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1.  Introduction  

1.1 Importance of clouds in the climate system  

Clouds play an important role in the earth’s climate system by reflecting incoming 

solar radiation and absorbing and re-emitting outgoing long-wave radiation.  

According to the most recent report by the Intergovernmental Panel on Climate 

Change (IPCC 2001), probably the greatest uncertainty in future projections of 

climate arises from clouds and their interactions with radiation.  In addition, clouds 

and convective systems are essential components of the atmospheric energy and water 

cycles.  Through their vertical transport of heat, moisture and momentum, and in 

particular the release of latent heat, convective clouds essentially force the large-scale 

flows.  Realistic climate simulation and prediction requires that cumulus convection 

be adequately represented in atmospheric general circulation models (AGCM).  

Indeed, parameterisation of the effects of cumulus convection on the large-scale flows 

in which it is embedded remains among the key unresolved challenges to modelling 

the atmospheric general circulation (Donner 1993).    

1.2 Representation of cumulus clouds in GCMs  

Cumulus clouds are formed by convective processes.  Moist air in surface layers 

becomes unstable and rises in plumes, expanding and cooling as it does so, until 

saturation is reached.  This simple explanation of cumulus formation belies the 

complex and poorly understood multi-scale nature of cloud formation and 

microphysical processes (Yao and Del Genio 1999).  Cumulus clouds are typically    

1-2km in diameter (LeMone and Zipser 1980), with the largest around 10km in 

diameter.  Current global models do not have horizontal resolutions capable of 

capturing individual clouds; typical large-scale models have horizontal grid spacings 

of around 200 km.  Sub cloud processes (e.g. turbulence, entrainment) occur on much 

smaller scales still, however they are closely linked to the large-scale flow, via for 



 

2

example the release of latent heat.  It is the sub-grid scale nature of convective clouds 

that necessitates their parameterisation in GCMs.     

1.3 Convective parameterisations  

A typical convective parameterisation scheme attempts to represent the mean effect of 

the sub-grid scale processes on the large-scale flow.  Early parameterisation schemes 

did this by representing the collective influence of the many clouds rather than the 

effect of each individual cloud.  Since convection is essentially a transport process, 

mass flux schemes have frequently be used, with the aim of providing a parameterised 

representation of the sub-grid convective contributions to the overall transport of heat, 

moisture and momentum (e.g. Anthes 1977).  Mass flux schemes are still widely used 

for cumulus parameterisation today.  They approximate the overall mass flux in a 

single AGCM column, however a number of clouds and possibly cloud types are 

likely to be found in any particular column.  This detail is lost in the averaging effects 

of parameterisation.  In an effort to mitigate the problem, grid cells are often divided 

into cloudy and non-cloudy regions (e.g. Yao and Del Genio 1999), based on some 

property such as relative humidity (Figure 1).  The vertical profiles of the average 

properties of these two areas can then be estimated (e.g. Teidtke 1989) and these 

estimated properties are incorporated into a small number of fixed parameters which 

implicitly describe the spectrum of different clouds (Nober 2003).  Relatively simple 

schemes such as these have the advantage of being fast enough to be used for long 

climate model runs.     



 

3

 

Figure 1:  Schematic illustrating a cloud parameterisation with cloudy and non-cloudy regions 

(Randall and Fowler 1999).  The blue and yellow dots represent ensemble updrafts and downdrafts 

respectively, and the red arrows indicate entrainment and detrainment.  

More complex schemes have been proposed (e.g. Donner 1993, Nober 2003) which 

consider an ensemble of cumulus clouds within a grid cell rather than the collective 

effect of all the clouds within that cell.  The ensemble of clouds can be generated 

using a cloud-resolving model (CRM), and the use of CRM results in conjunction 

with GCMs in this way is expected to lead to the improved parameterisation of cloud 

processes.  In a recent review of the subject (Randall et al. 2003) it has been suggested 

that future research should focus on superparameterisation, i.e. the use of a CRM 

within each grid cell of a large-scale model (e.g. Tao et al. 1987).  In particular the 

authors of the review advocate the use of 3D CRMs, in so called super-GCMs, as a 

way of tackling the complexity of the cumulus parameterisation problem.  Such 

models would, however, require considerable computation time.   

Coupling of the convective cloud system with larger scales by forcing of the GCM 

results in a reduction in the degrees of freedom.  This has already been done with 

some success by Donner (1993), who used a parameterisation which calculated 

explicitly distributions of cumulus vertical momentum and mass flux using lognormal 

distribution functions (see Section 2.3), and was closed with Global Energy and Water 

Cycle Experiment (GEWEX) Atlantic Tropical Experiment (GATE) precipitation 

observations.  The shift from traditional mass flux schemes and average cloud 

properties and effects, to schemes involving analysis of model output and the use of 

statistics to describe the state of a cloud ensemble, requires increased knowledge of 
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cloud fields structure and development.  There has been much research into the 

physical structure of convective cloud fields, and in particular the size distribution of 

cumulus clouds, which it is hoped will lead to a better representation of their 

inhomogeneity and patchiness in GCMs.  The importance of this was emphasised by 

Frank and Cohen (1985) who found that specifying the correct ensemble is as 

important as specifying an ensemble at all.  As yet there is no general agreement on a 

universal functional form for the distribution of cumulus cloud sizes.  

In the following section, the proposed functional forms will be discussed, together 

with some description and comparison of the methods used in the numerous studies.  

It is proposed that some of the variation in results might be explained by the different 

approaches and techniques used to analyse cloud data.  A large-eddy simulation (LES) 

model has been used to generate convective cloud fields.  Analysis of the LES output 

has been compared to other LES studies and recent analysis of satellite images of 

cloud fields.  The ability of models to realistically simulate convective cloud fields is 

discussed in Section 3.  A brief description of the model used in this study is given in 

Section 4.  Results are given in Section 5 and discussed in Section 6.  Finally, 

conclusions and suggestions for future work will be given in Section 7.      
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2.  The distribution of cumulus cloud sizes  

2.1. Introduction  

Arakawa and Schubert (1974) were amongst the first to take the size distribution of 

cumulus clouds into account in their parameterisation scheme.  As discussed 

previously, current GCMs lack an adequate representation of the spatial structure of 

convective cloud fields, limiting their usefulness in tackling issues as important as 

climate change.    

Early studies involved taking measurements by flying over cloudy regions (e.g. Plank 

1969).  More recently the increased availability of remote sensing data has prompted 

research using satellite images (e.g. Sengupta et al. 1990) and radar, and studies 

involving LES or CRMs are now frequent, facilitated by advancements in computing 

technology.    

The aim of many of these studies has been to find a functional relation for the cloud 

size density, defined as the probability density function of the number of clouds as a 

function of size (Neggers et al. 2003a).  The total number of clouds, N, present in a 

domain can be found by integrating the corresponding cloud size density, i.e.  

∫
∞

=
0

)( dllnN (2.1)  

where n(l) is the number of clouds in the domain with size l.  

An exponential distribution, lognormal distribution, and distributions described by a 

power law or double power law with scale break have all been proposed.    
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A brief description of some common aspects of many of the studies (the use of 

effective diameter and threshold techniques) follows.  Each proposed distribution will 

then be discussed in turn, namely:  

• Exponential  

• Lognormal  

• Single power law 

• Double power law (with scale break)   

2.1.1 Effective Diameter  

Effective or equivalent diameter has been used as a measure of cloud size in the 

majority of these studies.  This is simply the diameter of the circle with the same area 

as the cloud.  In studies involving remotely sensed images the effective diameter effD 

is calculated using the following formula:  

2
1

2
1

2
1

2 pnDeff

−
= π              (2.2)  

where n is the number of pixels identified as being ‘cloudy’ and p is the area of one 

pixel.  Occasionally, the factor 2 2
1−

π

 

is omitted (such that the length of an equivalent 

square is calculated) and in some studies effective radius is used.  
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2.1.2 Cloudy pixel identification and computation of cloud sizes in satellite 

images  

In the recent studies involving satellite images (e.g. Figure 2) a technique involving a 

radiation threshold is used to identify pixels as being either ‘cloudy’ or ‘non-cloudy’.  

The technique is essentially the same for each study and is described in detail in, for 

example, Machado and Rossow (1993) and Wielicki and Welch (1986).    

