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Abstrat
Foreasts of rainfall from Numerial Weather Predition (NWP) models are not yetas aurate as they are for other predited �elds like temperature or pressure. The highspatio-temporal variability of suh a �eld as well as the errors implied by sub-grid saleproesses limit onsiderably its preditability.Probabilisti foreasts are a way to take this inherent unertainty into aount, andmany methods have reently been developed to takle this issue. Among these diverseapproahes, a low-budget proedure using a spatio-temporal neighbourhood was intro-dued by Theis et al (2005). Its partiularity is to use only information readily availablefrom the Diret Model Output (DMO), and for this reason we hose to reprodue themethodology to post-proess the Met O�e Uni�ed Model's outputs.The variable seleted to be post-proessed was the rainfall rate, in order to verifythe foreasts against radar observations. One the initial neighbourhood method wasorretly implemented and provided reasonable results, a few modi�ations onerningthe distribution of weights in both spae and time dimensions were tested. In order toonsider di�erent weather onditions, two distint ase studies were used: A onvetiveepisode and a frontal system.The main result of the projet was the ase-dependent aspet of the proedure'sperformane, and the fat that a Gaussian distribution of weights in spae ould improvethe subjetive interpretation of the post-proessed �eld.
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Chapter 1
Introdution
1.1 Foreasting rainfallOut of all information given by a weather foreast, preipitation is ertainly the onemany users are most interested in. Motivations for this interest are diverse and involvegreat seurity and eonomi onerns. Even though it is not the main fous of this projetit is important to realise how strongly our lives an be a�eted by the e�ieny of suha foreast: Food supplies, espeially in developing ountries, depend on the produtivityof loal agriulture and this produtivity an be highly improved by an aurate foreastof the rainfall. On this eonomi side we an also mention hydroeletriity managementand the neessity of estimating energy prodution properly. Even more important arethe issues where human lives are at risk, and �ood foreasting is perhaps the area whihwould bene�t the most from any progress in rainfall predition: Warning systems arebased on hydrologial numerial models whih are oupled with atmospheri ones to givea preipitation foreast over a drainage basin (Benoit and Pellerin 2000, Jasper and Kauf-mann 2003). Therefore the whole proedure is extremely dependent on the auray ofthe initial rainfall predition, and unfortunately the time sale for whih this foreastremains reliable is often too short for preventive ation to be taken in ase of seuritythreats (Krzysztofowiz et al. 1993).This great need for auray does not math the atual e�ieny of rainfall foreasts,and preipitation �eld is one of the least suessfully simulated by Numerial Weather6



Predition (NWP) models. The Working Group on Numerial Experimentation of theWorld Meteorologial organisation has underlined that although the major NWP mod-els operationally used have made some important progress reently, they still experienesome di�ulties when it omes to produing some Quantitative Preipitation Foreasts(Erbert et al. 2003). The spatial and temporal sales onsidered as well as the diversity ofphysial proesses involved (large sale asent of moist air, onvetion, orographi lifting)are some of the many parameters whih in�uene the level of preditability. Cassati, Rossand Stephenson (2004) have applied a new method alled the intensity-sale approah totest the in�uene of preipitation intensity and spatial sale on the performane of theNIMROD operational system. Their onlusions were that poorer skills were obtained insmall-sale events (<40km) involving loalised intense preipitation.Walser et al (2004) have applied an ensemble method (see setion 2.1) to a mesosalemodel, in order to investigate the preditability dependene of Quantitative PreipitationForeasts (QPF) to some of these parameters. Using a loud-resolving model with amesh size of 3km they were able to show that even though modern e�orts to dereasethe grid length to a few kilometres lead to better representation of onvetive ells, itdoes not neessarily imply any preditability improvement. In fat the rapid growth oferror due to the haoti aspet of the atmosphere (Lorenz 1963), and more spei�allyhere of its moist dynami omponent lowers this preditability at small spatial sales. Aspreviously parametrised sub-grid sale phenomenon beome more realistially modelled inhigh resolution NWP models they tend to help the growth of small perturbations, leadingto poorer preditability. Even though this derease in preditability should be seen as aprogress in the representation of the nonlinear behaviour of the atmospheri dynamis atthese sales, it suggests that the auray of preipitation foreast will probably not besigni�antly improved in the years to ome. Furthermore, they were able to show thateven at larger sales (up to 100km) onvetive episodes still at to limit the preditability,meaning that realisti modelling of onvetion might require a di�erent approah to theforeast interpretation at all sales.
7



1.2 Added value of probabilisti foreastsBeause of this unavoidable unertainty in the NWP models' output, taking a deter-ministi approah to rainfall foreasting is not desirable and a probabilisti informationan be useful in both the oneption and the interpretation of these foreasts. Figure 1.1,obtained with the method explained in hapter 3, gives an example of suh an output.The left hand part is the diret model output of rainfall rate obtained with the Met O�e4-km grid Uni�ed Model, and the right hand one shows the probability of exeeding athreshold value of 5.10−4kg.m2.s−1 (orresponding to all oloured areas on the left-handplot).

Figure 1.1: Diret model output for rainfall rate in kg.m−2.s−1 (left) and post proessedoutput for probability of exeeding 5.10−4kg.m−2.s−1 (right).This type of information provides the user with a measure of the likelihood of thepredition, giving a more realisti view of the model's abilities. Allan H. Murphy (1991)disusses the use of suh probabilisti information as a link between the foreaster'sjudgement and the rational deision making proess whih follows. When looking atNWP outputs, operational foreasters try to estimate how on�dent they an be in theresult, using their experiene and knowledge as well as any reent observations they angather (radar or satellite imagery, analysis harts) or other models' output. The main ar-gument introdued in the disussion onerns the di�ulty of translating the foreaster'ssubjetive view of the situation in a quantitative way. The fous of the paper is on the8



OurreneNO YESNO 0 LAtion YES C C + L − L1Table 1.1: Expense matrixforeast of rare events, and in this kind of situation the foreaster is only o�ered twopossibilities: ourrene or non-ourrene. When an event has been foreast but didnot our it is referred to as a type 1 error, whereas the other situation where it wasnot foreast but atually happened is referred to as a type 2 error. It has been observedthat when onfronted to an ambiguous situation, the perspetive of possible impats onthe user drives the foreaster to issue type 2 error foreasts more often. This ommonfeeling that a type 2 error is more serious has lead to a signi�ant level of over-foreastingand probabilisti foreast ould help solve this issue by illustrating more realistially theforeaster's feeling.Apart from the foreaster, users would also bene�t widely from probabilisti infor-mation: Deision makers who base their ations on the likelihood of a weather event allhave omplex and di�erent onsequenes to these ations, and a probability of our-rene would suit better this diversity. By giving a ategorial yes/no foreast we forethem all to the same deision no matter what their osts are: To di�erentiate this widevariety of users, the ost-loss relationship they fae is often referred to. In a study byD.S.Rihardson (1999) on the relative eonomi value of the ECMWF ensemble predi-tion system, this type of deision model is presented in the following way: Eah preventiveation is haraterised by a ost C, the lost following a non proteted ation is noted Land the portion of the loss redued when ating is L1 (see expense matrix in table 1.1).The aim of the deision maker is of ourse to minimise his expense, and if he is notgiven any hint (only limatologial information available) the only reasonable hoie isto either always or never at depending on the global ost of eah option. If O representsthe number of times the event ours, always ating leads to an expense of C +O(L−L1)whereas never ating to OL. Therefore without any hint the foreaster should always atif C+O(L−L1) ≤ OL and never at otherwise. Any foreast should o�er a way to redue9



this expense Eclim. A ommon way to estimate the e�ieny of a foreast is through theRelative Value RV whih relates the redution in expense provided by the foreast to ahypothetial perfet one (for whih the expense would be Eperfect = O(C + L − L1)):
RV =

Eclim − Eforecast

Eclim − Eperfect

(1.1)
RV an be seen as a perentage of what the savings using a perfet foreast would be:If the use of a perfet foreast leads to an expense redution of S, a foreast of RelativeValue RV will save the user 100RV% of S.Using this Relative Value as an index, D.S. Rihardson has ompared the skills ofboth deterministi and probabilisti foreasts. When onsidering deterministi systems,

