
essed �eld, as shown by �gure 4.7 whereboth the outputs with (left) and without 
onsidering the time dimension (right) arepresented. If we now look at the e�e
t on the BSS of this additional time dimension, itis noti
eable from �gure 4.8 that on
e again the smoothing is asso
iated with an in
reasein the skill s
ores. The improvement is 
hara
terised by the gap between the green 
urveshowing the BSS for the Gaussian method with time dimension involved and the redone showing similar BSS without time averaging. While this improvement seems to beroughly independent of the sele
ted threshold (right hand plot), it does vary with theneighbourhood size (left hand plot): At small α the in
rease is 
onsiderably higher (upto 8% in
rease for α = 5). This 
an explained by the fa
t that at large values of αmu
h smoothing has been done by the spatial averaging and therefore the additionaltime averaging does not raise the BSS as mu
h as it does for small values.After these �rst few experiments on the in�uen
e of the di�erent parameters involvedin the pro
edure one main 
on
lusion seems to arise: The in
rease in the Brier Skill S
oreobtained is often linked to a smoothing of the post-pro
essed �eld. The level of smoothinga

eptable depends on ea
h user's need, but it is probably the main parameter to takeinto a

ount when using the method.Finally, this �rst 
ase study o�ered an opportunity to test the e�e
t of the redu
tionfun
tion mentioned in se
tion 3.3.2 in a very simple way: Sin
e we only have two extratime �elds available (t0-1 and t0+1) the redu
tion is given by the parameter R1 of �gure37



Figure 4.7: Ex
eedan
e probability for a threshold of 10−3kg.m−2.s−1 with α=15. Lefthand plot was obtained with just the spatial dimension and right hand one with bothtime and spa
e.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5  10  15  20  25  30

BSS for the Gaussian method, without time

Neighbourhood size in number of grid points

BSS for the Gaussian method with time

B
rie

r 
S

ki
ll 

S
co

re

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003

B
rie

r 
S

ki
ll 

S
co

re

BSS for the Gaussian method with time

Threshold value [kg.m−2.s−1]

BSS for the Gaussian method, without timeFigure 4.8: BSS for the Gaussian fun
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tion of α (left) and threshold value (right).
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3.4. The plot on �gure 4.9 shows the evolution of the BSS as a fun
tion of this redu
tionparameter, for the standard settings dis
ussed earlier. The lower limit of the x-axis, rep-resenting R1=0 
orresponds to the pro
edure without time averaging and the upper one(R1=1) to the pro
edure in
luding adja
ent outputs fully. Sin
e the BSS in
reases andrea
hes its best value for R1=1 (2% improvement), there is no bene�t from this redu
tionfun
tion.
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Reduction parameter

            time parameterisationsFigure 4.9: BSS with di�erent time redu
tions, for α=15 and a threshold of
10−3kg.m−2.s−1.The setting of this �rst test 
ase does not enable further investigation on the in�uen
eof a se
ond time step in the pro
edure sin
e time t0+2 
orresponds to the analysis �leat 2100UTC, whi
h 
ontains some observations. Using this �eld would not make mu
hsense in the 
ontext of a real fore
ast situation and therefore this �rst 
ase was slightlymodi�ed into a se
ond 
ase study to provide some further fo
us on the time dependen
eof the BSS.
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4.2 Extended 
ase: 18th of May 2006 at 1500UTC.This se
ond 
ase is in fa
t only an extension of the �rst one sin
e it 
on
erns the sameweather situation. The main di�eren
e is that we will now post-pro
ess the analysis �eldat t0=1500UTC. The motivation for this 
hoi
e is to be able to use up to 6 output �eldsadja
ent in time (3 after t0 and 3 before ) without in
luding an analysis �eld in one ofthese fore
ast �les. Figure 4.10 shows the 
ontent of the 2 �les used and helps under-stand the set up of this experiment. This approa
h is slightly unusual sin
e it representsa situation in whi
h the fore
ast is issued from the analysis �eld, meaning that someobservation have been in
luded in the pro
ess. However, if the post-pro
essing pro
edureimproves the skills obtained with the analysis �eld it 
an be assumed that it would alsoimprove the ones obtained with a fore
ast �le (and probably by a larger amount).
0900UTC: Analysis from first file

to=1500UTC: Analysis from second file

File number one: 0900UTC

File number two: 1500UTC

Forecast at 1200UTC (to−2)