The amount of reflected radiation that can be detected by the remote sensing 

instrument is divided into a number of digital counts.  The number of counts 

associated with each pixel of the image is known.  Since the clouds reflect more 

radiation than the background, each pixel with a count number greater than some 

threshold value is flagged as ‘cloudy’.    

Kuo et al. (1993) give an explanation of segmentation, the technique used to 

determine the sizes of individual clouds.  Clouds can be segmented according to four-

connected or eight-connected methods.  The four-connected method considers cloudy 

pixels immediately neighbouring another cloudy pixel, excluding diagonally adjacent 

pixels, to be part of the same cloud (Figure 3).  In eight-connected segmentation, 

diagonally neighbouring cloudy pixels are also part of the cloud.    
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Figure 2:  An example of a Landsat satellite image of a Cu field, processed using a radiation 

threshold and segmentation technique.  The image was taken over Florida in August 1995.  

(Rodts et al. 2003)    

1  
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Figure 3:  The four-connected segmentation technique considers four grid-squares surrounding a 

square identified as being cloudy  
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2.2 Exponential distribution  

Plank (1969) was amongst the first to conduct a cumulus cloud size distribution study.  

His motivation, prior to the widespread use of computer models, was simply to 

contribute to a better understanding of the cumulus convection processes that lead to 

rain showers.  

Plank used photographs of cumulus cloud fields taken from aircraft over Florida in the 

summer of 1957.  Four cameras were mounted on the aircraft, arranged to obtain 

extensive coverage of the cumulus regions.  A bounded region was marked on the 

aerial images, typically about 2300 km2 (Figure 4).  Cloud field images were printed 

so that the contrast resolution of the cloud subjects was maximised.  They were placed 

on a light table to assist in the identification of the cloudy regions with the lowest 

albedo.  A template with concentric circles marked on it (the diameters of which 

corresponded to the boundaries of the classes into which the clouds were to be sorted) 

was applied to each cloud in turn to establish its equivalent diameter.  After the clouds 

had been sorted into half-mile wide classes, histograms were plotted to enable any 

relationship between the cloud number density n (i.e. the number of clouds within 

each class per 100km2) and the equivalent diameter D.  These histograms revealed that 

for almost all sample fields, the number density of the cumuli decreased 

approximately exponentially with increasing effective diameter.   In other words,  

-bDae n =       (2.3)  

where d < D < Dm  and d and Dm are the minimum and maximum cloud sizes 

observed, respectively.  

This relation appeared to hold well for the early morning cloud fields, however it was 

remarked that it failed to describe the cloud populations of the afternoon.  One reason 

for this could be the somewhat primitive nature of the cloud size measurements.  The 

technique is reasonably accurate for the smaller, almost circular clouds ( ≤ 1 mile in 
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diameter) however larger and more irregular clouds are clearly difficult to measure 

with a circular template, and their sizes were estimated using alternative methods.  In 

addition, the measurements were limited by the resolution of the image and to a 

degree by the eye of the measurer when determining the horizontal extent of the 

clouds; each cloud was not a unique and discrete entity.  These factors contributed to 

large uncertainties in the results of this study.   

  

Figure 4:  Example of cumulus cloud field investigated by Plank (1969).  The area marked is 

approximately 2300 km2  

A similar study was carried out by Hozumi et al. (1982), using photographs of cloud 

fields taken from commercial aircraft over the East China Sea and Pacific Ocean.  

These photographs were taken in an arguably more crude way than Plank, using a 

camera attached to a window seat on the aircraft.  The camera was dipped at an angle 

of between 8° and 10°.  The height and speed of the flight was known from the 

aircraft instruments.  Using this information an area of reasonably accurately known 

size could be marked on the images.    
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Since the horizontally projected area was required, a large dip angle was desired for 

increased accuracy.  As such, the regions investigated were restricted to a band 20km 

wide of the flight path.  Ideally, however, the photographs would be taken from 

directly above the cloud fields, to avoid problems associated with perspective.  The 

same definition of equivalent diameter described by Plank was used.  Thirty-seven 

distributions of clouds were analysed and corresponding histograms plotted, in a 

manner again similar to that of Plank.  As in Plank’s study, the maximum diameter of 

cloud observed was relatively small (around 5 km).  Hozumi et al. concluded that the 

cloud size distribution follows the exponential function described in Equation 1.  The 

coefficient a relates to the number of clouds in the cloud field and so is different to 

that found by Plank.  The constant b is also different to that determined by Plank.  

This is likely to be at least partly because of the large uncertainties in both results, due 

to the relative crudeness of measuring techniques used.  The physical significance of b 

will be examined later in this study (see Section 6).  These results cannot be applied to 

larger cumulus clouds (upwards of 5 km) since these were not observed in large 

enough numbers.   

Although there is a large amount of uncertainty associated with these results, an 

exponential decrease in cloud number with increasing effective diameter has been 

found subsequently by Wielicki and Welch (1986) using satellite images taken over 

the United States and Gulf of Mexico in 1979.   
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2.3 Lognormal distribution  

A lognormal distribution1 has been suggested for the size distribution of cumulus 

clouds.  LeMone and Zipser (1980) investigated convection over the tropical eastern 

Atlantic and found that diameter, average vertical velocity and mass flux are all 

approximately lognormally distributed.  Lopez (1977) had previously found that 

frequency distributions of height and maximum horizontal area attained by radar 

echoes of tropical disturbances were lognormally distributed.  This led him to 

question whether lognormality was a general characteristic of cumulus convection.  

Using the equivalent diameter definition previously discussed and data from other 

studies, Lopez tested his hypothesis that cumulus cloud sizes were lognormally 

distributed.  He found that for a number of different regions and convective situations 

it could not be rejected at the 5% level of significance.  This does not, of course, 

prove that his hypothesis is correct.  It was suggested that the lognormality could be 

because of the growth process of clouds through mixing with environmental air, or 

merging of smaller cloud elements.  However, Lopez was looking for lognormality 

and did not consider other possibilities in his study.    

                                                

 

1 A variable is lognormally distributed when its logarithm is normally distributed. 
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2.4 Single power law distribution  

Machado and Rossow (1993) were interested in deep convection, which is central in 

the exchanges of radiative energy and latent heat in the tropics.  One of the main 

purposes of their study was to examine the size distribution of cumulus clouds in the 

tropics.  Their data came from the International Satellite Cloud Climatology Project 

(ISCCP), which utilised a number of geostationary satellites (e.g. Meteosat).  Cloud 

pixels were identified using a thresholding technique.  

Since they were interested in high level convective systems a thermal infrared (TIR) 

threshold of 245K was employed (roughly corresponding to a height of 9km).  The 

channel used is primarily sensitive to radiation from the earth’s surface and clouds, 

with relatively little atmospheric absorption.  A segmentation technique (eight-

connected) was used to determine cloud sizes, given in terms of an equivalent radius.  

In fact, the study investigated clusters of individual convective cells.  

It was found that n, the convective cluster number within a range of radius values ∆r, 

is proportional to the radius of the lower class boundary raised to a power, such that  

α−=∆ rnrn 0)(     (2.4)  

where 0n  is a constant and α≈2.    

The relation was observed to be approximately true for cloud clusters of radius up to 

around 50km, and only slightly affected by the choice of TIR threshold. All clusters 

investigated were more than 15km in radius, larger than the largest clouds studied by 

Plank, Hozumi et al. and Lopez and making direct comparison of results difficult.  In 

addition, there is a large uncertainty in the areas of cloud clusters measured.  Actual 

satellite image pixels were 5km x 5km, however uncertainties in navigation limit 

accuracy to about 15-30km leading to difficulties in the measurement of smaller 



 

14

clusters.  This does not cause many problems in this study, because of the large size of 

clusters being investigated. 
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2.5 Double power law distribution  

Most recent studies have used satellite images to deduce that the distribution of 

cumulus cloud sizes can best be described by a double power law.  This involves a 

change in power law exponent α (Equation 2.4) at a certain size of cloud.  

One of the first of these studies was carried out by Cahalan and Joseph (1989).  They 

were interested in the self-similarity or fractal nature of clouds.  Data was sourced 

from the Landsat thematic mapper (TM) and multispectral scanner (MSS) instruments.  

A thresholding technique was used to identify cloudy and non-cloudy pixels, 

producing a binary image.  The area of each discrete cloud was calculated and 

probability distributions of cloud areas were produced.  For convenience, the 

logarithm of the square root of the area was plotted against the number of clouds 

within each bin of the histograms.  The power law exponents found were different for 

various cloud types. 