RV an be expressed as a funtion of the ost/loss ratio α = C
L
, providing a way to takeinto aount di�erent users' onerns. The main onlusion is that the foreast is notequally useful for all, and if some users with a ost/loss ratio of α between 0.1 and 0.5do bene�t from a positive value of RV , others with bigger α would not �nd any help inthe foreast: The value of the predition strongly depends on the user's α.On the other hand, when given a probabilisti foreast, the user has the ability tohoose a threshold value for his ations (at when the event is predited with a probabilityof 70% for instane), and it is this ability that makes the foreast spei� to eah user'sneeds. As the threshold value varies, the relationship between RV and α is modi�ed,and therefore deision makers an spot the threshold that would give them the optimum

RV . For instane, it has been shown in the study that users with a value of α = 0.1(meaning important losses involved in ase of ourrene) would bene�t from a RelativeValue of 0.4 if they at when the foreast probability is 10% or more but would notreeive any useful information from it if they waited until the probability is 50% : Givingthe same foreast to all users is not a reasonable option. Therefore, these two studiessuggest that the use of probabilisti information in weather foreasting would not only10



help the foreasters provide a realisti judgement of the situation, but also enable theusers to optimise their deision making proess.The aim of this projet is to foreast the probability of preipitation exeeding giventhreshold values, using NWPmodel's diret outputs. The way in whih these probabilitiesshould be estimated is still an open question, and the next hapter will fous on di�erentreent methods designed for this purpose. The proedure as well as the data used for ourdi�erent experiments will be presented in hapter 3, followed by results obtained duringtwo di�erent ase studies: Chapter 4 will present a onvetive episode and hapter 5 afrontal system. Finally, the main onlusions regarding the projet as well as the futurepossible lines of work will be disussed in hapter 6.
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Chapter 2
Overview of di�erent methods

In the previous hapter we exposed the di�ulties inherent to Quantitative Preipita-tion Foreasting (QPF), and argued that probabilisti information o�ers some �exibilityfor both the foreaster and the user. Here we will review some methods whih providea probabilisti QPF without the help of a foreaster. Partiular attention will be paidto the neighbourhood approah in setion 2.3 sine it will be the basis for the presentprojet.2.1 Ensemble foreastingDue to reent progress in the �eld of high performane omputing and the developmentof massively parallel mahines, ensemble foreasting tehniques have reeived partiularinterest in the reent years. The basis of suh methods is to run multiple foreasts start-ing from slightly di�erent initial onditions, alled ensemble members. This approaho�ers a way to take into aount di�erent evolution senarios and therefore to assess theunertainty in the model foreast: If all runs onverge to a similar result, the level ofon�dene for the predition an be high, whereas if they tend to have very di�erentbehaviours it will be poorer. The spread of the ensemble members therefore representsa measure of the preditability. Sine the atmospheri system has a tremendous numberof degrees of freedom, the members an only partly represent all unertainty possibilitiesand the hoie of the perturbations in the initial ondition is a key issue. Fields whih areommonly perturbed are temperature, humidity and horizontal wind omponents, and12



the atual perturbation proedure di�ers from one study to another. The experimentby Walser et al (2004) mentioned in introdution uses a lagged tehnique, in whih theinitialisation times of 6 di�erent runs are separated by one hour. When all runs havebeen initialised, the deviation from the ensemble mean is ampli�ed for the seleted �elds(temperature, wind, humidity) leading to di�erent initial atmospheri states for the sim-ulation. Other methods do not onsider any time lag but fous more on the ampli�ationproedure to realistially math observed analysis errors. A popular one introdued byMullen and Baumhefner (1989) separates the large sale error from the small sale onein order to take into aount the fat that the noise due to initial perturbation equalsthe signal for small sales (Du et al. 1997, Bright and Mullen 2002).Although ensemble methods were originally designed to take into aount the evolu-tion of barolini perturbations in medium range foreasts (6 to 10 days), some reentstudies have takled the issue of mesosale preditability of preipitation using similarapproahes with limited area models (Walser et al 2004, Bright and Mullen 2002, Marsigliet al 2001, Du et al 1997). In this studies ensemble systems are a way to onsider othergrowth mehanisms like those linked to moist physis and onvetion, as mentioned insetion 1.1.Du et al (1997) used a similar method to Mullen and Baumhefner (1989) to produesome probabilisti quantitative preipitation foreasts from a mesosale model. Theyonsidered the 6 hours aumulated preipitation amounts and they divided the possibleoutputs into 5 ategories (p < 0.01 inh ; 0.01 inh< p < 0.10 inh et...). Then, foreah grid point they omputed a probability of being in eah of the ategories based onthe population of ensemble members: They used 25 members so if there are 5 membersin eah ategory for instane, their probability would only be of 20% for eah, meaningpoor on�dene. On the other hand if 20 of them are in the same ategory, it would beattributed a probability of 80% , expressing a high level of on�dene in the foreast.This ensemble predition approah is probably the most ommonly used to produeprobabilisti outputs from NWP, however it requires an amount of omputer power whihis not always available and for this reason some alternative methods are sometimes pre-ferred. 13



2.2 Statistial methodsStatistial methods refer to foreast tehniques whih draw a relationship betweena set of variable to infer the value of one or a few others. The parameters used forthe predition are alled preditors and the ones atually predited the preditands.Applequist et al (2002) have applied and ompared several di�erent statistial modelsto predit the probability of preipitation exeeding a ertain threshold after 24 hours(preditand). For eah of the 5 models they used (linear regression, disriminant analysis,logisti regression, neural network and the lassi�er system), the proedure was to use atraining data set to �rst selet the best preditors and then to identify the oe�ients orrules that would provide the best �t between preditors and preditand. The data usedfor the seletion of the preditors was omposed of synopti and upper air analyses, aswell as 6-hourly preipitation foreasts up to 24 hours. Altogether they onsidered morethan 200 potential preditors inluding model variables as well as derived quantitieslike humidity or temperature advetion, and binary variables for rain exeeding giventhresholds. To rank and hoose the preditors, the seletion proedure uses the BrierSkill Sore (BSS) whih is based on the following Brier Sore (BS) originally de�ned astwie this value by Brier (1950).
BS =

1

n

n
∑

k=1

(yk − ok)
2 (2.1)Here, n represents the number of foreasts, yk the foreast probability and ok the a-tual observation (ok = 1 when event observed and 0 otherwise). A good foreast methodshould therefore keep the BS sore as low as possible, by having high probabilities when

ok = 1 and low ones otherwise. The BSS is then a measure of the foreast improvementover limatology, normalised by a hypothetial perfet foreast, so higher BSS orre-sponds to better foreasts:
BSS =

BSforecast − BSclimatology

BSperfect − BSclimatology

= 1 −
BSforecast

BSclimatology

(2.2)
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Although the stepwise seletion di�ers slightly from one model to another (fewerpreditors were onsidered for the neural network and lassi�er system, and a di�erentstopping rule for the linear regression), the algorithm is still the same: First hoose asingle preditor whih provides the best BSS with the training data set, then look in theremaining ones for the ombination that would best improve this BSS and so on untilthe BSS an not signi�antly be improved anymore. Depending on the statistial model,2 to 6 preditors were hosen, and the ones seleted with greatest frequeny were the24h aumulated preipitation foreast, binary variables for rain and relative humidityexeeding given thresholds and a layered averaged value of relative humidity after 12hours.2.3 The neighbourhood approahThe method whih will be referred to as the neighbourhood approah in the rest of thestudy was introdued by Theis et al (2005) in an attempt to provide some probabilistiQPF with a low-budget proedure. In e�et, all the methods we onsidered so far o�ersome heavy onstraints in one way or another: The subjetive post proessing of DiretModel Outputs (DMO) into a probabilisti foreast requires the experiene of a quali�edteam (see setion 1.2) and the use of ensemble methods is only possible with great om-puter power. Statistial methods might not require as muh power, but the amount ofdata set needed to build the model is not always available either. Consequently, the mainobjetive of this proedure is to use the information already available from the modeloutput to obtain the QPF.To illustrate their method, they post proessed outputs of preipitation aumulationobtained with the German DWD lokal modell, whih has a horizontal grid spaing of7km and a domain of 325×325 grid points. To begin with, a neighbourhood is omputedaround eah grid point in the spatial domain, as shown in �gure 2.1 for the X-Y plane,and then a similar proedure selets points from previous and suessive model runs inorder to take into aount the time dimension as well. However, the way in whih thistime proedure is done is not lear from the paper: Although it is learly stated in thetext that the size of the neighbourhood is held �xed at all lead times of the simulation, a15