Forecast at 1030UTC (to−3)

Forecast at 1330UTC (to−1)

Forecast at 1630UTC (to+1)

Forecast at 1800UTC (to+2)

Forecast at 1930UTC (to+3)Figure 4.10: Composition of the 2 �les used for the extended experiment.The analysis �eld before post-pro
essing is shown in �gure 4.11 with the radar ob-servations at that same time, and the 
omplete sequen
e of �les used in this se
tion areshown in �gure 4.12 on following page.
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Figure 4.11: Output from Analysis �le at 1500UTC (top) and 
orresponding radar ob-servation (bottom).
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Figure 4.12: Output �elds from the di�erent �les 
onsidered in the experiment, from1030UTC (top left) to 1930UTC (bottom right).
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To test the e�e
t of the time range on the BSS, both the Gaussian and the squaremethods were ran using su

essively 0,1,2 and 3 time steps with no redu
tion at all. Theresults are presented in �gure 4.13, and it is surprising to see that the use of a se
ond anda third time step does not 
ontribute to raise the BSS further: If the �elds immediatelyafter and before t0 still provide some useful information (mainly on mis-timing errors),�les further away are too di�erent to be used. Another interesting result is that eventhough analysis data were used, the Brier Skill S
ores obtained are still initially as highas in 
ase number 1 (around 0.6) but the main di�eren
e is found on the improvementafter one time step: Only 0.6% for the Gaussian here 
ompared to 2% with the samesettings in previous experiment (see �gure 4.9).
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reasing with the use of a se
ond time step inthe pro
edure is an interesting 
ase to test the in�uen
e of the redu
tion fun
tion withdi�erent parameters. In order to spot an optimum parameterisation, a similar methodto the one used by Applequist et al (2002) in their sear
h of best predi
tands was used(see se
tion 2.2): First run was made with only one time step but di�erent values of R1(similar to �gure 4.9) in order to sele
t the best parameter. Then a se
ond run usedtwo time steps to try to identify the parameter R2 whi
h would give the best BSS whenasso
iated with R1, and �nally the same method was used with a third run to get R3.The evolution of the BSS during these three runs is presented by �gure 4.14, and the opti-mum parameter are R1=1, R2=0.2, and R3=0. This parameterisation only improves the43
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normal 
ase with one time step by less than 0.1% and therefore 
an not be 
onsideredas useful here, espe
ially when the additional 
ost of �nding the optimum parametersis 
onsidered. However the de
rease in BSS following the use of a se
ond time step wasturned into an in
rease just by modifying the weights attributed to the �elds at t0+2 and
t0−2, showing that the redu
tion fun
tion 
ould perhaps be useful in some di�erent 
ases.This extended 
ase illustrates the fa
t that the way to handle the time dimension isnot straight forward: If the addition of one time parameter has proved to be bene�
ialfor the BSS, the se
ond and third ones only de
reased the performan
e. Furthermore,the identi�
ation of an optimum parameterisation for the redu
tion fun
tion has shownthat even though the redu
tion method is not worth using here, the idea of de
reasingthe weights a

ordingly to the distan
e in time 
ould help improve the fore
ast.
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Chapter 5
Case study number 2: Frontal system

The purpose of this new 
ase study is to repeat the whole analysis with a frontalsystem, in order to extend our 
on
lusions to a wider range of weather 
onditions. Aspreviously, a �rst 
ase 
orresponding to a real fore
ast situation will be presented andthen an extended version of it using the analysis will provide some additional data toin
rease the time radius in the pro
edure.5.1 Initial experiment: 07th of May 2006 at 0600UTC.The fore
ast �eld whi
h will be post-pro
essed is presented in �gure 5.1 with the 
or-responding radar observation at 0600UTC, and the outputs from the two other fore
ast�les used in this se
tion (0430UTC and 0730UTC) are given in �gure 5.2. This stationaryfront laying on the east 
oast of the UK presents a totally di�erent pattern of pre
ipita-tion than the previous 
ase, with weaker values of rain rates but a higher density of 
ellsin the area 
overed. The 
omparison shows that the model has a

