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Abstract 

The Fractions Skill Score (FSS) is a method that has been used to analyse the skill of 

convective-allowing models at forecasting precipitation on a spatial scale. This report looks at 

applying the FSS to a sub-area of Met Office global model data, covering Eastern Europe. The 

scale at which FSS first reaches 0.5 is defined as the useful scale, or the scale at which the 

forecast is considered to have a greater than 50% chance in being correct. This useful scale has 

been compared for different forecast ranges (from T+24 to T+48) and also for the different 

seasons. The time range analysed is from 1st June 2013 to 31st May 2014. 

Code was written specifically in python to analyse the data using the FSS at a range of 

neighbourhood sizes. The code was tested and checked to ensure that results were in line with 

results found in research using the same method. 

It has been shown that the useful scale is smaller for winter and autumn implying that it is 

easier to forecast accurately during these seasons compared to spring and summer. For T+24 

forecasts, spring is the most unreliable whereas for T+48, it is the summer season. It is proposed 

that this is to do with the timescales on which convective showers in spring evolve. 

Over the whole year, 92% of T+24 forecasts can be considered skillful at grid scale (25km), 

dropping to 52% at T+48. 93% of T+48 forecasts are skillful at scale of 75km (3 grid squares) or 

less.  

  



ii 
 

Acknowledgments 

 

I would like to thank my supervisors Bob Plant and Nigel Roberts for all their invaluable 

support and help they have given me in completing this project. 

I would also like to thank my family for encouraging me and supporting me. 

Finally, I would like to thank my fellow MSc students for their help and willingness to help 

talk through problems both meteorological and code-based.  



iii 
 

Contents 

Abstract .............................................................................................................................................. i 

Acknowledgments............................................................................................................................. ii 

1. Introduction ............................................................................................................................ 1 

1.1 Traditional skill score methods for precipitation ............................................................... 1 

1.2 Model resolution .................................................................................................................... 1 

1.3 Importance of site specific forecasting .................................................................................. 1 

1.4 Problems with traditional methods ....................................................................................... 2 

1.5 The Global Model ................................................................................................................... 2 

1.6 Global Scale ............................................................................................................................ 3 

1.7 Observations on a global scale .............................................................................................. 3 

1.8 Uses of the global model ....................................................................................................... 4 

1.9 Usefulness .............................................................................................................................. 4 

2. Literature Review ......................................................................................................................... 5 

2.1 UM Models............................................................................................................................. 5 

2.2 Quantitive Precipitation Forecasting ..................................................................................... 6 

2.3 Traditional Skill Score Methods ............................................................................................. 7 

2.4 Alternative Skill Score Methods ............................................................................................. 7 

2.5 Fractions Skill Score ............................................................................................................... 8 

2.6 Results from Regional Models ............................................................................................. 10 

2.7 Global model forecasts ........................................................................................................ 11 

3. Methodology ........................................................................................................................ 13 

3.1 Data ...................................................................................................................................... 13 

3.2 Precipitation Rates ............................................................................................................... 13 

3.3 Calculating the Fractions Skill Score .................................................................................... 14 

3.3.1 Thresholding ................................................................................................................. 14 

3.3.2 More about Neighbourhoods ....................................................................................... 17 

3.3.3 Dealing with a regional grid .......................................................................................... 17 

3.4 The code ............................................................................................................................... 18 

3.4.1 Graphical Output........................................................................................................... 18 

3.4.2 Useful Scale ................................................................................................................... 19 

3.4.3 Tests .............................................................................................................................. 19 

3.5 Constraints and Limitations ................................................................................................. 19 

3.6 Worked Examples ................................................................................................................ 20 



iv 
 

3.6.1 A ‘good’ forecast (Useful at grid scale, 25km) ............................................................... 20 

3.6.2 A ‘poor’ forecast (Useful at 9 grid squares (225km)) .................................................... 24 

4. Results ........................................................................................................................................ 28 

4.1 The year as a whole .............................................................................................................. 28 

4.2 Seasonal Analysis .................................................................................................................. 33 

4.2.1 Summer ......................................................................................................................... 33 

4.2.2 Autumn .......................................................................................................................... 34 

4.2.3 Winter ............................................................................................................................ 34 