diagram similar to �gure 2.1 but in the X-T plane suggests that the diameter is atuallydereased when moving away in the time dimension. This ontradition will be furtherdisussed in hapter 3 when trying to reprodue the method.
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Figure 2.1: Example of a spatial neighbourhood with a diameter of 10 grid points (70km).The next stage is then to go through all the grid points inside the neighbourhood (inboth spae and time) and ount the ones for whih the DMO exeeds a given threshold.The probability of exeedane is �nally obtained by dividing this number by the totalnumber of points inside the neighbourhood.The veri�ation proedure uses observed preipitation data from rain gauges to as-sess the skill of the method . The omparison is based on the Brier Skill Sore (BSS)desribed in setion 2.2 (see equations 2.1 and 2.2), but instead of having a limatologialsore as a referene in the BSS they hose to use the DMO sore: This is obtained bytransforming the deterministi output so that a probability of 100% is given when theforeast exeeds the seleted threshold and 0% otherwise. In that way the BSS re�etsthe improvement of the method against the DMO. The in�uene of di�erent parameters16



suh as the threshold value or the neighbourhood size were investigated, and all resultslead to a positive value of the BSS (between 0.2 and 0.4), meaning that their methodalways outperforms the DMO. Perhaps the most interesting result of this study is the fatthat of all neighbourhoods onsidered, the larger one (140km diameter) always leads tothe best improvement. This suggests that some useful information on the preditabilityan still be found as far as 70 km away from the atual foreast loation, and is to berelated to the experiment by Walser et al (2004) whih showed that preditability mightbe limited at sales up to 100km in onvetive situations.The seond part of the veri�ation proedure uses the Relative Value (RV) (see equation1.1) to represent the user's interest in the foreast. No matter what the ost/lost ratio is,the RV of the neighbourhood method is always higher than the DMO one. Furthermore,by post-proessing the model output, the neighbourhood tehnique provides a wideningof the urve representing the RV as a funtion of the ost/lost ratio: The post proessedforeast would be bene�ial to more users (see setion 1.2).In a study on the in�uene of model resolution on the skill of preipitation foreastsRoberts (2006) used a neighbourhood approah as a veri�ation method. As shown in�gure 2.2, he suggested that the range for the neighbourhood size should be bound. Thelower limit representing the size for whih the skill starts to be aeptable and the upperone the size at whih the output has been smoothed out to muh. In e�et, when theneighbourhood size is inreased too muh, it leads to a smoothing of the foreast �eldwhih dereases the added value of a high resolution model. However, like the desiredskill level, this upper level strongly depends on the user's needs: Flood foreasters forinstane do bene�t from a foreast over a wide area sine they deal with river athements.In his disussion about the veri�ation method N.Roberts also suggests that the av-eraging proedure giving the exeedane probability ould perhaps be modi�ed by usinga Gaussian distribution of weights inside the neighbourhood, in order to give more im-portane to grid points lose to the entre. Even though he believes that the methodshould stay as simple as possible and that the global improvement in the results wouldnot justify the added omplexity, some bene�t ould nonetheless be gained in the way17
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Chapter 3
Methodology

The aim of this hapter is to expose the proedure used to postproess NWP outputs ofrainfall rates into a probabilisti quantitative preipitation foreast. After a presentationof the model and veri�ation data used, we will fous on the neighbourhood based methodimplemented as well as on di�erent modi�ation performed in the hope of improving theforeast skills.3.1 Model and dataThe NWP model used in the study is the non-hydrostati version of the Met O�eUni�ed Model (UM), with a grid length of 4km. The model domain inludes the southernhalf of the UK as well as the oast of northern Frane in order to apture thunderstormsmoving aross the Channel. One partiularity of this 4km grid model is that althoughthe onvetive part of the rainfall is mainly expliitly resolved, a onvetion sheme isstill inluded as a omplement to the dynami omponent. This version of the UM isstill in an experimental stage, but has been running and arhiving data for almost a yearnow. Corresponding to model runs at 03, 09, 15 and 21UTC every day, this arhiveddata ontains the analysis �elds at the time of the run as well as foreasts with lead timesof one and a half, three and four and a half hours ahead. In following setions of thereport, this one and a half hour gap between these output times will be referred to asa time step (even though it does not orrespond to the model's time step), and will benoted Dt. All model data used in ase studies were obtained through the Joint Centre19



for Mesosale Meteorology (JCMM), thanks to Changgui Wang.Composite radar data, easily available from the British Atmospheri Data Centre(BADC) were hosen to verify the method against observations. This data derived fromomposites of single radar sites is represented on a 5km grid, and therefore the diretomparison with model outputs is only possible after interpolating the data into themodel's 4km grid. This part of the proedure was realized by Dr. R.Plant, with a linearinterpolation between nearest points on the 5km radar grid.Unlike rain gauges whih represent the aumulation of rainfall over time, radar imagesgive an instantaneous piture of the preipitation �eld and are a tool to measure itsintensity distribution at a given time. Consequently, the seleted foreast �eld has torepresent similar harateristis, and the rainfall rate seems to be the most appropriatequantity: Both its large sale and onvetive omponents were summed to obtain thevariable used in the post-proessing proedure.One partiularity of this variable hoie is that it might lead to some poorer skillfor the DMO. In e�et, when rainfall aumulation is used like in most of the studiesreferened in hapter 2, a time averaging is impliitly involved and small delays in themodel's foreast (mis-timing) do not penalise the alulated skill if they remain in theaumulation period. In the present study however, the model output is onsidered as aninstantaneous image and ompared to observed radar data, therefore similar mis-timingswill be onsidered as model errors and the DMO skill will su�er from it. Figure 3.1 givesan example of a situation where the model orretly identi�ed the overall pattern of thepreipitation �eld but failed to represent the detailed struture aurately.Beause of this additional di�ulty in foreasting rainfall rates, the use of a proba-bilisti post-proessing method should lead to an even better improvement than whenaumulations are onsidered.
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Figure 3.1: Diret Model Output of rainfall rates (left) and orresponding radar image(right).
3.2 Initial proedureSine the basis of the method is the neighbourhood approah (Theis et al 2005) theobvious �rst step of the projet was to implement and test it on the Uni�ed Model'soutputs. Details of the seleted ase studies will be given in hapters 4 and 5, and herewe will fous on the tehnial aspet of the proedure.As explained in setion 2.3, the probability of exeeding threshold value Thr at grid point
(x0, y0, t0) is obtained by �rst building a neighbourhood around it in both spae and timedimensions , and then dividing the number of points exeeding Thr by the total numberof points inside the neighbourhood. The desription of the algorithm omputing it willbe desribed step by step, starting with spatial onsiderations �rst and then extendingthe onept with a time neighbourhood.3.2.1 Spatial neighbourhoodFor every grid point (x0, y0) in the domain, a irular neighbourhood similar to �gure2.1 needs to be built. This is done by omparing the distane between (x0, y0) and itssurrounding points, to the neighbourhood radius. The algorithm responsible for this partof the proedure is represented in a simpli�ed way in table 3.1 , where α represents the21



Loop over the whole domaindo i0 = α + 1, Nx − α exept the border for whihdo j0 = α + 1, Ny − α no probability is omputed.do i = i0 − α, i0 + α Loop around surrounding pointsdo j = j0 − α, j0 + α to build the neighbourhood.Compute distane between (i0, j0) and (i, j) From Pythagoras theorem,If distane < α then (i, j) is in the neighbourhood distane is:√(i − i0)2 + (j − j0)2Chek if DMO(i,j) exeeds thresholdend doend do probability for (i0, j0) is:ompute probability for (i0, j0)
points exeeding thresholdnumber of points in neighbourhoodend doend doTable 3.1: Algorithm used to build a neighbourhood and ompute the probability ofexeedane with the initial method.irle radius, Nx and Ny the domain size, ∆ the grid length and DMO(i,j) the modelrainfall rate for grid point (x = i∆, y = j∆). Sine no omplete neighbourhood an bebuilt for points at the edges of the domain, the probability was �xed to zero on a band oflength α along the border. It is also important to notie that from now on all distaneswill be expressed in number of grid points, meaning that the orresponding length inkilometres is obtained by multiplying by ∆ = 4km. Similarly the notation (i,j) will beoften used to designate grid point (x, y) = (i∆, j∆).