urately positionedthe front, but underestimated its extent to the northern part of the domain. Values ofrainfall rates are similar in the major part of the area 
overed, but the regions of moreintense pre
ipitation (in yellow) are slightly mispla
ed.
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Figure 5.1: Fore
ast �eld of rainfall rate (top) and 
orresponding radar observation (bot-tom) on the 07th of May 2006 at 0600UTC.
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Figure 5.2: Fore
ast �elds of rainfall rates at 0430UTC (left) and 0730UTC (right).First post-pro
essed �elds obtained with the spatial dimension only, are presented in�gure 5.3 for both the Gaussian (right) and the square methods (left). The neighbour-hood radius is still �xed to 15 grid points as a standard value and plots show resultsfor threshold values of 10−4kg.m−2.s−1 (top) and 10−3kg.m−2.s−1 (bottom). As in 
asenumber one, the square method tends to de
rease the highest probability values, but thedis
ontinuity problem is not as important anymore sin
e the overall pattern of the frontdoes o�er some lines of abrupt 
hanges: The advantage of the Gaussian output for afore
aster is less obvious here than for a 
onve
tive situation.The evolution of the Brier Skill S
ore of the two methods with the threshold valueand the neighbourhood size is presented by �gure 5.4 (top). The a
tual values of theBSS are very similar to 
ase number one, and the shape of the 
urve only presents smalldi�eren
es: The plot of the BSS as a fun
tion of the neighbourhood radius for instan
e,does not 
onverge to a maximum value at high radius like it did previously, and thereis almost no in
rease between α =10 and α =15. On
e again this highlights the ideathat parameters should be 
hosen a

ordingly to ea
h user's needs: If the user 
an dealwith a high level of smoothing in the post-pro
essed �eld, large values of α should besele
ted sin
e they provide some additional in
rease in the BSS. On the other hand, ifthe smoothing o�ers some di�
ulties in the subje
tive interpretation of the fore
ast, avalue of α =10 is probably the best 
hoi
e sin
e an in
rease to 15 grid points does not48



Figure 5.3: Probability of ex
eeding a rainfall rate of 10−4kg.m−2.s−1 (top) and
10−3kg.m−2.s−1 (bottom). Left hand plots were obtained using the square fun
tion andright hand ones the Gaussian fun
tion.
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improve the BSS 
onsiderably.
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Figure 5.4: BSS and error as a fun
tion of the threshold value (left) and the neighbour-hood size (right).The plots of the di�eren
e in BSS between the two methods (bottom) both show anexponential de
rease with values of less than 1% almost immediately rea
hed, meaningthat the methods s
ore similarly in the range of values used for our experiments.This �rst part of the 
ase has not lead to any major di�eren
es in the interpretation ofthe Brier Skill S
ore, nor in the relative behaviour of the two methods tested. However,the bene�t of using a Gaussian method is not obvious sin
e the dis
ontinuities in the post-pro
essed �eld are not a real issue anymore. The extra 
ost (in running time) involvedwhen using the Gaussian approa
h is not justi�ed by any signi�
ant improvement in thisstudy and the normal square method should therefore be preferred.
50