4.2.4 Spring ............................................................................................................................. 34 

4.2.5 Comparison.................................................................................................................... 39 

4.3 Long Range forecasts ............................................................................................................ 40 

4.4 Predictability periods ............................................................................................................ 45 

4.5 Thresholds ............................................................................................................................ 50 

5. Conclusion .................................................................................................................................. 53 

5.1 The Method .......................................................................................................................... 53 

5.1.1 Observational Data ........................................................................................................ 53 

5.1.2 The grid size ................................................................................................................... 54 

5.1.3 The Sub-section ............................................................................................................. 54 

5.2 Annual Data .......................................................................................................................... 54 

5.2.1 T+24 ............................................................................................................................... 55 

5.2.2 T+48 ............................................................................................................................... 55 

5.3 Seasonal differences ............................................................................................................. 55 

5.4 Longer Range Forecasts ........................................................................................................ 55 

5.5 Thresholds ............................................................................................................................ 56 

5.6 Further Work ........................................................................................................................ 56 

6. References .................................................................................................................................. 58 

Appendix A- Python Code ............................................................................................................... 62 

Code 1- input .............................................................................................................................. 63 

Code 2- multi .............................................................................................................................. 65 

Code 3- play ................................................................................................................................ 68 

Code 4- fsstools .......................................................................................................................... 71 

Code 5- sorting ........................................................................................................................... 75 

Code 6- test ................................................................................................................................ 77 

Code 7- plotting .......................................................................................................................... 79 



v 
 

 

  





1 
 

1. Introduction 

1.1 Traditional skill score methods for precipitation 

How the skill of a precipitation forecast is measured has been a highly researched area for many 

years (Jolliffe and Stephenson, 2012). Traditionally, the skill is measured by comparing the forecast 

quantity with the observed amount at point locations (Mittermaier, 2014).  Statistical methods 

include mean and RMS values, or ‘categorical scores’ such as the Equitable Threat Score. Such 

methods are used by national meteorological services like the UK Met Office and have been in place 

since Numerical Weather Prediction (NWP) models have been run. Whilst these methods are easy to 

implement and seem intuitively sensible, they are not without their problems. One of the most basic 

problems is called the ‘double penalty problem’, discussed later, which means that forecasts that 

give a good spatial representation score just as poorly as the forecasts that place occurrences of 

precipitation further from the observed location. This issue has come to light in recent years because 

of the development of ‘convection-permitting’ models, as will be explained. 

1.2 Model resolution 

In recent years, the numerical weather prediction models used by organisations such as the Met 

Office have been constantly upgraded. Global models such as the Met Office’s Global Model now 

run at a higher resolution of 25km (Met Office, 2014). This means that more parameters can be 

modelled explicitly rather than rely on parameterisations, as was the case in previous models 

(Davies, 2004). 

1.3 Importance of site specific forecasting 

The weather has a large effect on people’s lives, from leisure and sport (Thorne, 1977) to health 

(Kunkel et al, 1999) to job interviews (Simonsohn, 2009). There is an increasing demand for site 

specific forecasting for events such as Wimbledon or the Olympic games (Golding, 2012) as well as 

for everyday uses including energy availability at wind farms (Landberg, 1999). Event managers want 

to know what the chances of events being cancelled or delayed due to rain or even just what to 

prepare for. Like in big multinational shops, sales at events are heavily influenced by the weather 

(Murray et al, 2010). We have to accept that forecasts are never perfect – with some locations 

harder to forecast for than others, but in some cases, even a forecast that does not exactly match 

the observations in intensity or placing can provide important information. For example, if storms 

are forecast nearby then that indicates a threat at the location of interest. 
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1.4 Problems with traditional methods 

An important question for meteorologists is how accurate can a forecast be at that scale and at 

what scale can forecasts be considered more useful than guessing. Using the traditional skill score 

methods, the skill of the higher resolution models is lower than that of their coarser predecessors 

(Mittermaier et al, 2011).  

One of the reasons for the decrease in skill is what is commonly referred to as the ‘double 

penalty problem’. This refers to the fact that when looking over a spatial scale, the precipitation 

forecast is compared with that observed for each grid square. When the forecast does not exactly 

correspond to the observations, as shown in Figure 1, then a double penalty occurs, one where the 

observation says rain but the forecast says not and another where the observations say no rain but 

the forecast says rain. 