3.2.2 In timeAs disussed earlier in setion 2.3, the way in whih the time dimension is added tothe spatial neighbourhood is not really lear from the paper by Theis et al (2005). Themain ontradition omes from a diagram showing an ellipti shape in the X-T planelike the one on �gure 3.2, whih suggests that the spatial radius of the neighbourhooddereases as we move away from time t0, whereas in the text it is atually stated thatthis radius is kept �xed at all lead times (orresponding to the blue retangle on the X-T22



plane). When onsidering the problem from a physial point of view, modifying the spa-tial size of the neighbourhood would make more sense if the radius inreased with timeinstead of dereasing: Some information might be spread out into a wider area aroundpoint (x0, y0). Therefore the proedure will keep a �xed neighbourhood size at all times,as expressed by the blue retangle on �gure 3.2.
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Xo−6DxFigure 3.2: Shape of the neighbourhood in the X-T plane.From a pratial point of view this will require the model rainfall rate data to bestored in a three dimensional array DMO(i,j,n), where n represents the time index.The proedure to hek if the value exeeds the threshold will then beome:do n = n0 − β, n0 + βhek if DMO(i,j,n) exeeds thresholdend dowhere β refers to the time radius and n is the time index. As before, the notation(i,j,n) will be often used to refer to point (i∆, j∆, nDt).
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This initial version of the ode, representing the original method by Theis et al, wastested on di�erent ase studies and gave satisfying results and skill sores (see hapters 4and 5). It will therefore be used as a referene against whih all following modi�ationswill be ompared.
3.3 Additional experimentsThe aim of this setion is to present two modi�ations to the method whih wereimplemented in the hope of improving the value of the post-proessed output. Theoriginal motivation omes from the idea that all points should not be given the sameimportane in the averaging proedure leading to the probability estimation, and thedistanes in both time and spae should be taken into aount.3.3.1 Spatial weighting distributionIn the referene method, the averaging proedure is done onsidering that any pointinside the neighbourhood aounts for an equal fration of the probability. Whether thethreshold is exeeded at a grid point diretly adjaent to (x0, y0) or at a distane of αdoes not make any di�erene, whereas exeedane at a distane of α+1 is not taken intoaount. This harateristi is responsible for some disontinuities in the post-proessed�eld, and as suggested by N.Roberts (2006), a Gaussian distribution of the weights ouldhelp improve this aspet of the proedure. Whether or not it will also improve the fore-ast skill is not lear, and the di�erent studies in following hapters will try to investigatethis question.The Gaussian funtion is of the form g(x) = exp(−x2

c
), where the parameter c de-�nes the sharpness of the urve. Figure 3.3 shows both the square funtion used in thereferene method (in blue) and the Gaussian (in red) as a funtion of the distane topoint (x0, y0). This example orresponds to a neighbourhood of radius 20 grid pointsand illustrates the way in whih a Gaussian approah should improve the disontinuityproblem: Points at distanes α and α+1 from the entre are now attributed very similar24
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∫

+∞

−∞

exp(−
x2

c
)dx =

∫

+α

−α

1dxWhih, following a few lines of alulation an be written in the form:
c = 4

α2

π
(3.1)
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Even though this Gaussian distribution of weights in spae does not orrespond toa neighbourhood anymore, its parameterisation is still linked to the irle of radius αproviding the same amount of weights. All omparisons of the two methods in hapters4 and 5 will be based on this equation 3.1, and a Gaussian method of parameter  willbe referred to through the orresponding α.The algorithm for this modi�ed method is slightly di�erent from that in table 3.1 sineall points surrounding (i0, j0) are now attributed a weight depending on their distane.In order to save some running time, points situated at a distane of 2α or more will notbe dealt with (they represent a weight of less than 0.05 as shown by the blak horizontalline on �gure 3.3). The probability at grid point (i0, j0) is now obtained by:
prob(i0, j0) =

∑

i,j W (i, j) × EXC(i, j)
∑

i,j W (i, j)
(3.2)Where ∑

i,j orresponds to the sum over points at a distane smaller than 2α from
(i0, j0), W (i, j) is the Gaussian weight at grid point (i,j), and EXC(i,j) is a binary arrayrepresenting the exeedane: EXC(i,j)= 1 when threshold is exeeded for point (i,j),0 otherwise. An obvious downside of this Gaussian method is the extra running timeinvolved (due to the omputation of the weights and the extended spatial loop required),espeially sine the partiularity of the neighbourhood approah was to be a low-ostproedure.3.3.2 Time weighting distributionFollowing on the idea that all grid points in the spatio-temporal domain might notbe of equal importane in the estimation of a probability for point (x0, y0, t0), a di�erentapproah to the distribution of weights in time should be tested. Let us onsider a timeradius of β = 3, like in the largest setting used by Theis et al. It seems reasonable toonsider that an output �eld 3 time steps away from the atual time of the foreast t0ontains less information than the foreast �eld itself, and therefore it should be givenless weight. To do so, all points (x, y, t) have their weights redued aordingly to the26



distane between t and t0. Figure 3.4 presents a weighting funtion linearly dereasingwith time, whih redues the Gaussian weights by a fator R(t). A grid point (i,j) in the�eld at to + 3Dt would for instane have its weight redued from W (i, j) to R3W (i, j)(where R3 is the notation for R(to + 3Dt)).

to to+Dt to+2Dtto−Dtto−3Dt

1

R1

R2

R3

R(t)

t
to−2Dt to+3DtFigure 3.4: Redution funtion using 3 time steps (in red). Blue arrows represent thedi�erent possibilities of parameterisations.Therefore, the new probability will now be:

prob(i0, j0, n0) =

∑

i,j,n RnW (i, j, n) × EXC(i, j)
∑

i,j,n RnW (i, j, n)
(3.3)where the time index n ranges from n0 − β to n0 + β.Linear funtions were hosen as a �rst guess to test the in�uene of this modi�ationbeause they are easy to parametrise (just one parameter, the slope). As illustrated bythe blue arrows on �gure 3.4, there is of ourse a wide range of possible parameterisationsfor this redution funtion and one of the fousses of following hapters will be to tryand identify an optimum one. 27



The main objetives of this setion were �rst to explain the theoretial basis of theproedure used in hapters 4 and 5 and seondly to quikly introdue the notationsand algorithm used in the fortran program given in appendix to help its understanding.Several questions were raised about possible in�uenes and bene�ts of the modi�ations:
• How will the hoie of rainfall rates as a variable to post-proess in�uene ourresults?
• Will the use of a Gaussian weighting funtion help solve the disontinuity problem,and if it does what will be the impat on the foreast skill sore?
• What are the e�ets of the time averaging proedure on this skill sore?Case study of hapter 4 will now try to provide us with some �rst answers for a onvetiveepisode, and hapter 5 will extend these answers to a di�erent situation involving a frontalsystem.
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Chapter 4
Case study number 1: Convetivesituation.