5.2 Extended 
ase: 07th of May 2006 at 0300UTC.The experiment will now be slightly modi�ed in the same way that in se
tion 4.2, inorder to in
rease the number of fore
ast �les in the pro
edure. On
e again, the situationwe are tying to avoid is the one where some analysis data at a time greater than t0 wouldbe used in the pro
edure. The �eld to be post-pro
essed is presented by �gure 5.5 withthe radar observation at the same time (0300UTC on the 7th of May). The sequen
eon the following page (�gure 5.6) 
orresponds to all the fore
ast �elds available for theexperiment, and shows the evolution of the situation between the 6th at 2100UTC andthe 7th at 0730UTC.This slow moving frontal system o�ers a new 
hara
teristi
 to test sin
e the very samepart of the domain is a�e
ted during the whole sequen
e. Simulations using 0,1,2 and3 time steps were ran for the two methods, and the results are presented by �gure 5.7.The improvement in BSS after one time step is slightly less than it was in the 
onve
tive
ase, but the major result here is that the use of a se
ond step still in
reases its value.This 
an probably be explained by the parti
ularly slow motion of the front: While mostof the 
onve
tive 
ells had moved or vanished 3 hours after the fore
ast time (or were notyet present 3 hours before), the frontal system 
onsidered here is still in the same areaof the domain. Hen
e, some useful information about mis-timing errors 
an be obtainedfrom �elds at t0 + 2 and t0 − 2. The sear
h for the optimum parameterisation of theredu
tion fun
tion was ran in the same way that in se
tion 4.2 and the results are shownin �gure 5.8. The parameters providing the higher BSS are R1 =1, R2 =1 and R3 =0meaning that the optimum 
hoi
e 
orresponds to the one using two time steps with 100%of their outputs.The in�uen
e of adja
ent �elds in time on the averaging pro
edure is not 
lear butseems to be 
ase dependent: The number of �elds to be used should be determined bythe type of weather event 
onsidered, and more parti
ularly by the time s
ale over whi
hit might stay in the area of study.
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Figure 5.5: Analysis �eld of rainfall rate (top) and 
orresponding radar observation(bottom) on the 07th of May 2006 at 0300UTC.
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Figure 5.6: Su

essive model fore
asts of rainfall rates between the 6th at 2100UTC (topleft) and the 7th at 0730UTC (bottom right).
53



 0.548

 0.55

 0.552

 0.554

 0.556

 0.558

 0.56

 0  1  2  3
Number of time steps used

BSS using the Gaussian method

BSS using the square method

B
rie

r 
S

ki
ll 

S
co

re

Figure 5.7: BSS for the Gaussian method (green) and the square one (red) as a fun
tionof the number of time steps used.
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Figure 5.8: Evolution of the BSS for the Gaussian method with di�erent redu
tion pa-rameters. Top plot shows the sele
tion of parameter R1, bottom left one the sele
tion ofparameter R2 and bottom right plot the sele
tion of R3.54



Chapter 6
Con
lusions and further work
6.1 Con
lusionsPre
ipitation fore
asts su�er from an important predi
tability problem, and proba-bilisti
 information are a way to take this unavoidable un
ertainty into a

ount. Amongthe di�erent methods leading to a probabilisti
 fore
ast, the neighbourhood approa
h(Theis et al, 2005) was sele
ted for its low-budget 
hara
teristi
. While building our ownpro
edure to test a similar approa
h on the Met O�
e Uni�ed Model, a few questionsarose and were formulated at the end of 
hapter 3. Using the results gathered during theexperiments of 
hapters 4 and 5, we will now try to provide some answers:

• How will the 
hoi
e of rainfall rates as a variable to post-pro
ess in�uen
e ourresults?One parti
ularity of this study was to use the model rain fall rate instead of themore 
ommonly used rainfall a

umulation (Theis et al. 2005, Applequist et al.2002). The extra variability involved due to the absen
e of time averaging (asopposed to a

umulations) has lead to larger values of the Brier Skill S
ores: Theuse of a neighbourhood post-pro
essing method is even more bene�
ial to rainfallrate's outputs.
• Will the use of a Gaussian weighting fun
tion help solve the dis
ontinuity problem,and if it does what will be the impa
t on the fore
ast skill s
ore?The main motivation for the use of a Gaussian weighting fun
tion was to redu
e the55