                                 

 

          
                    
                    
                    
                                                                
                      
                    
                    

Figure 1: The double penalty problem, means that errors in the location of a band of precipitation are counted twice, 
once where the model shows the precipitation and once where the observations locate the precipitation. The 
observations are shown in blue and the forecast in purple. Therefore, both forecasts shown in this figure are considered 
equally incorrect and the best results would come from not providing a forecast at all. 

 1.5 The Global Model 

Many of the national meteorological organisations run their own global models. The Met Office 

Unified Model (UM) is one such model. The skill of the models can be compared against each other 

using traditional skill score methods. Such a comparison can be seen in Figure 2, which shows the 

root-mean-square-error for the T+72 forecast of the Northern Hemisphere sea level pressure (Met 

Office, 2011). The global models tend to run at a lower resolution than the more specialised regional 

and local models used to produce the forecasts for the areas of interest to national meteorological 

organisations but provide important information to these nested models. 
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Figure 2: Comparison of global models run by different Meteorological Organisations, including the Met Office and 
ECMWF (Source: Met Office 2011). 

1.6 Global Scale 

Whilst much research has been conducted into how to measure the skill on a local or regional 

scale (Gilleland, 2009) there has not been a lot of research on a global scale. Working on a global 

scale brings its own set of problems in that the shape of the earth means that grid squares are not 

consistent in size. Verification tests often use rainfall accumulations at point locations, measured 

using gauges, to test against (Mittermaier, 2014). These scores tend to be poor unless long 

accumulation times are examined. Therefore, a test which verifies precipitation rates, such as radar 

or global analyses would be considered a stringent test on such a scale. 

1.7 Observations on a global scale 

On a global scale one of the major problems is the lack of global observations. Over the ocean 

there are only infrequent observations from ships, planes, satellite. There are also sparse 

observations in some landed areas, particularly those that are difficult to access or where funding is 

poor, as seen in Figure 3. Many methods use radar observations as the observational dataset but 

there is no global coverage.  

Time (YYYYMM) 

R
M

SE
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Figure 3: Global Data coverage from synoptic stations (red), METAR (dark blue) and ships (light blue) in 2004 (ECMWF, 
2014). Shows lack of data over oceans and some land masses such as Africa, Greenland. 

1.8 Uses of the global model 

The global model is used in a variety of situations; as a forecasting tool for areas not covered by 

higher resolution regional or national scale models, to edge data for regional models (Brandt, 2005). 

When used to give the boundary conditions of nested high resolution models, it is important to 

know the reliability of the global model and the scale to which it is reliable. Large displacement 

errors in the global models can have a large effect on the skill of the nested regional or local scale 

model as events such as fronts are not in the right place.  

1.9 Usefulness 

A forecast is deemed to be ‘useful’ if it accurate more than 50% of the time (Mittermaier and 

Roberts, 2010). Below this, a random forecast deciding by a coin toss would be correct more often 

and therefore the forecast is deemed to be not of any use. The purpose of this project is to attempt 

to show the scale at which forecasts become useful at different forecast lead times. Throughout this 

work, the term ‘useful scale’ is used to define the scale at which the skill score first reaches 0.5.  
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2. Literature Review 

2.1 UM Models 

The global model (25km grid spacing (Met Office, 2014)), or any model with grid spacing of 

greater than 4km, uses convection parameterisation to model convective precipitation (Gregory and 

Rowntree (1990), Gregory et al (1990)). This means that there are some differences in the models, as 

described by Lean et al (2008) and in the distribution of precipitation (Holloway et al, 2012). The 

convection permitting models were introduced with the aim of improving forecasts of convective 

and orographic rain, with the hope of a better Quantitive Precipitation Forecast (See section 2.2). 

Rather than improving the skill of precipitation forecasts as expected, traditional verification 

methods showed little improvement or even a decrease in skill when going to a convection 

permitting model, as can be seen in Figure 4 (Mittermaier et al, 2013). The equitable threat score 

(ETS) is a skill score used to define the skill of precipitation forecasts at locating precipitation above a 

threshold in the correct place (Mesinger, 2008). 