This hapter presents the �rst ase study on whih the onepts desribed previouslywere tested and ompared to the referene neighbourhood method. This omparisonwill be made step by step, starting from a single spatial �eld and progressively addingadjaent ones in time. The situation exposed was seleted for its onvetive aspet, partlyin order to test the potential of the Gaussian method to derease the disontinuity issuesnoted in the method by Theis et al (2005).4.1 Initial experiment: 18th of May 2006 at 1800UTC.As explained in setion 3.1, the Uni�ed Model's data are arhived every day at 03,09, 15 and 21UTC and are available through the Joint Centre for Mesosale Meteorology(JCMM). This �rst experiment was built to represent a situation where a foreast at1800UTC has to be issued from the model run at 1500UTC. Figure 4.1 shows the model'sforeast at 1800UTC and the orresponding radar observations. This diret omparisonof the two outputs shows that the model has orretly identi�ed the two major regionsof preipitation, namely the small band over Wales and Cornwall and the area of intenserain over northern Frane and Belgium. However, the size of the area overed as wellas the amount of isolated onvetive ells were onsiderably underestimated. The otheravailable foreasts at 1630UTC and 1930UTC are represented in �gure 4.2 to show the29



evolution of the situation.Unlike following experiment whih uses analysis �eld as part of the proedure (see setion4.2), this �rst ase represents a real foreast situation where no observed information areused other than from the model run at 1500UTC.4.1.1 Only spae: First resultsIn order to test and validate the methods on a simple ase, this �rst experiment onlyinludes one model �eld, the one at foreast time t0 =1800UTC. The fat that there isno time in�uene on the estimation of the probabilities makes the interpretation of theresults easier and helps spotting possible errors in the ode. Furthermore, this diretomparison of the two spatial weighting proedures o�ers an opportunity to takle theissue about disontinuity in the post-proessed �eld formulated in setion 3.3.1, and toompare the �rst skill sores obtained.Figure 4.3 presents outputs obtained with the Gaussian method (right hand sideplots) and the square one (left hand side plots) for two di�erent thresholds: Top plotsshow the probability of having rain rates over 10−4kg.m−2.s−1, orresponding to almostall preipitation in the area, and bottom ones over 10−3kg.m−2.s−1. The use of di�erentthresholds helps quantify the intensity of the expeted preipitation and these resultsshow that although there is a high probability of having some rainfall in the western sideof the domain, most intense event ould our in the south-eastern part.One �rst obvious and enouraging result when looking at these plots is that the Gaus-sian approah has turned the ontours from a retangular to a irular shape, whih givesthe �eld a more ontinuous aspet, as we hoped. By looking more arefully at the areasof higher probabilities, it an also be notied that the Gaussian outputs provide biggervalues over more loalised regions: The south-eastern orner of the bottom plots is agood example of suh a situation sine the referene method predits a lower probabilityover an extended region. From a foreaster's point of view it an be argued that a morespei� predition is easier to use, and should therefore be prefered if the skills are similar.Following on this idea, the Brier Skill Sores of both methods have been omputed,30



Figure 4.1: Diret Model Output of rainfall rates at 1800UTC on the 18th of May (top)and orresponding radar observations (bottom). Rates are given in kg.m2.s−1.
31



Figure 4.2: Diret Model Output of rainfall rates at 1630UTC (left) and 1930UTC (right)on the 18th of May.and the results are presented in �gure 4.4. In order to be onsistent with the study byTheis et al the very same BSS was implemented, using the DMO sore as a refereneinstead of the limatologial one (see equation 2.2 for details). As disussed earlier, thissore provides a measure of the improvement obtained when using the post-proessingmethod. It is expressed as a perentage of what the maximum improvement would be ifa perfet foreast ould be used.A �rst interesting result is that the sores obtained range between 0.4 and 0.72 whihis onsiderably higher than in the study by Theis et al. This signi�ant improvementover the DMO an be explained by the hoie of rainfall rates instead of aumulationas the variable to post-proess (see setion 3.1). The graph showing the evolution ofthe BSS as a funtion of the threshold value (left hand side) was realised with a neigh-bourhood radius of 15 grid points. It provides a way to test the model on two di�erenttypes of ompetenes: The �rst one is the ability to detet the areas of preipitationwithout onsidering the intensity values, and the seond one the ability to orretly po-sition more intense individual ells. When looking at small thresholds, almost all thepreipitation in the domain is onsidered, and therefore the fous is on the identi�ationof the preipitation area. When higher thresholds are seleted, most light rain areas areremoved and the di�ulty beomes to aurately position the remaining loalised ells.The BSS inreases with the threshold value, meaning that when very low thresholds are32



Figure 4.3: Exeedane probability with a threshold of 10−4kg.m−2.s−1 (top) and
10−3kg.m−2.s−1 (bottom) obtained with a neighbourhood radius of 20 grid points. Fieldson the right hand side were obtained using a Gaussian weighting funtion, and the otherswith a square one.
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Figure 4.4: Brier Skill sores of the two methods (Gaussian in green and Square in red)as a funtion of threshold value (left) and neighbourhood size (right).33



onsidered (10−4kg.m−2.s−1 or 5.10−3kg.m−2.s−1) the model does reognise the overallpattern of preipitation orretly. One these light rain areas are removed due to higherthresholds, the misplaement errors start to be identi�ed and the improvement providedby the smoothing is getting higher.Right hand side of the �gure shows the evolution of the BSS with the neighbourhoodradius α for a threshold value of 10−3kg.m−2.s−1. As expressed by N.Roberts (2006), theBSS keeps on inreasing with α, but the slope is bigger for α below 15 than after. Theoutputs orresponding to these di�erent sizes are shown in �gure 4.5 where the thresholdwas �xed to 10−3kg.m−2.s−1 but values of α vary between 10 and 25 grid points (40 to100kms). The smoothing phenomenon disussed by N.Roberts is learly notieable, withhigh probability values falling from 0.4 to 0.15 as α inreases. We already argued with�gure 2.2 of setion 2.3 that the optimum value of α depends on the user's needs, andsine here most of the improvement in the BSS is obtained before α = 15 (�gure 4.4),this neighbourhood size of 15 will be seleted as a standard for the following experiments.Furthermore, this orresponds to a diameter of 120kms, whih is in the same range ofsizes that what was used by Theis et al.
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Figure 4.5: Probability of exeeding 10−3kg.m−2.s−1 obtained using the Gaussian methodwith di�erent neighbourhood sizes: Radius is 10 gird points for top left plot, 15 for topright, 20 for bottom left and 25 for bottom right.
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of preipitation). The following experiments will be performed using a Gaussian spatialweighting funtion with α =15 and a threshold of 10−3kg.m−2.s−1. This setting o�ersa good ompromise between the aspet of the output �eld (more ontinuous and withlimited smoothing) and the BSS value.4.1.2 Spae and TimeThe objetive of this seond step of the experiment is to test the in�uene of thetime dimension on the probability estimation, and the orresponding skill sore. To doso, model outputs at 1630UTC (t0-1) and 1930UTC (t0+1) were added to the proedureas explained in setion 3.2.2 (no redution funtion). The addition of a time parameterleads to some further smoothing in the post-proessed �eld, as shown by �gure 4.7 whereboth the outputs with (left) and without onsidering the time dimension (right) arepresented. If we now look at the e�et on the BSS of this additional time dimension, itis notieable from �gure 4.8 that one again the smoothing is assoiated with an inreasein the skill sores. The improvement is haraterised by the gap between the green urveshowing the BSS for the Gaussian method with time dimension involved and the redone showing similar BSS without time averaging. While this improvement seems to beroughly independent of the seleted threshold (right hand plot), it does vary with theneighbourhood size (left hand plot): At small α the inrease is onsiderably higher (upto 8% inrease for α = 5). This an explained by the fat that at large values of αmuh smoothing has been done by the spatial averaging and therefore the additionaltime averaging does not raise the BSS as muh as it does for small values.After these �rst few experiments on the in�uene of the di�erent parameters involvedin the proedure one main onlusion seems to arise: The inrease in the Brier Skill Soreobtained is often linked to a smoothing of the post-proessed �eld. The level of smoothingaeptable depends on eah user's need, but it is probably the main parameter to takeinto aount when using the method.Finally, this �rst ase study o�ered an opportunity to test the e�et of the redutionfuntion mentioned in setion 3.3.2 in a very simple way: Sine we only have two extratime �elds available (t0-1 and t0+1) the redution is given by the parameter R1 of �gure37