dis
ontinuities in the output �eld whi
h were produ
ed by the initial neighbourhoodmethod. The 
onve
tive 
ase presented in 
hapter 4 provided us with a goodexample of a situation where the Gaussian method did help solve this issue, but these
ond 
ase 
onsidered, involving a frontal system, failed to o�er similar 
on
lusions.As far as the skill s
ore is 
on
erned, a slight under-performan
e of the Gaussianapproa
h was observed in all situations where the two methods were 
ompared.However this di�eren
e in Brier Skill S
ores was smaller than 1% for the parametervalues sele
ted during the experiments.
• What are the e�e
ts of the time averaging pro
edure on this skill s
ore?The dependen
e of the BSS on the number of time steps used was perhaps themost unpredi
table aspe
t of the study: While the 
onve
tive 
ase showed thatonly �elds situated one and a half hours apart from time t0 were improving theBSS, the frontal situation still bene�ted from �elds up to three hours away. Theuse of a redu
tion fun
tion to de
rease the weights attributed to �elds away from t0did not o�er any signi�
ant improvement, however it turned a de
rease in BSS intoa small in
rease in the 
onve
tive 
ase and therefore the method 
ould perhaps beuseful in some other situations: If the model output times were of 2 hours or morefor instan
e, the redu
tion fun
tion would provide a way to build some intermediatetime �elds.The best way to summarise these observations is to 
onsider what would be theoptimum pro
edure, whi
h of 
ourse depends strongly on the weather event 
onsidered.In a 
onve
tive situation, the Gaussian approa
h o�ers some subje
tive advantages to afore
aster using the post-pro
essed output, and sin
e its under-performan
e in terms ofBSS is very small, it should be preferred to the initial method. The length of the timeradius should not be larger then 2 hours, in order to sti
k to the life time of the 
onve
tive
ells 
onsidered.For a frontal system however, the bene�ts of the Gaussian weighting fun
tion are lessobvious, and sin
e it involves some extra 
osts in running time, the initial square fun
tionshould be sele
ted instead. On the other hand, the larger time s
ale over whi
h the frontremains in the area of study suggests the use of a wider time radius (3 to 4 hours).56



6.2 Further workAn interesting �nal aim for the proje
t would be to have a 
ompletely automati
 pro-
edure post-pro
essing all model runs. Sin
e our 
on
lusions suggest a 
ase dependentmethod, an important step would be to sele
t a 
riteria for an automati
 identi�
ationof 
onve
tive episodes. If the 12km version of the model was used, the 
onve
tive s
hemewould provide a good 
riteria, but sin
e the 4km version mainly deals with 
onve
tionin its dynami
 
omponent, a di�erent approa
h needs to be taken. One possibility 
ouldbe to identify a threshold value for the verti
al velo
ity, and start using the 
onve
tionpro
edure when the velo
ity given by the model is higher than this threshold.Another interesting area of work that has not been 
onsidered in this study is themodi�
ation of neighbourhood shape in spa
e. It would be interesting for instan
e toprodu
e an ellipti
 shape extending in the dire
tion of the wind, to fo
us on points fromwhi
h the air is adve
ted. Su
h a method 
apable of parameterising the shape wouldalso be extremely bene�
ial for �ood fore
asting purposes sin
e the neighbourhood 
ouldthen be adapted to river 
at
hements boundaries: Main 
on
ern for �ood fore
aster is toestimate the a

umulation of rain inside the 
at
hements and the 
ir
ular neighbourhoodmethod we have been using in this study would lead to some important errors at theboundaries.
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Appendix: Fortran program!Program to post-pro
ess dire
t model outputs!using a neighbourhood approa
h!program neighbimpli
it none
hara
ter(80) :: OBS1='rad050703Z.pp'
hara
ter(80) :: FILE1='20060506HS.21Z.pp'
hara
ter(80) :: FILE2='20060507HS.03Z.pp'
hara
ter(80) :: raintypeinteger, parameter :: DX=4000real :: threshold, fa
tinteger :: i,i0,j,j0,n,n0integer :: nlow,nup, tlevelinteger :: ERROR,NX,NY, alpha, betainteger :: EXC, EVENT, EXCDMOinteger, dimension(45) :: IHEAD, IHEAD2, IBADHEADlogi
al :: END1real :: dist, radius, W1, SUMW1, W2, SUMW2, sizereal :: PI, BS1, BS2, BSREF, BSS1, BSS2real :: 
onstant, 
onstant2, W1BAK, W2BAKreal, dimension(19) :: RHEAD, RHEAD2, RBADHEADreal, dimension(7) :: THRreal, dimension(6) :: CONSTinteger, dimension(6) :: NSIZEreal, dimension(:,:,:), allo
atable :: LSRR, CORR, DATAreal, dimension(:,:), allo
atable :: DUMMY, PROB1, PROB2, OBS, RADAR!*****************************************************************************60