 

Figure 5:  Histogram of cloud base areas for a fair weather cumulus cloud field off the coast of South 

Carolina.  The logarithm of the number against the logarithm of the effective diameter has been plotted.  

Two best-fit lines are shown, with a distinct break clearly visible. 
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Figure 5 shows how two straight lines have been fit to the data, with a ‘scale break’ at 

approximately 2km.  It was suggested that this scale break represents the largest 

individual convective cells, and that any cloud larger than this break size is actually 

made up of a number of smaller clouds.  Neggers et al. (2003a) also suggest a possible 

reason for such a break, finding some connection to the height of the subcloud-layer 

and the intensity of the vertical wind shear.  The physical explanation for the break 

remains the subject of ongoing research.  Once again an amount of uncertainty has 

been introduced because of the resolution of the satellite image and the difficulties in 

identifying ‘cloudy’ and ‘non-cloudy’ pixels when they are in fact only partially 

cloudy.  

Sengupta et al. (1990) conducted a study into cumulus cloud field structure because of 

its importance in the earth’s radiation budget and association with the mesoscale 

environment.  They noted that cloud inhomogeneities and spatial patterns are 

important variables when looking at radiative fluxes.  Landsat MSS data was used 

once again, with a wavelength band that reduces Rayleigh scattering at shorter 

wavelengths and avoids water vapour absorption at longer wavelengths.  Ten different 

cumulus cloud scenes were investigated.  Some contained small fair-weather cumulus 

and some contained larger cumulus clouds.  The images taken by the satellite are from 

between 0930 and 1000 local standard time (LST) and are in effect a snapshot of the 

cloud field at a particular time in its development.  Clouds are grouped into cloud size 

classes according to effective diameter, and each cloud size boundary progressively 

increases by a factor of 1.5, so that as the number of larger clouds reduces, there are 

still a large number of clouds in each bin (for statistical reliability).    

The slope of the fitted line for clouds with effective diameter less than 0.5km is 

markedly different from the slope for larger clouds i.e. there is double power 

behaviour again.  In fact, it was found that the power law slope α appeared to be 

dependent on the maturity of the cloud field.  Fair-weather cumulus cloud fields have 

the smallest slopes for effective diameters less than 1km and largest for greater sizes.  

Fields of larger clouds have slopes somewhere between.  It has been suggested that 
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the larger clouds may be modifying their environment, and in doing so making the 

growth of further larger clouds easier.  This modification of the environment has also 

been suggested as a possible explanation for the break in the power law.   

The steepening of the slope at some cloud size is consistent with the results of 

Cahalan and Joseph (1989), Kuo et al. (1993), Nair et al. (1998) and Benner and 

Curry (1998).  

Kuo et al. (1993) investigated whether their double power law results were dependent 

on whether a four-connected or eight-connected segmentation procedure was 

implemented, and found that they were not.  They discarded clouds less than four 

pixels in size and as such only considered clouds greater than approximately 0.26km 

in diameter.  During the same study the distribution of convective cells was 

investigated, and interestingly an exponential distribution was found to be most 

representative.  Cells were identified by splitting individual clouds using a 

progressively decreasing temperature threshold.  According to their definition, the 

difference between the maximum and minimum temperatures within a cell must be 

greater than 1.5°C.  Cells were found to have sizes in the range 0.5km to 3km, similar 

to the sizes of clouds investigated by Plank (1969) and Hozumi et al. (1982).    

Nair et al. (1998) were interested in the nature of regularity in cumulus cloud fields.  

Their data was obtained from the Landsat MSS, advanced very high-resolution 

radiometer (AVHRR) and Geostationary Operational Environment Satellite (GOES) 

and a comparison of the respective results was made.  GOES and AVHRR images 

have a lower resolution than MSS, only capable of resolving clouds greater than 

1.1km in diameter.  Whilst cloud fields analysed using data from all instruments were 

found to be best represented by a double power law, the break in scale occurred at 

larger clouds for GOES and AVHRR images (1 – 1.5 km) than Landsat MSS (500 – 

700m).  It was observed that there appeared to be some dependence of the power law 

exponent on whether the clouds were organised in some way or apparently random.   
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Benner and Curry (1998) used Moderate Resolution Imaging Spectroradiaometer 

(MODIS) Airbourne Simulator images together with photographs taken from the 

space shuttle using a high-resolution hand-held camera.  The camera was capable of 

capturing images comparable in resolution to that of the Landsat TM (approximately 

30m).  Two thresholds were applied to the satellite image pixels in this study, one for 

the visible channel and one for infrared (IR).  Cloudy pixels were flagged when the 

radiance was higher than the visible threshold, and the IR radiance lower than the IR 

threshold.  The thresholds were selected to simulate the underlying ocean surface.  

Clouds are more reflective and colder than this surface. The space shuttle images were 

digitised using a high-resolution scanner.  Each image was masked with a threshold to 

produce a binary cloud/no-cloud image.  This process involves a somewhat subjective 

use of graphical software.    

A four-connected segmentation technique was used for all images in this study.  

Cloud sizes were computed and the clouds sorted into 100m wide class widths, based 

on effective diameter.  The percentage of clouds in each size class was plotted against 

diameter to determine whether a power law was applicable.  For completeness, an 

exponential distribution was also considered using the data.  It was found that a 

double power law could best describe 17 of the 22 MODIS images, with a break at 

around 900m.  The break for the space shuttle cloud field distributions occurred at 

approximately 600m.  None of the distributions examined could be best represented 

by an exponential distribution.    

Neggers et al. (2003a) have also suggested a power law function for the distribution of 

cumulus cloud sizes using data from large eddy simulations (LES) rather than 

satellites.  The use of LES in studies of clouds and their properties will be discussed in 

more detail in Section 3.  The study compares the cloud size densities produced by 

LES to those of observed natural cloud fields and finds that the simulated cloud 

populations are realistic.  It is shown that the cloud size density is well represented by 

a power law with negative exponent.  However, there appears to be a collapse in this 

power relation at a certain cloud size (around 1km) i.e. there is a distinct scale break.   
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2.6 Power laws and the fractal nature of clouds  

Power law behaviour has been noted by many (e.g. Nair et al. 1998) to be evidence of 

the self-similarity, or fractal nature, of clouds.  This self -similarity must break down 

towards smaller scales, since the microscopic cloud structure differs from the 

macroscopic structure of individual clouds.  There has been much  research into the 

scale at which this breakdown occurs (e.g. Cahalan and Joseph 1989).  Recently it has 

been suggested that the incorporation of fractal theories into cloud parameterisations 

is unreliable, because of errors introduced by, for example, the  measuring instruments 

and averaging techniques used in fractal studies (Brewer and Di Girolamo 2004).   
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Functional form Paper Data Cloud size range Exponent  

      
Exponential  Plank (1969) Photographs from aircraft 70m - 5km 0.4 - 14  (km-1)  

Hozumi  et al.  (1982) Photographs from aircraft 200m - 8km 0.8 - 4 (km-1)  
Wielicki and Welch (1986) Satellite           

Lognormal Lopez  (1977) Radar 1km - 50 km    

LeMone and Zipser  (1980) Aircraft penetrations < 4km         

Single power law Machado and Rossow 
(1993)  

Satellite Clusters  2        

Double power law Cahalan and Joseph (1989) Satellite < 10km 1.89 < 2km     

3.76 > 2km  

Sengupta et al. (1990) Satellite < 5km 1.39 - 2.35 < 0.5km     

2.1 - 4.75 > 0.5km  

Kuo et al. (1993) Satellite 2 - 11km 1.7 < 1km     

3.4 > 1km  

Nair et al. (1998) Satellite < 1.5km 0.9 - 1.65 < 700m     

3.76 - 6 > 700m  

Benner and Curry (1998) Radar < 5km 0.6 - 2.3 < 0.3 - 1.7km   

Photographs from space 
shuttle  

2.4 -4.6 > 0.3 - 1.7 km         

Neggers (2003a) LES < 3km 1.7 < 700 m  

  

Table 1:  Summary of suggested functional forms 
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2.7 Summary   

The double power law with distinct break at a certain cloud size is the most popular 

functional form proposed recently (see Table 1).  However, there is still a great deal of 

confusion.  An exponential distribution has been suggested following studies of both 

satellite data and photographs from aircraft.  Exponential distributions of cloud area 

and mass flux have also been found in LES output (Cohen 2001).  Most recent studies 

however have found no evidence to support an exponential cumulus cloud size 

distribution.  The lognormal distribution has not been proposed for some time, 

however the results of LeMone and Zipser (1980) have been used in more recent 

studies (e.g. Donner 1993).  The single power law relation has only been suggested 

once and following a study of cloud clusters rather than individual clouds.    