Figure 4.7: Exeedane probability for a threshold of 10−3kg.m−2.s−1 with α=15. Lefthand plot was obtained with just the spatial dimension and right hand one with bothtime and spae.
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3.4. The plot on �gure 4.9 shows the evolution of the BSS as a funtion of this redutionparameter, for the standard settings disussed earlier. The lower limit of the x-axis, rep-resenting R1=0 orresponds to the proedure without time averaging and the upper one(R1=1) to the proedure inluding adjaent outputs fully. Sine the BSS inreases andreahes its best value for R1=1 (2% improvement), there is no bene�t from this redutionfuntion.
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            time parameterisationsFigure 4.9: BSS with di�erent time redutions, for α=15 and a threshold of
10−3kg.m−2.s−1.The setting of this �rst test ase does not enable further investigation on the in�ueneof a seond time step in the proedure sine time t0+2 orresponds to the analysis �leat 2100UTC, whih ontains some observations. Using this �eld would not make muhsense in the ontext of a real foreast situation and therefore this �rst ase was slightlymodi�ed into a seond ase study to provide some further fous on the time dependeneof the BSS.
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4.2 Extended ase: 18th of May 2006 at 1500UTC.This seond ase is in fat only an extension of the �rst one sine it onerns the sameweather situation. The main di�erene is that we will now post-proess the analysis �eldat t0=1500UTC. The motivation for this hoie is to be able to use up to 6 output �eldsadjaent in time (3 after t0 and 3 before ) without inluding an analysis �eld in one ofthese foreast �les. Figure 4.10 shows the ontent of the 2 �les used and helps under-stand the set up of this experiment. This approah is slightly unusual sine it representsa situation in whih the foreast is issued from the analysis �eld, meaning that someobservation have been inluded in the proess. However, if the post-proessing proedureimproves the skills obtained with the analysis �eld it an be assumed that it would alsoimprove the ones obtained with a foreast �le (and probably by a larger amount).
0900UTC: Analysis from first file

to=1500UTC: Analysis from second file

File number one: 0900UTC

File number two: 1500UTC

Forecast at 1200UTC (to−2)

Forecast at 1030UTC (to−3)

Forecast at 1330UTC (to−1)

Forecast at 1630UTC (to+1)

Forecast at 1800UTC (to+2)

Forecast at 1930UTC (to+3)Figure 4.10: Composition of the 2 �les used for the extended experiment.The analysis �eld before post-proessing is shown in �gure 4.11 with the radar ob-servations at that same time, and the omplete sequene of �les used in this setion areshown in �gure 4.12 on following page.
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Figure 4.11: Output from Analysis �le at 1500UTC (top) and orresponding radar ob-servation (bottom).
41



Figure 4.12: Output �elds from the di�erent �les onsidered in the experiment, from1030UTC (top left) to 1930UTC (bottom right).
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To test the e�et of the time range on the BSS, both the Gaussian and the squaremethods were ran using suessively 0,1,2 and 3 time steps with no redution at all. Theresults are presented in �gure 4.13, and it is surprising to see that the use of a seond anda third time step does not ontribute to raise the BSS further: If the �elds immediatelyafter and before t0 still provide some useful information (mainly on mis-timing errors),�les further away are too di�erent to be used. Another interesting result is that eventhough analysis data were used, the Brier Skill Sores obtained are still initially as highas in ase number 1 (around 0.6) but the main di�erene is found on the improvementafter one time step: Only 0.6% for the Gaussian here ompared to 2% with the samesettings in previous experiment (see �gure 4.9).
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 0.63

 0.632

 0.634

 0.636

 0.638

 0.64

 0.642

 0  0.2  0.4  0.6  0.8  1
Reduction parameters

BSS for the Gaussian method with different
     reduction parameters between to and

                    the first time step

B
rie

r 
S

ki
ll 

S
co

re

 0.63

 0.632

 0.634

 0.636

 0.638

 0.64

 0.642

 0  0.2  0.4  0.6  0.8  1
Reduction parameters

BSS for the Gaussian method with different
 reduction parameters between first and 

                        second time steps

B
rie

r 
S

ki
ll 

S
co

re

 0.626

 0.628

 0.63

 0.632

 0.634

 0.636

 0.638

 0.64

 0.642

 0  0.2  0.4  0.6  0.8  1

                and the third time steps
   

B
rie

r 
S

ki
ll 

S
co

re

BSS for the Gaussian method with different
reduction parameters between the second

Reduction parameterFigure 4.14: Evolution of the BSS for the Gaussian method with di�erent redutionparameters. Top left plot shows the seletion of parameter R1, top right one the seletionof parameter R2 and bottom plot the seletion of R3.
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normal ase with one time step by less than 0.1% and therefore an not be onsideredas useful here, espeially when the additional ost of �nding the optimum parametersis onsidered. However the derease in BSS following the use of a seond time step wasturned into an inrease just by modifying the weights attributed to the �elds at t0+2 and
t0−2, showing that the redution funtion ould perhaps be useful in some di�erent ases.This extended ase illustrates the fat that the way to handle the time dimension isnot straight forward: If the addition of one time parameter has proved to be bene�ialfor the BSS, the seond and third ones only dereased the performane. Furthermore,the identi�ation of an optimum parameterisation for the redution funtion has shownthat even though the redution method is not worth using here, the idea of dereasingthe weights aordingly to the distane in time ould help improve the foreast.
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Chapter 5
Case study number 2: Frontal system

The purpose of this new ase study is to repeat the whole analysis with a frontalsystem, in order to extend our onlusions to a wider range of weather onditions. Aspreviously, a �rst ase orresponding to a real foreast situation will be presented andthen an extended version of it using the analysis will provide some additional data toinrease the time radius in the proedure.5.1 Initial experiment: 07th of May 2006 at 0600UTC.The foreast �eld whih will be post-proessed is presented in �gure 5.1 with the or-responding radar observation at 0600UTC, and the outputs from the two other foreast�les used in this setion (0430UTC and 0730UTC) are given in �gure 5.2. This stationaryfront laying on the east oast of the UK presents a totally di�erent pattern of preipita-tion than the previous ase, with weaker values of rain rates but a higher density of ellsin the area overed. The omparison shows that the model has aurately positionedthe front, but underestimated its extent to the northern part of the domain. Values ofrainfall rates are similar in the major part of the area overed, but the regions of moreintense preipitation (in yellow) are slightly misplaed.
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Figure 5.1: Foreast �eld of rainfall rate (top) and orresponding radar observation (bot-tom) on the 07th of May 2006 at 0600UTC.
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Figure 5.2: Foreast �elds of rainfall rates at 0430UTC (left) and 0730UTC (right).First post-proessed �elds obtained with the spatial dimension only, are presented in�gure 5.3 for both the Gaussian (right) and the square methods (left). The neighbour-hood radius is still �xed to 15 grid points as a standard value and plots show resultsfor threshold values of 10−4kg.m−2.s−1 (top) and 10−3kg.m−2.s−1 (bottom). As in asenumber one, the square method tends to derease the highest probability values, but thedisontinuity problem is not as important anymore sine the overall pattern of the frontdoes o�er some lines of abrupt hanges: The advantage of the Gaussian output for aforeaster is less obvious here than for a onvetive situation.The evolution of the Brier Skill Sore of the two methods with the threshold valueand the neighbourhood size is presented by �gure 5.4 (top). The atual values of theBSS are very similar to ase number one, and the shape of the urve only presents smalldi�erenes: The plot of the BSS as a funtion of the neighbourhood radius for instane,does not onverge to a maximum value at high radius like it did previously, and thereis almost no inrease between α =10 and α =15. One again this highlights the ideathat parameters should be hosen aordingly to eah user's needs: If the user an dealwith a high level of smoothing in the post-proessed �eld, large values of α should beseleted sine they provide some additional inrease in the BSS. On the other hand, ifthe smoothing o�ers some di�ulties in the subjetive interpretation of the foreast, avalue of α =10 is probably the best hoie sine an inrease to 15 grid points does not48