PI=4*ATAN(1.0)print*,'#########'print*, 'START'print*,'#########'! Open filesOPEN(UNIT=51,FILE='BSBDAY',FORM='FORMATTED',STATUS='UNKNOWN')OPEN(UNIT=61,FILE=OBS1,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=81,FILE=FILE1,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=82,FILE=FILE2,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=91,FILE='rates.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=93,FILE='DMOBDAY.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=94,FILE='pbsquare.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=95,FILE='pbgauss.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')! Allo
ate arrays, read and writeREAD(81)IHEAD,RHEADNX=IHEAD(19)NY=IHEAD(18)ALLOCATE(LSRR(NX,NY,4))ALLOCATE(CORR(NX,NY,4))ALLOCATE(DUMMY(NX,NY))ALLOCATE(DATA(NX,NY,4))ALLOCATE(PROB1(NX,NY))ALLOCATE(PROB2(NX,NY))ALLOCATE(RADAR(NX,NY))REWIND(81)READ(61)IBADHEAD,RBADHEAD 61



READ(61)radar(1:NX,1:NY)!start reading first fileDo i=1,16READ(81)IHEAD,RHEADWRITE(92,*) iWRITE(92,*)IHEAD,RHEADif(IHEAD(42) .eq. 4203) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(81)LSRR(1:NX,1:NY,1)WRITE(91)LSRR(1:NX,1:NY,1)elseif(IHEAD(14) .eq. 1) thenREAD(81)LSRR(1:NX,1:NY,2)WRITE(91)LSRR(1:NX,1:NY,2)elseif(IHEAD(14) .eq. 4) thenREAD(81)LSRR(1:NX,1:NY,3)WRITE(91)LSRR(1:NX,1:NY,3)elseif(IHEAD(14) .eq. 5) thenREAD(81)LSRR(1:NX,1:NY,4)WRITE(91)LSRR(1:NX,1:NY,4)endifelseif(IHEAD(42) .eq. 5205) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(81)CORR(1:NX,1:NY,1)WRITE(91)CORR(1:NX,1:NY,1)elseif(IHEAD(14) .eq. 1) thenREAD(81)CORR(1:NX,1:NY,2)WRITE(91)CORR(1:NX,1:NY,2)elseif(IHEAD(14) .eq. 4) then62



READ(81)CORR(1:NX,1:NY,3)WRITE(91)CORR(1:NX,1:NY,3)elseif(IHEAD(14) .eq. 5) thenREAD(81)CORR(1:NX,1:NY,4)WRITE(91)CORR(1:NX,1:NY,4)endifelse READ(81)DUMMY(1:NX,1:NY)endifenddo!start reading se
ond fileDo i=1,16READ(82)IHEAD,RHEADif(IHEAD(42) .eq. 4203) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(82)LSRR(1:NX,1:NY,5)WRITE(91)LSRR(1:NX,1:NY,5)elseif(IHEAD(14) .eq. 1) thenREAD(82)LSRR(1:NX,1:NY,6)WRITE(91)LSRR(1:NX,1:NY,6)elseif(IHEAD(14) .eq. 4) thenREAD(82)LSRR(1:NX,1:NY,7)WRITE(91)LSRR(1:NX,1:NY,7)elseif(IHEAD(14) .eq. 5) thenREAD(82)LSRR(1:NX,1:NY,8)WRITE(91)LSRR(1:NX,1:NY,8)endifelseif(IHEAD(42) .eq. 5205) then63



WRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(82)CORR(1:NX,1:NY,5)WRITE(91)CORR(1:NX,1:NY,5)elseif(IHEAD(14) .eq. 1) thenREAD(82)CORR(1:NX,1:NY,6)WRITE(91)CORR(1:NX,1:NY,6)elseif(IHEAD(14) .eq. 4) thenREAD(82)CORR(1:NX,1:NY,7)WRITE(91)CORR(1:NX,1:NY,7)elseif(IHEAD(14) .eq. 5) thenREAD(82)CORR(1:NX,1:NY,8)WRITE(91)CORR(1:NX,1:NY,8)endifelse READ(82)DUMMY(1:NX,1:NY)endifenddo!*******************************************************************************!Compute a neighbourhood around grid point (i0,j0,n0)raintype='SUM'nlow=3n0=5nup=7!********************************************************************************if (raintype .eq. 'CON') thendo i=nlow,nupDATA(:,:,i)=CORR(:,:,i) 64