The results of Cahalan and Joseph (1989) (Figure 5) clearly indicate a probable 

double power law distribution.  Some interesting questions arise when their data is 

plotted on a log-linear plot (Figure 6).  An exponential distribution on this type of plot 

would be characterised by a straight line.  Limiting attention to clouds larger than ~ 

0.4km, it could be argued that a reasonably straight line could be fit to the data.  

Could it be that studies that have concluded that cumulus clouds are exponentially 

distributed did so because the cloud sizes investigated fell to one side of a scale break, 

and that the correct function describing the distribution is in fact a double power law? 
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Figure 6:  Cahalan and Joseph (1989) data on a log-linear plot 
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Most advocates of the double power law have determined the break to lie around 1km 

(Table 1).  Plank (1969) and Hozumi et al. (1982) investigated ranges of cloud sizes 

that included the proposed break diameters, however uncertainty in their methods has 

already left their results questionable.  Nevertheless, subsequent studies supporting 

the exponential distribution should consider whether the range of cloud sizes 

investigated has influenced the result.  A similar theory could explain why Machado 

and Rossow (1993), when looking at large cloud clusters, found only a single power 

law functional form.    

A perfectly exponential distribution of clouds with sizes in the range studied by 

Cahalan and Joseph (1989), plotted on log-log axes, also raises some interesting 

questions (Figure 7).  Whilst clearly a curve, it seems possible that given only a 

selection of the data points, two straight lines (implying a double power law) could be 

perceptible.  Could it be that the double power law is actually a consequence of 

limited data sets, and that the true exponential curve on the log-log has not been 

revealed?  A glance at Figure 5 casts doubt on this theory.  Two straight lines seem 

more likely than a curve, and the straight line for clouds smaller than 2km in diameter 

appears to be a particularly good fit.  Also, the number of studies supporting the 

double power law and the range of scenarios and cloud sizes analysed, together with 

some quite plausible suggestions for the scale break, suggest that the double power 

law is probably the true functional form describing the distribution of cumulus cloud 

sizes.   
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Figure 7:  log-log plot of an exponential distribution of cloud sizes similar to those studied by 

Cahalan and Joseph (1989)  

However, whilst the double power law relation appears most likely, there is confusion 

between those who advocate it.  A wide range of power law exponents has been 

suggested, and there is no agreement on the characteristic cloud size at which the 

break in power law occurs.  The double power law, with one exception, has been 

suggested following analysis of satellite data.  There are uncertainties inherent in the 

techniques used, mainly stemming from the resolution of the satellite images.    Small 

clouds may not be detected since they reflect less radiation.  Also reflectance within 

individual clouds can vary significantly (Wielicki and Welch 1986).  As such the 

threshold selected may lead to the area of some clouds being underestimated.  

Identification of cloudy pixels can be difficult because some surfaces have albedos 

similar to clouds, however the majority of satellite images used in the studies were 

taken over the ocean where this is less of a problem.  
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2.8 Objectives of this study  

The double power law with scale break has been supported by Neggers et al. (2003a) 

using LES output.  The data have been analysed using techniques used to analyse 

satellite images.  The objectives of this study are:  

1. To use the data from a large-eddy model (LEM) in cloud resolving model 

(CRM) mode to investigate the cumulus cloud fields produced at a range of 

heights, and deduce whether the cloud size distribution can be represented by 

a mathematical function.    

2. To determine whether some of the confusion and disagreement surrounding a 

universal functional form for the cumulus cloud size distribution arises 

because of differences in analysis techniques.  CRM output will be used to 

produce a binary cloudy/non-cloudy image similar to that produced when 

satellite data is analysed.  Cloud sizes will be determined using a 

segmentation technique employed in observational studies involving satellite 

images, and size distributions investigated.  Results and the analysis procedure 

will be compared to Neggers (2003a) and other studies.  This will hopefully 

give some insight into whether the apparent functional form is related in some 

way to the data processing method implemented.  

3. To determine (by comparison of results) whether the simulated satellite 

distribution is representative of the distributions obtained at particular heights, 

or whether the distribution looks different.    
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3.  Use of LES in cloud studies  

LES models are used to investigate convective processes by simulating full three-

dimensional fields of thermodynamic variables and vertical and horizontal momentum.  

They are able to produce large datasets at resolutions that may be difficult to realise in 

field experiments with real clouds (Neggers et al. 2003a) and are particularly useful 

when there is difficulty in obtaining observations.  Also, the user of the LES defines 

and controls all conditions of the simulation and as such it can be used to reproduce 

observed conditions.  

In an LES model the large (resolved) scale motions are calculated explicitly, while the 

small (sub-grid) scale motions must be parameterised.  LES models involve the 

solution of prognostic equations at each point in a computational domain. The 

usefulness of LES models in the study of clouds and their characteristics is of course 

dependent on their ability to realistically simulate cloud fields.  A number of studies 

have been conducted to test whether they are capable of doing this.  A lack of 

appropriate in-cloud measurements has left a number of important LES results 

unverified however most current LES models agree on the basic structure of shallow 

cumulus layers (Neggers et al. 2003b).  

Neggers et al. (2003a) compared LES results directly with actual in-cloud 

measurements made during the small cumulus microphysics study (SCMS) in Florida 

in 1995 and other studies.  Since the development of the LES in time is required to be 

as close as possible to the actual cloud field development, available observations 

(from surface instruments and radiosondes) are used to construct the LES case 

(through their use as initial conditions).  A conditional sampling technique is used to 

compare vertical profiles of properties such as temperature, obtained from the LES, 

with actual measurements.  Neggers et al. showed that the LES predicted properties of 

temperature, moisture and liquid-water content were in close agreement with those 

observed.  Also, the vertical component of the in-cloud turbulent kinetic energy and 

the cloud size distribution matched the observations.  In a separate paper, Neggers et 
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al. (2003b) compared LES results to those using high-resolution satellite data.  To 

enable a straightforward comparison, exactly the same method was used to derive the 

cloud size densities and a comparable number of clouds were investigated.  They 

showed that LES was capable of reproducing the break in power law found to 

describe the size distribution of cumulus clouds, and calculated a similar power law 

exponent for the smallest clouds observed (up to approximately 800m in effective 

diameter).  At larger cloud sizes the rate of reduction in cloud size density with 

increasing size is greater in the LES case than suggested by the satellite data.  This is 

probably because the domain size of the LES restricts the growth of largest clouds.  

The time delay between observations and satellite image might also explain some of 

the small discrepancies between the results.  Overall, the study shows that LES is 

capable of reproducing some significant results.  

Siebesma and Jonker (2000) showed that LES models were capable of reproducing 

the morphology of individual cumulus clouds.  Cuiypers and Duynkerke (1993) used 

an LES model to simulate the partly cloudy convective boundary layer and found that 

vertical profiles of variances and fluxes agreed with experimental data.  Siebesma et 

al. (2003) compared the results of ten LES models to observations made during the 

Barbados Oceanographic and Meteorological Experiment (BOMEX), which 

investigated trade-wind cumulus clouds.  They found that all of the models were able 

to reproduce the observed steady state, although there was some difficulty in 

simulating cloud cover.  Cohen (2001) found that mean thermodynamic and 

convective profiles from LES data were in agreement with previous observational and 

numerical studies.  

Although LES is subject to the constraints of numerical models, these example results 

show that they are able to produce realistic cumulus cloud fields, and support the 

credible use of LES in the development of cumulus cloud parameterisations.  Future 

research on sensitivity to resolution and impact of sub-grid scale parameterisations 

will hopefully lead to increased confidence in their use.  
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4.  The model used in this study   

4.1 Introduction  

Cohen (2001) noted that a total amount of mass flux, M, distributed randomly 

amongst N clouds, implies an exponential distribution of mass fluxes.  This is 

analogous to the Boltzman distribution of molecular energies.   It was investigated 

whether this theoretical distribution was simulated by the Met Office large eddy 

model (LEM) in CRM mode.  Data from the same model will be analysed in this 

study.  A detailed description of the model is given in Cohen’s thesis however a brief 

description is given below.    