Figure 5.3: Probability of exeeding a rainfall rate of 10−4kg.m−2.s−1 (top) and
10−3kg.m−2.s−1 (bottom). Left hand plots were obtained using the square funtion andright hand ones the Gaussian funtion.
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improve the BSS onsiderably.
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Figure 5.4: BSS and error as a funtion of the threshold value (left) and the neighbour-hood size (right).The plots of the di�erene in BSS between the two methods (bottom) both show anexponential derease with values of less than 1% almost immediately reahed, meaningthat the methods sore similarly in the range of values used for our experiments.This �rst part of the ase has not lead to any major di�erenes in the interpretation ofthe Brier Skill Sore, nor in the relative behaviour of the two methods tested. However,the bene�t of using a Gaussian method is not obvious sine the disontinuities in the post-proessed �eld are not a real issue anymore. The extra ost (in running time) involvedwhen using the Gaussian approah is not justi�ed by any signi�ant improvement in thisstudy and the normal square method should therefore be preferred.
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5.2 Extended ase: 07th of May 2006 at 0300UTC.The experiment will now be slightly modi�ed in the same way that in setion 4.2, inorder to inrease the number of foreast �les in the proedure. One again, the situationwe are tying to avoid is the one where some analysis data at a time greater than t0 wouldbe used in the proedure. The �eld to be post-proessed is presented by �gure 5.5 withthe radar observation at the same time (0300UTC on the 7th of May). The sequeneon the following page (�gure 5.6) orresponds to all the foreast �elds available for theexperiment, and shows the evolution of the situation between the 6th at 2100UTC andthe 7th at 0730UTC.This slow moving frontal system o�ers a new harateristi to test sine the very samepart of the domain is a�eted during the whole sequene. Simulations using 0,1,2 and3 time steps were ran for the two methods, and the results are presented by �gure 5.7.The improvement in BSS after one time step is slightly less than it was in the onvetivease, but the major result here is that the use of a seond step still inreases its value.This an probably be explained by the partiularly slow motion of the front: While mostof the onvetive ells had moved or vanished 3 hours after the foreast time (or were notyet present 3 hours before), the frontal system onsidered here is still in the same areaof the domain. Hene, some useful information about mis-timing errors an be obtainedfrom �elds at t0 + 2 and t0 − 2. The searh for the optimum parameterisation of theredution funtion was ran in the same way that in setion 4.2 and the results are shownin �gure 5.8. The parameters providing the higher BSS are R1 =1, R2 =1 and R3 =0meaning that the optimum hoie orresponds to the one using two time steps with 100%of their outputs.The in�uene of adjaent �elds in time on the averaging proedure is not lear butseems to be ase dependent: The number of �elds to be used should be determined bythe type of weather event onsidered, and more partiularly by the time sale over whihit might stay in the area of study.
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Figure 5.5: Analysis �eld of rainfall rate (top) and orresponding radar observation(bottom) on the 07th of May 2006 at 0300UTC.
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Figure 5.6: Suessive model foreasts of rainfall rates between the 6th at 2100UTC (topleft) and the 7th at 0730UTC (bottom right).
53



 0.548

 0.55

 0.552

 0.554

 0.556

 0.558

 0.56

 0  1  2  3
Number of time steps used

BSS using the Gaussian method

BSS using the square method

B
rie

r 
S

ki
ll 

S
co

re

Figure 5.7: BSS for the Gaussian method (green) and the square one (red) as a funtionof the number of time steps used.
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Figure 5.8: Evolution of the BSS for the Gaussian method with di�erent redution pa-rameters. Top plot shows the seletion of parameter R1, bottom left one the seletion ofparameter R2 and bottom right plot the seletion of R3.54



Chapter 6
Conlusions and further work
6.1 ConlusionsPreipitation foreasts su�er from an important preditability problem, and proba-bilisti information are a way to take this unavoidable unertainty into aount. Amongthe di�erent methods leading to a probabilisti foreast, the neighbourhood approah(Theis et al, 2005) was seleted for its low-budget harateristi. While building our ownproedure to test a similar approah on the Met O�e Uni�ed Model, a few questionsarose and were formulated at the end of hapter 3. Using the results gathered during theexperiments of hapters 4 and 5, we will now try to provide some answers:

• How will the hoie of rainfall rates as a variable to post-proess in�uene ourresults?One partiularity of this study was to use the model rain fall rate instead of themore ommonly used rainfall aumulation (Theis et al. 2005, Applequist et al.2002). The extra variability involved due to the absene of time averaging (asopposed to aumulations) has lead to larger values of the Brier Skill Sores: Theuse of a neighbourhood post-proessing method is even more bene�ial to rainfallrate's outputs.
• Will the use of a Gaussian weighting funtion help solve the disontinuity problem,and if it does what will be the impat on the foreast skill sore?The main motivation for the use of a Gaussian weighting funtion was to redue the55



disontinuities in the output �eld whih were produed by the initial neighbourhoodmethod. The onvetive ase presented in hapter 4 provided us with a goodexample of a situation where the Gaussian method did help solve this issue, but theseond ase onsidered, involving a frontal system, failed to o�er similar onlusions.As far as the skill sore is onerned, a slight under-performane of the Gaussianapproah was observed in all situations where the two methods were ompared.However this di�erene in Brier Skill Sores was smaller than 1% for the parametervalues seleted during the experiments.
• What are the e�ets of the time averaging proedure on this skill sore?The dependene of the BSS on the number of time steps used was perhaps themost unpreditable aspet of the study: While the onvetive ase showed thatonly �elds situated one and a half hours apart from time t0 were improving theBSS, the frontal situation still bene�ted from �elds up to three hours away. Theuse of a redution funtion to derease the weights attributed to �elds away from t0did not o�er any signi�ant improvement, however it turned a derease in BSS intoa small inrease in the onvetive ase and therefore the method ould perhaps beuseful in some other situations: If the model output times were of 2 hours or morefor instane, the redution funtion would provide a way to build some intermediatetime �elds.The best way to summarise these observations is to onsider what would be theoptimum proedure, whih of ourse depends strongly on the weather event onsidered.In a onvetive situation, the Gaussian approah o�ers some subjetive advantages to aforeaster using the post-proessed output, and sine its under-performane in terms ofBSS is very small, it should be preferred to the initial method. The length of the timeradius should not be larger then 2 hours, in order to stik to the life time of the onvetiveells onsidered.For a frontal system however, the bene�ts of the Gaussian weighting funtion are lessobvious, and sine it involves some extra osts in running time, the initial square funtionshould be seleted instead. On the other hand, the larger time sale over whih the frontremains in the area of study suggests the use of a wider time radius (3 to 4 hours).56



6.2 Further workAn interesting �nal aim for the projet would be to have a ompletely automati pro-edure post-proessing all model runs. Sine our onlusions suggest a ase dependentmethod, an important step would be to selet a riteria for an automati identi�ationof onvetive episodes. If the 12km version of the model was used, the onvetive shemewould provide a good riteria, but sine the 4km version mainly deals with onvetionin its dynami omponent, a di�erent approah needs to be taken. One possibility ouldbe to identify a threshold value for the vertial veloity, and start using the onvetionproedure when the veloity given by the model is higher than this threshold.Another interesting area of work that has not been onsidered in this study is themodi�ation of neighbourhood shape in spae. It would be interesting for instane toprodue an ellipti shape extending in the diretion of the wind, to fous on points fromwhih the air is adveted. Suh a method apable of parameterising the shape wouldalso be extremely bene�ial for �ood foreasting purposes sine the neighbourhood ouldthen be adapted to river athements boundaries: Main onern for �ood foreaster is toestimate the aumulation of rain inside the athements and the irular neighbourhoodmethod we have been using in this study would lead to some important errors at theboundaries.
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Appendix: Fortran program!Program to post-proess diret model outputs!using a neighbourhood approah!program neighbimpliit noneharater(80) :: OBS1='rad050703Z.pp'harater(80) :: FILE1='20060506HS.21Z.pp'harater(80) :: FILE2='20060507HS.03Z.pp'harater(80) :: raintypeinteger, parameter :: DX=4000real :: threshold, fatinteger :: i,i0,j,j0,n,n0integer :: nlow,nup, tlevelinteger :: ERROR,NX,NY, alpha, betainteger :: EXC, EVENT, EXCDMOinteger, dimension(45) :: IHEAD, IHEAD2, IBADHEADlogial :: END1real :: dist, radius, W1, SUMW1, W2, SUMW2, sizereal :: PI, BS1, BS2, BSREF, BSS1, BSS2real :: onstant, onstant2, W1BAK, W2BAKreal, dimension(19) :: RHEAD, RHEAD2, RBADHEADreal, dimension(7) :: THRreal, dimension(6) :: CONSTinteger, dimension(6) :: NSIZEreal, dimension(:,:,:), alloatable :: LSRR, CORR, DATAreal, dimension(:,:), alloatable :: DUMMY, PROB1, PROB2, OBS, RADAR!*****************************************************************************60