enddoelseif (raintype .eq. 'LS') thendo i=nlow,nupDATA(:,:,i)=LSRR(:,:,i)enddoelseif (raintype .eq. 'SUM') thendo i=nlow,nupDATA(:,:,i)=CORR(:,:,i)+LSRR(:,:,i)enddoendif!*******************************************************************THR=(/1.0E-4, 5.0E-4, 10.0E-4, 15.0E-4, 20.0E-4, 25.0E-4, 30.0E-4/)CONST=(/ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0/)NSIZE=(/ 5, 10, 15, 20, 25, 30 /)!********************************************************************do tlevel=1,6!threshold=THR(tlevel)threshold= 1.0E-3
onstant2=CONST(tlevel)!alpha=NSIZE(tlevel)alpha=15print*,' 'print*,'*********************************************************'print*, ' 'print*, 'threshold is ',thresholdprint*, 'spatial radius is ',alphaprint*, 'time 
onstant is ',
onstant2
65




onstant=(4*(alpha)**2)/PIprint*, 'Spa
e 
onstant is ',
onstantPROB1=0PROB2=0BS1=0BS2=0BSREF=0size=0do i0=alpha+1,NX-alphado j0=alpha+1,NY-alphasize=size+1SUMW1=0.SUMW2=0.EXC=0W1=0.W2=0.do i=alpha+1,NX-alphado j=alpha+1,NY-alphadist=((i-i0)**2+(j-j0)**2)**0.5IF(dist.gt.2*alpha) CYCLEIf(dist .le. alpha) W1=1.W1BAK=W1W2=exp((-dist**2)/
onstant)W2BAK=W2 66



do n=nlow,nupW1=W1BAKW2=W2BAK!W2=(1-(abs(n-n0)*
onstant2))*W2If(abs(n-n0).eq.1) W2=W2If(abs(n-n0).eq.2) W2=W2If(abs(n-n0).eq.3) W2=W2*
onstant2If(DATA(i,j,n) .ge. threshold) thenEXC=1elseEXC=0endifPROB1(i0,j0)=PROB1(i0,j0)+W1*EXCSUMW1=SUMW1+W1PROB2(i0,j0)=PROB2(i0,j0)+W2*EXCSUMW2=SUMW2+W2enddoenddoenddoPROB1(i0,j0)=PROB1(i0,j0)/SUMW1PROB2(i0,j0)=PROB2(i0,j0)/SUMW267



EVENT=0if (RADAR(i0,j0) .ge. threshold) EVENT=1EXCDMO=0if (DATA(i0,j0,n0) .ge. threshold) EXCDMO=1BS1=BS1+(PROB1(i0,j0)-EVENT)**2BS2=BS2+(PROB2(i0,j0)-EVENT)**2BSREF=BSREF+(EXCDMO-EVENT)**2enddoenddoBS1=BS1/sizeBS2=BS2/sizeBSREF=BSREF/sizeBSS1=1-BS1/BSREFBSS2=1-BS2/BSREF!write dire
t model output for DATA!do n=nlow,nup! write(93)IHEAD,RHEAD! write(93)DATA(1:NX,1:NY,n0)!write probabilities! write(94)IHEAD,RHEAD! write(94)PROB1(1:NX,1:NY)! write(95)IHEAD,RHEAD! write(95)PROB2(1:NX,1:NY)!********************************************************************************WRITE(51,*)alpha, BS1, BS2, BSREF, BSS1, BSS2, BSS1-BSS268



print*, 'Brier s
ore (theis et al):',BS1print*, 'Brier s
ore (gaussian):',BS2print*, 'referen
e s
ore:',BSREFprint*, 'Brier skill s
ore (theis et al):',BSS1print*, 'Brier skill s
ore (gaussian):',BSS2print*, 'differen
e BSS1-BSS2: ', BSS1-BSS2!enddo ! tlevel!********************************************************************************CLOSE(51)CLOSE(81)CLOSE(82)CLOSE(91)CLOSE(92)CLOSE(93)CLOSE(94)WRITE(*,*) 'neighb v1.1 COMPLETED SUCCESSFULLY'WRITE(*,*) 'EXECUTION TERMINATED'! END PROGRAM
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