4.2 Description of model  

The model explicitly resolves cloud-scale dynamics whilst also including a 

parameterisation of sub-grid scale turbulent eddy transports of heat, moisture and 

momentum and parameterisation of the main microphysical processes.  The anelastic 

and Boussinesq approximations to the prognostic momentum and thermodynamic 

equations are solved for the domain of size 128x128x21km3.  The horizontal 

resolution is 2km.  There are 50 vertical levels and a stretched grid is employed; the 

vertical resolution is 100m in the boundary layer and 500m in the upper troposphere.    
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4.3 Radiative-convective equilibrium  

The CRM simulates the tropical atmosphere in an idealised state of radiative-

convective equilibrium.  Figure 8 illustrates how a constant, horizontally 

homogeneous cooling rate is applied to the atmosphere up to 400mb, from where it 

decreases linearly to zero at 200mb.  This is a simplified version of the actual physical 

situation, ignoring all cloud-radiation feedbacks.    

Equilibrium is reached when the net mass flux transported by convection causes 

exactly enough compensating subsidence to balance the heat loss by radiative cooling. 

This state is reached in around 10-20 days depending on the cooling rate.  Horizontal 

snapshots of cloudy properties (e.g. vertical velocity) can be taken at a range of times 

within the equilibrium period.   

Ocean surface temp Ts 

0K/day 

12.5km 200mb 

400mb 7.5km 

1000mb 0km  

Figure 8:  Schematic of the radiative cooling rate applied.  Cooling rate of, for example, 4K/day at 

surface reducing to zero at 200mb  

An ensemble of randomly distributed cumulus clouds is required to test the 

exponential distribution predicted by the theory in Section 4.1.  A such, some further 

simplifications are employed to avoid possible organisation of the convection: 

• no mean wind shear 

• the atmosphere is assumed to be non-rotating, in contrast to the LEM used by 

Neggers et al. (2003a) and detailed in Cuiypers and Duynkerke (1993).   
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4.4 Test of data analysis procedure  

Initially, data from the model was used to reproduce the exponential distribution of 

mass flux found by Cohen (2001) at a height of 2.4km (corresponding to the base of 

the deep convective layer).  This was done as a useful check on the analysis 

procedures. Example histograms are shown in Figures 9 and 10 and the result is 

consistent with the distribution predicted by statistical mechanics. 
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Figure 9:  Histogram of mass flux per cloud at a height of 2.4km, using a 16K/day cooling rate in 

the CRM simulation. Clouds are identified where the vertical velocity, w, is greater than 1ms-1 (see 

Section 4.5) and this threshold has reduced the number of clouds in the first bin. 
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Figure 10:  Same as Figure 9, but with a logarithmic scaling of the y-axis.  A ‘best fit’ line has 

been added to show more clearly the exponential distribution. 
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The mass flux for each cloud at a vertical level is calculated using Equation 4.1:  

ii AVm ρ=                (4.1)  

where   ρ is the density at that particular vertical level, 

iV is the total vertical velocity for the cloud  

(i.e. the sum of the velocities of each grid-square contributing to the cloud)    

iA  is the area of one grid-square  

A routine scans through the model domain and identifies cloudy grid-points (see 

Section 4.5).  Adjacent cloudy grid-points are assumed to be part of the same cloud.  

Note that clouds with negative mass fluxes have not been included, since these are 

assumed to represent convective cells nearing the end of their life cycles.    

4.5 Definition of a cloudy grid-point  

A number of definitions can be used to determine whether a grid-point is cloudy or 

non-cloudy.  The definition used when calculating the mass fluxes used in the 

histograms of Figures 9 and 10 will be used for the remainder of this study.    

Updraught and downdraught grid-points have vertical velocities w>1ms-1 and w<1ms-1 

respectively.  Cloudy grid-points are identified where there is an updraught i.e. where 

w>1ms-1.  This definition appears somewhat simplistic but has been used in previous 

studies (LeMone and Zipser 1980, Xu and Randall 2001).  The definition may lead to 

the number of clouds in the domain being underestimated sinc e weaker updrafts that 

may correspond to cloudy grid -points are not considered.  Sensitivity to the w 

threshold used will be discussed in Section 5.6.  
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Figure 11 is a snapshot of the vertical velocities for each grid-square in the horizontal 

domain at a height of 2.4km.  The snapshot has been taken at some point after 

radiative-convective equilibrium has been reached.  Figure 12 indicates which of the 

grid-squares are cloudy, based on the definition outlined previously.  The clouds 

appear to be randomly distributed, as expected based on the model setup.  

 

Figure 11:  Snapshot of vertical velocity, w (ms-1), field in horizontal domain for 16K cooling rate, 

at a height of 2.4km 

 

Figure 12:  Cloudy/non-cloudy image based on data used to produce Figure 11 and w>1ms-1 

cloudy definition.  Cloudy grid-squares are red. 
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4.6 Calculation of cloud areas  

The domain is scanned and cloudy grid-points identified.  Adjacent cloudy points are 

assumed to be part of the same cloud.  Each cloud is completed when all cloudy grid-

points connected to the original have been located.  The size of the cloud in grid-

squares is then computed and stored.  Each grid-point corresponds to a corner of one 

grid-square.  The area of each cloud, Ai, is simply found by multiplying the number of 

grid-squares by the area of one grid-square (i.e. 4km2).    

The definition of cloud size used in this study is the same as that used by Neggers et 

al. (2003a):  

ii Al =           (4.2)   

where the linear size l is equivalent to the length of a square with the same area as the 

cloud.  

During the analysis of simulated satellite images, Ai refers to the vertically projected 

area of the cloud (Figure 13), since we are looking at two -dimensional projected 

images taken from a high altitude. 

 

Figure 13:  Schematic illustrating concept of vertically projected cloud area.   
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Once the linear size of each individual cloud has been calculated, the clouds are sorted 

into bins and histograms are plotted.   

4.7 Analysis of simulated satellite image produced using model output  

The CRM output has been analysed in the same way as the many recent studies 

involving satellite data (e.g. Sengupta et al. 1990).  It is first necessary to produce a 

binary cloudy/non-cloudy image, similar to the images produced when a thresholding 

technique is applied to satellite data.  

Vertical velocity values at each point of the three -dimensional domain are extracted 

from the CRM.  An algorithm has been constructed to identify whether for each 

column of th e domain, there exists a cloudy grid -point (i.e. where w>1ms-1).  This 

cloudy point is assumed to be visible to a satellite looking down on the domain.  

When a column is found to contain a cloudy point, the corresponding grid -square of 

the two -dimensional domain equivalent to the area being viewed by the satellite is 

flagged as being cloudy.    

An algorithm has been coded to calculate the sizes of the clouds in the ‘satellite 

image’.  An eight -segmentation method has been used as described in Figure 14.  

Example ‘satellite images’ are given later in this report (Section 5.4).  

8 1 2 

7 

 

3 

6 5 4 

 

Figure 14:  Eight-connected segmentation involves looking at the squares surrounding a cloudy 

grid-square (centre), including diagonally adjacent squares. 
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The clou d field image is scanned row by row, starting in the bottom left corner.  

Cloud effective diameter is calculated using Equation 4.2.  The cloud sizes are stored 

and histograms plotted to determine the size distribution.  

Boundary conditions have been appli ed such that opposite domain edges are 

considered to be adjacent.  Cloudy grid -squares on one edge might therefore be 

connected to cloudy grid -squares on the opposite edge.  This is to avoid the 

underestimation of cloud size s as a result of the boundaries and is consistent with the 

boundary conditions used in the CRM.  