PI=4*ATAN(1.0)print*,'#########'print*, 'START'print*,'#########'! Open filesOPEN(UNIT=51,FILE='BSBDAY',FORM='FORMATTED',STATUS='UNKNOWN')OPEN(UNIT=61,FILE=OBS1,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=81,FILE=FILE1,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=82,FILE=FILE2,FORM='UNFORMATTED',STATUS='OLD')OPEN(UNIT=91,FILE='rates.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=93,FILE='DMOBDAY.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=94,FILE='pbsquare.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')OPEN(UNIT=95,FILE='pbgauss.pp',FORM='UNFORMATTED',STATUS='UNKNOWN')! Alloate arrays, read and writeREAD(81)IHEAD,RHEADNX=IHEAD(19)NY=IHEAD(18)ALLOCATE(LSRR(NX,NY,4))ALLOCATE(CORR(NX,NY,4))ALLOCATE(DUMMY(NX,NY))ALLOCATE(DATA(NX,NY,4))ALLOCATE(PROB1(NX,NY))ALLOCATE(PROB2(NX,NY))ALLOCATE(RADAR(NX,NY))REWIND(81)READ(61)IBADHEAD,RBADHEAD 61



READ(61)radar(1:NX,1:NY)!start reading first fileDo i=1,16READ(81)IHEAD,RHEADWRITE(92,*) iWRITE(92,*)IHEAD,RHEADif(IHEAD(42) .eq. 4203) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(81)LSRR(1:NX,1:NY,1)WRITE(91)LSRR(1:NX,1:NY,1)elseif(IHEAD(14) .eq. 1) thenREAD(81)LSRR(1:NX,1:NY,2)WRITE(91)LSRR(1:NX,1:NY,2)elseif(IHEAD(14) .eq. 4) thenREAD(81)LSRR(1:NX,1:NY,3)WRITE(91)LSRR(1:NX,1:NY,3)elseif(IHEAD(14) .eq. 5) thenREAD(81)LSRR(1:NX,1:NY,4)WRITE(91)LSRR(1:NX,1:NY,4)endifelseif(IHEAD(42) .eq. 5205) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(81)CORR(1:NX,1:NY,1)WRITE(91)CORR(1:NX,1:NY,1)elseif(IHEAD(14) .eq. 1) thenREAD(81)CORR(1:NX,1:NY,2)WRITE(91)CORR(1:NX,1:NY,2)elseif(IHEAD(14) .eq. 4) then62



READ(81)CORR(1:NX,1:NY,3)WRITE(91)CORR(1:NX,1:NY,3)elseif(IHEAD(14) .eq. 5) thenREAD(81)CORR(1:NX,1:NY,4)WRITE(91)CORR(1:NX,1:NY,4)endifelse READ(81)DUMMY(1:NX,1:NY)endifenddo!start reading seond fileDo i=1,16READ(82)IHEAD,RHEADif(IHEAD(42) .eq. 4203) thenWRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(82)LSRR(1:NX,1:NY,5)WRITE(91)LSRR(1:NX,1:NY,5)elseif(IHEAD(14) .eq. 1) thenREAD(82)LSRR(1:NX,1:NY,6)WRITE(91)LSRR(1:NX,1:NY,6)elseif(IHEAD(14) .eq. 4) thenREAD(82)LSRR(1:NX,1:NY,7)WRITE(91)LSRR(1:NX,1:NY,7)elseif(IHEAD(14) .eq. 5) thenREAD(82)LSRR(1:NX,1:NY,8)WRITE(91)LSRR(1:NX,1:NY,8)endifelseif(IHEAD(42) .eq. 5205) then63



WRITE(91)IHEAD,RHEADif(IHEAD(14) .eq. 0) thenREAD(82)CORR(1:NX,1:NY,5)WRITE(91)CORR(1:NX,1:NY,5)elseif(IHEAD(14) .eq. 1) thenREAD(82)CORR(1:NX,1:NY,6)WRITE(91)CORR(1:NX,1:NY,6)elseif(IHEAD(14) .eq. 4) thenREAD(82)CORR(1:NX,1:NY,7)WRITE(91)CORR(1:NX,1:NY,7)elseif(IHEAD(14) .eq. 5) thenREAD(82)CORR(1:NX,1:NY,8)WRITE(91)CORR(1:NX,1:NY,8)endifelse READ(82)DUMMY(1:NX,1:NY)endifenddo!*******************************************************************************!Compute a neighbourhood around grid point (i0,j0,n0)raintype='SUM'nlow=3n0=5nup=7!********************************************************************************if (raintype .eq. 'CON') thendo i=nlow,nupDATA(:,:,i)=CORR(:,:,i) 64



enddoelseif (raintype .eq. 'LS') thendo i=nlow,nupDATA(:,:,i)=LSRR(:,:,i)enddoelseif (raintype .eq. 'SUM') thendo i=nlow,nupDATA(:,:,i)=CORR(:,:,i)+LSRR(:,:,i)enddoendif!*******************************************************************THR=(/1.0E-4, 5.0E-4, 10.0E-4, 15.0E-4, 20.0E-4, 25.0E-4, 30.0E-4/)CONST=(/ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0/)NSIZE=(/ 5, 10, 15, 20, 25, 30 /)!********************************************************************do tlevel=1,6!threshold=THR(tlevel)threshold= 1.0E-3onstant2=CONST(tlevel)!alpha=NSIZE(tlevel)alpha=15print*,' 'print*,'*********************************************************'print*, ' 'print*, 'threshold is ',thresholdprint*, 'spatial radius is ',alphaprint*, 'time onstant is ',onstant2
65



onstant=(4*(alpha)**2)/PIprint*, 'Spae onstant is ',onstantPROB1=0PROB2=0BS1=0BS2=0BSREF=0size=0do i0=alpha+1,NX-alphado j0=alpha+1,NY-alphasize=size+1SUMW1=0.SUMW2=0.EXC=0W1=0.W2=0.do i=alpha+1,NX-alphado j=alpha+1,NY-alphadist=((i-i0)**2+(j-j0)**2)**0.5IF(dist.gt.2*alpha) CYCLEIf(dist .le. alpha) W1=1.W1BAK=W1W2=exp((-dist**2)/onstant)W2BAK=W2 66



do n=nlow,nupW1=W1BAKW2=W2BAK!W2=(1-(abs(n-n0)*onstant2))*W2If(abs(n-n0).eq.1) W2=W2If(abs(n-n0).eq.2) W2=W2If(abs(n-n0).eq.3) W2=W2*onstant2If(DATA(i,j,n) .ge. threshold) thenEXC=1elseEXC=0endifPROB1(i0,j0)=PROB1(i0,j0)+W1*EXCSUMW1=SUMW1+W1PROB2(i0,j0)=PROB2(i0,j0)+W2*EXCSUMW2=SUMW2+W2enddoenddoenddoPROB1(i0,j0)=PROB1(i0,j0)/SUMW1PROB2(i0,j0)=PROB2(i0,j0)/SUMW267



EVENT=0if (RADAR(i0,j0) .ge. threshold) EVENT=1EXCDMO=0if (DATA(i0,j0,n0) .ge. threshold) EXCDMO=1BS1=BS1+(PROB1(i0,j0)-EVENT)**2BS2=BS2+(PROB2(i0,j0)-EVENT)**2BSREF=BSREF+(EXCDMO-EVENT)**2enddoenddoBS1=BS1/sizeBS2=BS2/sizeBSREF=BSREF/sizeBSS1=1-BS1/BSREFBSS2=1-BS2/BSREF!write diret model output for DATA!do n=nlow,nup! write(93)IHEAD,RHEAD! write(93)DATA(1:NX,1:NY,n0)!write probabilities! write(94)IHEAD,RHEAD! write(94)PROB1(1:NX,1:NY)! write(95)IHEAD,RHEAD! write(95)PROB2(1:NX,1:NY)!********************************************************************************WRITE(51,*)alpha, BS1, BS2, BSREF, BSS1, BSS2, BSS1-BSS268



print*, 'Brier sore (theis et al):',BS1print*, 'Brier sore (gaussian):',BS2print*, 'referene sore:',BSREFprint*, 'Brier skill sore (theis et al):',BSS1print*, 'Brier skill sore (gaussian):',BSS2print*, 'differene BSS1-BSS2: ', BSS1-BSS2!enddo ! tlevel!********************************************************************************CLOSE(51)CLOSE(81)CLOSE(82)CLOSE(91)CLOSE(92)CLOSE(93)CLOSE(94)WRITE(*,*) 'neighb v1.1 COMPLETED SUCCESSFULLY'WRITE(*,*) 'EXECUTION TERMINATED'! END PROGRAM
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