It is clear that clouds seen as unique entities by the satellite might actually consist of 

overlapping segments of clouds on different vertical levels.  An actual satellite sees 

overlapping c louds and has difficulty distinguishing between parts of the cloud at 

different altitudes, seeing in effect just one cloud. (Although different wavelengths 

could be used to determine cloud heights, this has not been attempted in general in 

equivalent studies of satellite images.)  The area of the apparently unique clouds is in 

fact the vertically projected area of the overlapping clouds at various heights (see 

Figure 13).  
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5.  Results  

5.1 Distribution of mass fluxes  

It has been shown already that Cohen ( 2001) used the CRM to demonstrate that mass 

flux appears to be exponentially distributed at a height of 2.4km and with an imposed 

cooling rate of 16K/day.  Additionally, approximately exponential distributions of 

mass flux have been found during this study for a number of other heights (e.g. Figure 

15) and using a smaller cooling rate of 4K/day (e.g. Figure 16).  
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(b) 

Figure 15:  Distribution of mass flux per cloud at height of 3.9km and with an enforced cooling 

rate of 16K/day.  (b) same as (a) but with logarithmic y-axis and best-fit line 
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(b)  

Figure 16:  Distribution of mass flux per cloud at height of 5.3km and with an enforced cooling 

rate of 4K/day.  (b) same as (a) but with logarithmic y-axis and best-fit line     
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5.2 Distribution of cloud sizes  

Cooling rates of 4K/day and 16K/day were used to investigate the size distribution of 

the cumulus cloud fields produced by the model.  Cohen (2001) also showed that, 

using a cooling rate of 16K/day, cloud areas appear to be exponentially di stributed.  

The only height investigated was 2.4km however, and an exponential distribution of 

cloud areas does not imply that cloud diameters follow the same functional form.  In 

fact, a perfectly exponential distribution of area would imply that diameter  is not 

exponentially distributed.  In this study, the length of an equivalent square (as used by 

Neggers et al. 2003a) is the measure of cloud size, rather than area.    

The 16K/day rate is somewhat unrealistic, however it has been used because it 

produces a large number of clouds for statistical reliability.  Clouds at a number of 

vertical levels were investigated.  Once the system is in radiative -convective 

equilibrium the cloud fields can be sampled at a number of time intervals and size 

statistics saved to file.  The samples are approximately 9 hours apart, such that there is 

no correlation between the convective cloud fields at successive times.  The maximum 

number of files available was used to produce the histograms, to maximise the 

statistical reliability of the results.  Although more clouds are produced for the greater 

forcing rate of 16K/day, there were more files available for the 4K run resulting in a 

greater number of cloud statistics.  

Figures 17 and 18 show clearly that the cloud sizes at 2.4 km can reasonably be 

described by an exponential distribution (Equation 2.3), using the 16K/day and 

4K/day cooling rates respectively.  A plot of the logarithm of the cloud number 

against cloud size for such a distribution should result in a straight line,  as seen in part 

(b) of the figures.  This distribution was observed, at least approximately, at all 

vertical levels investigated.  Figures 19 shows log -linear plots for 5.6km.  There are 

fewer clouds at this height and so the statistical data is less reli able however an 

approximately exponential distribution can be seen.    
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(b)  

Figure 17:  Histograms of cloud sizes at height of 2.4km for 16K/day cooling rate  

(b) same as (a) but with logarithmic y-axis  
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(b)  

Figure 18: Same as Figure 17 but based on the 4K/day radiative cooling rate   
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(b)  

Figure 19:  Histograms for 5.6km.  (a) based on 16K/day cooling rate and (b) based on 4K/day 

cooling rate. Units of x (in linear fit equation) is km.  
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5.3 Vertical profile of exponent  

Histograms of cloud sizes have been produced for each of the model vertical levels.  

The data at each level has been fit to an exponential distribution and the exponent b 

(see Equation 2.3) calculated using linear regression.  The number of clouds found at 

very low levels (less than approximately 1km) and very high levels (above 9-10km) is 

small, and so the statistics are unreliable.  The R-squared value has been used as an 

indication of whether the statistics have produced a distribution of clouds that is close 

enough to being exponential for the value of b to be meaningful 2 .  Somewhat 

arbitrarily, the value of b has not been recorded when the R-squared value is less than 

0.95.  Vertical profiles of b for the cooling rates of 4K/day and 16K/day are shown in 

Figures 20 and 21.  Both plots indicate some oscillation in the value of b with height 

below approximately 3km, before a generally constant decrease to around 7-8km.  In 

addition, the values of the constant in the 4K/day cooling case are significantly larger 

than in the 16K/day case.  Possible explanations for this will be discussed in the 

Section 6.    

                                                

 

2 The R-squared value is a value between 0 and 1 and gives an indication of how well the ‘best-fit’ line 
fits the data.  A value near 1 indicates a good fit to the data. 
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Figure 20:  Vertical profile of the exponent b in Equation 2.3 (describing exponential distribution) 

for 16K/day cooling rate   
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Figure 21:  Vertical profile of the exponent b (km-1) in Equation 2.3 (describing exponential 

distribution) for 4K/day cooling rate 

b

 

b

 



 

43

5.4 Simulated satellite images   

CRM output has been used to produce simulated versions of the binary cloudy/non-

cloudy images produced following threshold analysis of satellite images.  The method 

has been described in Section 4.7.  Figure 22 was produced using the maximum 

vertical velocity in each column of the model.  Figure 23 was produced by applying 

the w>1ms–1 cloudy grid -point definition to the data used to produce Figure 22. 

Cloudy grid-points in Figure 24 have been identified where w>0.8ms –1.  The resulting 

increase in the number of cloudy points has increased the size of some clouds.  

Sensitivity to the w threshold used will be discussed in Section 5.6. An example 

snapshot for the 4K/day radiative cooling rate is shown in Figure  25.  There are 

clearly less clouds in this case because of the smaller applied forcing.  Once again, a 

number of files each containing data relating to a particular time in the radiative -

convective equilibrium period were available for use.  All files wer e used for 

maximum statistical reliability.   

 

Figure 22:  Horizontal domain of maximum vertical velocity (ms-1) for all 50 vertical levels, 

produced using cooling rate of 16K/day 
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Figure 23:  Simulated satellite image produced with cooling rate of 16K/day based on same data 

as Figure 22.  Cloudy grid-square identified (and coloured red) where vertical velocity w>1ms-1  

 

Figure 24:  Same as Figure 23 but with cloudy grid-squares identified where w>0.8ms-1 
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Figure 25:  Simulated satellite image produced with cooling rate of 4K/day.  Cloudy grid-square 

identified (and coloured red) where vertical velocity w>1ms-1   

Cloud sizes calculated using the eight-connected segmentation technique have been 

used to produce histograms based on the imposed cooling rates of 16K/day and 

4K/day (Figures 26 and 27 respectively).  It can be seen that for both forcings, 

analysis of the CRM output in the same way as satellite images have been analysed 

results in an approximately exponential distribution of cloud sizes.  The R-squared 

values have been included to give an indication of how well the data fits this 

distribution.  The 16K/day cooling rate has produced larger clouds in the simulated 

satellite image than the 4K/day case.  The value of the coefficient of x in the equations 

included on the log-linear plots (i.e. the value of the constant b in Equation 2.3) is 

roughly twice as large in the 4K/day case.  
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(b)  

Figure 26:  Histograms produced using cloud sizes from simulated satellite image, using cooling 

rate of 16K/day. (b) same as (a) but with logarithmic y-axis.   
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(b)  

Figure 27:  Histograms produced using cloud sizes from simulated satellite image, using cooling 

rate of 4K/day. (b) same as (a) but with logarithmic y-axis.   
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5.5 Consideration of power law distribution  

For completeness, an attempt has been made to fit the cloud size data from the 

simulated satellite images to a power law distribu tion (Equation 2.4).  The logarithm 

of the number of clouds has been plotted against the logarithm of cloud linear size for 

both the 16K/day and 4K/day radiative-cooling rates.    

A true power law distribution as described by Equation 2.4 would result in a  straight 

line on a log -log plot.  In neither the 16K/day nor 4K/day (Figure 26) cooling rate 

cases is the straight line fit better that for the equivalent plot for an exponential 

distribution (see Figures 26 and 27), based on the R -squared values.  It cou ld be 

concluded therefore that the exponential distribution is a better fit to the data than the 

single power law distribution.     
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Figure 28: Logarithm of cloud number against logarithm of cloud size for 4K/day cooling rate       
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The log -log plot produced using a cooling rate of 16K/day is shown in Figure 29.  

Whilst a single straight line is clearly not visible, it could be argued that a double 

power law could reasonably describe the distribution.  The double power law 

distribution is characterised on a log-log plot by a single line with a distinct change in 

gradient, i.e. two straight lines, with the break occurring at a particular cloud size.  To 

a lesser extent this can also be seen in Figure 28.  
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Figure 29:  Logarithm of cloud number against logarithm of cloud size for 16K/day cooling rate  

Individual plots for the data on either side of the possible break in Figure 29 (at 

approximately 7.5km) are shown in Figure 30.  Best-fit lines have been included on 

the plots and the corresponding R-squared values are also displayed.  The fitted line 

for the clouds with linear sizes greater than 7.5km has an R-squared value very close 

to 1, suggesting that the power law is a good fit to the data for clouds in this range.  

The line for clouds less than 7.5km in linear size fits the data less well, although this 

could be because there are fewer data points for clouds in this range.  This suggests 

that it would be possible to conclude that the cloud size distribution might be 

described by a double power law with scale break at approximately 7.5km, and 

increase in power law exponent from α≈ 1 to α≈ 4.  This change in exponent is 

similar to those reported in Table 1. 
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(b) 

Figure 30:  Best line fits through two apparent straight lines in Figure 29. (a) corresponds to cloud 

linear sizes less than 7.5km and (b) greater than 7.5km  
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5.6 Sensitivity tests  

5.6.1 Sensitivity to definition of cloudy grid-point  

Using both radiative cooling rates, simulated satellite images were produced by 

identifying cloudy grid-points where vertical velocity w>0.8ms-1.  This lowering of 

the threshold for cloudy grid-squares is equivalent to the assumption that weaker 

updrafts also imply cloud.  A vertical velocity of 0.8ms-1 or more, particularly over an 

ocean (as simulated by the model) where there is no orography, is unlikely to be as a 

result of anything other than significant convective activity.  

The resulting cloud size distribution for the 4K/day cooling case is shown in Figure 

31.  It appears exponential, and the similar R-squared value calculated indicates that 

the fit is almost as good as in the w>1ms-1 case.  The maximum cloud size is larger 

and the number of relatively large clouds has been increased, due to the increased 

number of grid-points identified as being cloudy.  Overall, fewer single grid-square 

clouds (i.e. with linear size l=2km) are present and as such the number of clouds in 

the first bin has been reduced.  (Whilst more single grid-squares have been identified 

as cloudy, they have been incorporated into larger clouds.)  This has resulted in a 

reduction in the constant b.  The 16K/day cooling rate case also reveals an exponential 

distribution and the value of the constant b has again been reduced.    

The shape of the distribution does not therefore appear sensitive to the precise vertical 

velocity threshold applied however the constant b displays some sensitivity to cloudy 

grid-point definition.  These results are summarised in Table 2.  (In a future study, it 

would be interesting to test whether the results are sensitive to an entirely different 

cloudy grid-square definition, based on, for example, the presence of liquid or ice 

cloud water).   
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5.6.2 Sensitivity to segmentation technique  

The simulated satellite images have been analysed using a 4-connected segmentation 

technique (Figure 3) to assess the sensitivity of the resulting distribution and 

associated constant. Both cooling rates have again resulted in approximately 

exponential distributions.  

Comparison of Figure 32 with the corresponding 16K/day cooling rate simulated 

satellite image analysed with the 8-connected segmentation technique (Figure 26) 

reveals that the new technique has reduced the number of relatively large clouds and 

increased the proportion of clouds falling into the first bin.  This is because there are 

more single pixel clouds in this case, since diagonally adjacent cloudy grid-squares 

are not assumed to be connected and as such are considered unique clouds (provided 

they are not directly adjacent to another cloudy grid-square).  This has resulted in an 

increased value for the constant b in Equation 2.3.  The 4K/day cooling rate has 

produced a similar increase in b for the same reasons.  This result conflicts to a degree 

with the findings of Kuo et al. (1993) who concluded that results from both techniques 

were almost indistinguishable.  

The new R-squared values indicate that the 4-connected segmentation technique 

produces data that fits the exponential distribution less accurately (Table 2).  The 

increase in cloud number in the first histogram bin has contributed significantly to this.  

It seems likely that 8-connected segmentation is better able to capture the irregular 

nature of cloud sizes.          
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Cooling rate  w>1ms-1 

8-connected 

w>0.8ms-1 

8-connected 

w>1ms-1 

4-connected 

16K/day 0.957 

0.16 

0.921 

0.13 

0.943 

0.18 

4K/day 0.951 

0.29 

0.942 

0.25 

0.929 

0.31 

 

Table 2:  Summary of sensitivity test results, including R-squared values and b values (in italics)  
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Figure 31:  Cloud size distribution for simulated satellite image produced for 4K/day cooling rate and 

cloudy grid-point defined where w>0.8ms-1 
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Figure 32:  Cloud size distribution for simulated satellite image produced for 16K/day cooling rate 

and 4-connected segmentation technique for determining cloud sizes 
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5.6.3 Sensitivity to histogram bin width  

Cumulus cloud sizes have been sorted into constant 500m class intervals for the 

purposes of this study.  For consistency, this has remained constant throughout.  

However, to investigate whether the resulting distribution is sensitive to class interval 

size, histograms with bin widths of 1km have also been used.   It has been found that 

the shape of the distribution is not sensitive to the choice of bin width. The value of 

the constant b in Equation 2.3 is, however, sensitive to bin width.  The value roughly 

doubles when bins 1km wide are used.     
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6.  Discussion  

6.1 Distribution shape  

The exponential distribution of mass flux and cloud size is the same as that expected 

using the statistical approach described by Cohen (2001), and analogous to the 

Boltzman distribution of molecular energies, i.e.  

( ) dme
m

N
mnd m

m−

=   (6.1)  

where nd  is the average number of clouds in the ensemble producing a mass between 

m and m+dm, N is the ensemble average total number of clouds in the system 

and m  is the ensemble average mass flux per cloud.  

The cloud size distribution is also in agreement with that determined experimentally 

by Plank (1969), Hozumi et al. (1982) and Wielicki and Welch (1986).  As 

summarised in Table 1, the majority of recent studies have concluded that the power 

law is a general feature of convective cloud systems.  Neggers et al. (2003a) reported 

double power law behaviour following analysis of LEM output.  Nober (2003) found 

that cloud spectra produced using his simple Convective Cloud Field Model (CCFM) 

generally showed power law behaviour.  The different results from this study are 

possibly because of the simplicity of the model, which incorporates a number of 

assumptions (detailed in Section 4), for example a non-rotating background.  The 

grid-spacing of the model used by Neggers et al. was 50m x 50m (horizontally).  This 

is a significantly finer resolution than the model used in this study (2km x 2km).  This 

coarse resolution enables fast model runs but is clearly unable to resolve clouds 

smaller than 4km2 in area (i.e. the area of one grid-square). This has severely limited 

the lower extreme of cloud sizes.    



 

56

The domain size used by Neggers et al. was 6.4km x 6.4km.  Clearly, the number of 

large clouds that are able to exist in the domain is limited.  A larger domain size of 

12.8km x 12.8km was also used to test the SCMS data, however this too restricts the 

number of larger clouds.  Despite the coarse resolution, the large domain used in this 

study has enabled the simulation of many large clouds, contributing to a wide range of 

cloud sizes for analysis.  

The discrepancy between the distributions obtained through analysis of satellite 

images could either be because of the errors introduced by the satellite image analysis 

or again due to the simplicity of the model used in this study.   However it is possible 

that differences in the data analysis carried out in the various studies might explain 

some of the variation in results.     
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6.2 Vertical profile of exponent  

Figures 20 and 21 show that following some fluctuation with height below 3-4km, the 

value of the constant b in Equation 2.3 is seen to decrease steadily.  Analysis of cloud 

field ‘snapshots’ reveals an increasing number of larger clouds with increasing height 

and this is also clearly reflected in the cloud size histograms.  As cloud plumes rise 

latent heat of condensation is released providing the energy required for further 

vertical growth.  Horizontal growth occurs through mixing with surrounding air.  This 

is mainly through entrainment as the plume rises, and detrainment when the plume 

reaches an inversion (or the level of neutral buoyancy).  In addition, individual clouds 

may merge to form larger clouds, or cloud clusters.  These processes explain the 

higher proportion of larger clouds at upper levels, reducing the rate of decay of cloud 

number with cloud size and resulting in a smaller value of the constant b.  A similar 

decrease in b with height was observed for the mass flux distributions.  

The 16K/day cooling rate is unrealistic and has been used to produce a large quantity 

of statistics.  It has clearly resulted in a large number of cloudy grid-points on each 

level and has also produced a higher proportion of larger clouds than the lesser 

cooling rate.  In particular, the histograms show that there is less of a drop in cloud 

number between the first and second histogram bins than in the 4K/day case.  In other 

words, the decay in cloud number with increasing cloud size is reduced, 

corresponding to a smaller value for the constant b at each vertical level.  The 

increased number of cloudy grid-points increases the likelihood of cloudy grid-points 

being connected, and hence increases the number of larger clouds.        
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6.3 Mean cloud size  

The exponential distribution of cloud sizes is analogous to the decay of radioactive 

material:  

λ
t

eNN
−

= 0        (6.2)  

where λ is known as the mean lifetime.  By comparing Equation 6.2 with Equation 

2.3 it can be seen that λ is equivalent to 
b

1 .  It can be deduced that the inverse of b 

represents some characteristic or mean cloud size for the distribution.  A smaller b 

would therefore suggest a larger characteristic cloud size than a larger b value.      
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6.4 Simulated satellite images  

An exponential distribution of cloud sizes has been found for both the 16K/day and 

4K/day radiative cooling rates, based on the simulated satellite images.  Equations 6.3 

and 6.4 describe the distributions for 4K/day and 16K/day respectively:  

leln 29.0295)( −=          (6.3)  

leln 16.0862)( −=      (6.4)  

Once again, the constant b in Equation 2.3 has a smaller value for the 16K/day 

cooling case and the histograms (Figures 26 and 27) show the reduced decay in cloud 

number with size for this cooling rate.  The exponents are slightly smaller than the 

smallest values reported by Plank (1969) and Hozumi et al. (1982).    

Comparison of the exponents obtained from the simulated satellite images to the 

vertical profiles of Figures 20 and 21 show that they are smaller than any value 

obtained for the size distribution at a single vertical level.  Rodts et al. (2003) 

compared direct measurements from flights through cloud fields with Landsat satellite 

data and found that the satellite image was dominated by larger clouds than was 

suggested by the aircraft data, although this will at least in part be because flights are 

unlikely to traverse the full length of each cloud.  It seems likely that the overlapping 

of clouds at different vertical levels has led to the reduction in exponent value.  

Overlapping clouds result in a larger vertically projected cloud area ‘viewed’ by the 

satellite, and the number of smaller clouds is also reduced, hence the rate of decay of 

cloud number with size is reduced.  This could also explain why the exponent values 

are smaller than those derived in earlier studies.  In addition, the model cannot resolve 

clouds smaller than 2km in linear size, effectively reducing the number of smaller 

clouds in the distribution.    
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The variation of b with height, together with the reduction introduced when 

overlapping clouds are considered, has important implications for cloud 

parameterisation schemes.  Frank and Cohen (1985) used a cloud model to produce an 

ensemble of clouds based on the statistical distribution obtained by LeMone and 

Zipser (1980).  They noted that variations in the assumed distribution of cloud sizes 

resulted in significant variations in the vertical heating profiles simulated using their 

model.  Future studies should consider the height at which the ensemble is specified, 

since this would determine the value of any constants used to generate the distribution.  

Distributions of mass fluxes specified would be determined by the height at which the 

convective updraft plume was initialised.  In addition, in studies involving 

distributions derived from satellite data it would be important to consider the 

reduction in b introduced by the overlapping of clouds on different vertical levels 

(should an exponential distribution be specified) and the effect this overlapping has on 

other distributions, for example the lognormal distribution.    

Currently, research is being conducted into the incorporation of statistics into a 

convective model through the use of an exponential distribution of mass fluxes.  The 

model uses the distribution to calculate the probability of occurrence of a particular 

mass flux on a vertical level (Plant and Craig 2004).  The parameterisation scheme 

specifies the distribution at one level and subsequently derives distributions at higher 

levels.  The variation of b with height from this study could be used as a useful test of 

such parameterisation schemes           
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7. Conclusions   

In Section 2 it was suggested that some of the variation in cumulus cloud size 

distribution study findings might be explained by the differences in data analysis 

techniques implemented.  This study has confirmed that it is sometimes possible to fit 

more than one functional form to cloud field data.  Whilst one function may be a 

better fit to the distribution than the other, unless a fit to each function has been 

attempted it is not known which result best represents the distribution.  

The double power law is generally thought to most likely describe the distribution of 

cumulus cloud sizes.  Many studies support this theory, including most recently a 

study of LES model data (Neggers et al. 2003a).  The uncertainties introduced by the 

various studies have been discussed in some detail in Section 3.  Although they are 

significant, the volume of evidence in support of the double power law lends the 

theory much credibility.  Despite this, there is still disagreement concerning the value 

of the power law exponents and size of cloud at which the break in power law occurs.  

This study has shown that the choice of segmentation technique, cloudy grid-point 

definition and class size interval can all significantly affect the calculated value of any 

exponents.  This should be considered when comparing values derived during the 

various studies.   

The exponential distribution is generally the best fit to the CRM data analysed in this 

study.  This is true for clouds at various vertical levels and for simulated satellite 

images of cloud fields, and has been confirmed for different radiative cooling rates.  

The result is contrary to those most recently reported.  The exponential fit to the data 

is generally good, although it has been shown that in the case of the simulated satellite 

images, similar to those analysed by Neggers et al., a double power law can be fit 

reasonably well (particularly for the highly populated cloud fields produced using a 

cooling rate of 16K/day).  There is also some uncertainty in the results for cloud size 

distributions at particular heights.  Whilst good exponential fits were found for most 

vertical levels, fits to a single power law distribution were also often good and 
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sometimes better (based on the R-squared value).  Figure 33 shows how the R-

squared values vary with height for a cooling rate of 16K/day.  Only R-squared values 

greater than 0.95 have been included.  There is some oscillation, however it appears 

that the exponential distribution most nearly describes the cloud distributions at lower 

levels, while higher up where the clouds are larger, the power law distribution 

provides the better fit to the data.  This result is not conclusive however it is consistent 

with the findings of Plank (1969) whose exponential distribution failed to accurately 

describe the distribution of cloud sizes in the afternoon, when larger more mature 

clouds dominated the cloud fields.  It is also interesting to note that Machado and 

Rossow (1993) reported a single power law for large clusters.   
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Figure 33:  Variation of R-squared values with height for 16K/day cooling rate  

It was also suggested in Section 2 that exponential distributions might mistakenly be 

reported when the range of cloud sizes is limited, such that the entire spectrum of 

clouds investigated falls to one side of the power law scale break size.    An arbitrary 

distribution of clouds perfectly described by a single power law has been generated.  

Using this distribution, and looking only at clouds greater than a certain size, a log-

linear plot has been produced and is shown in Figure 34.  Using linear regression, a 

best-fit line has been superimposed also.  The corresponding R-squared value 

indicates that the straight line is a good fit to the data.  This plot can be compared to 
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the histograms based on model output earlier in this study, and the similarity casts 

some doubt on the exponential distribution result.  The model resolution imposed a 

lower limit of 2km on the linear size of clouds investigated in this study.  It seems 

possible that a double power law is the true functional form describing the cloud size 

distribution, but that the break in power law occurs at a linear size less than 2km.  

This break size is not inconsistent with those that have been reported (Table 1).  It is 

smaller than the possible break size suggested for the simulated satellite distribution 

produced using a cooling rate of 16K/day (see Figure 30), however an exponential 

distribution was most likely in this case.  
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Figure 34:  Distribution created using power law with exponent α=2 on a log-linear plot    
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7.1 Future work  

The determination of a universal functional form for the distribution of cumulus cloud 

sizes is clearly complex.  It is not currently possible to positively rule out one any of 

the proposed possibilities.  In future studies, attempts to fit experimental data to more 

than one functional form would be beneficial.  Comparison of the fits would indicate 

which form, if any, most nearly represents the actual size distribution.  This has not 

been done in the majority of previous studies, although Benner and Curry (1998) did 

consider both exponential and power law distributions.  The double power law 

distribution appears the most likely candidate.  Research into the causes of the 

proposed scale break could further reduce the uncertainty in this.  LEMs will be a 

useful tool in this research, since they can be configured to reproduce a wide range of 

scenarios relatively easily.    

It has been found that investigations based on a narrow range of cloud sizes may lead 

to incorrect conclusions being drawn.  As such, data for a wide range of cloud sizes 

should be used in future research.    

In addition, further analysis of satellite data could lead to increased confidence in one 

of the universal functional form candidates.  Different visible/TIR thresholds could be 

used to investigate the variation of distributions with height, and results could be 

compared with this study.  Improvements in remote sensing instrument resolutions 

and analysis techniques would reduce uncertainty in the results of these studies.   
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