 

 

1.5 km 

4 km 

12 km 
~25 km 

April to Oct 2010 

Figure 4: Equitable Threat score at different model resolutions (Mittermaier et al, 2011) 
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This lack of improvement is not because the new convection-permitting models are poorer but 

because traditional verification methods that measured skill are no longer appropriate because they 

do not take any account of one forecast being closer than the other (Ebert, 2008). This was 

recognised and therefore new methods were developed. It was also recognised that probabilistic 

forecasts were needed. 

2.2 Quantitive Precipitation Forecasting 

In recent years there has been an increase in probabilistic forecasting, particularly from 

ensemble methods but also from a deterministic model. Quantitive precipitation forecasting (QPF) 

has a high impact on decision-making and allows the end user to make an informed decision even if 

they are not necessarily a meteorologist. Research falls into two main sources, weather radar and 

NWP models (Wang et al, 2008).   

Theis et al (2005) propose a low-budget post processing procedure to create a pseudo-ensemble 

and probabilistic forecast. Their method uses the concept of a ‘neighbourhood’, the group of pixels 

surrounding the pixel in question in space and/or time, an example is shown in Figure 5. Theis et al 

make one key assumption that “Model precipitation forecasts at grid points within the 

neighbourhood are assumed to constitute a sample from the unknown probability density function of 

the precipitation forecast at location (x0, y0) and forecast lead time T0.” By comparing each pixel to a 

threshold, a percentage of pixels within the neighbourhood which exceed the threshold can be 

calculated. This is the value returned as the percentage probability of precipitation. Roberts (2003) 

also shows the need for probabilistic post processing. The techniques used to produce a QPF can be 

expanded to also provide verification of forecast skill. 

 

 
Figure 5: Example of a spatial neighbourhood is shown on the left and a spatio-temporal neighbourhood on the 

right. (Theis et al, 2005). 
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2.3 Traditional Skill Score Methods 

Reasons for forecast verification fall under 3 main headings- administrative, scientific and 

economic (Brier and Allen, 1951).  The purpose of this project lies under the scientific verification 

heading. Traditional skill score methods such as Root Mean Square error or the equitable threat 

score are used to determine the skill of a forecast (Inness and Dorling, 2013). 

Another method is the Briar Skill Score (BSS) which is commonly used for comparing forecast 

probability against climatological probability of an event (Jolliffe and Stephenson, 2012) However, 

such methods do not account for spatial errors and therefore can represent the accuracy of the 

forecast unreliably in high resolution models. 

2.4 Alternative Skill Score Methods  

The apparent lack of improvement shown by traditional methods for convection-resolving 

models is to do with the problem of using traditional skill score methods for measuring the skill of 

precipitation forecasts at grid scale. High resolution precipitation fields contain more noise and 

therefore are more prone to missing correctly positioning the precipitation even if they give realistic-

looking forecasts. The closeness and realism of forecasts is not rewarded and this has led to the 

development of new spatial and spatio-temporal methods. Gilleland et al (2009) grouped these into 

four categories for easy comparison (shown in Figure 6). The four categories are; feature-based, field 

deformation, neighbourhood and scale-separation. The first two categories both work by looking at 

the displacement of the forecast from the observations, but whilst field deformation looks at the 

entire field, features-based approaches look at specific features of interest such as storm cells, each 

analysed separately. Neighbourhood and scale separation are also similar in that they apply a spatial 

filter to a field to calculate verification statistics.  
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Figure 6: The four groups of skill score methods, Neighbourhood, scale-separation, feature-based and field deformation 
(Gilleland et al, 2009). 

 

Gilleland et al (2009) go on to discuss the situations these methods are used for and discuss the 

pros and cons of various methods within each group.  

 Some methods such as that used by Mittermaier (2014) use traditional methods such as the 

Brier score,  ranked probability or continuous ranked probability scores , applied at different scales 

to verify Near-Convection-Resolving model forecasts against observing sites. Casati et al (2004) use 

the Mean Square Error (MSE) for binary images on different spatial scales to verify QPFs. 

Weusthoff et al (2010) used a neighbourhood verification method to assess the skill of 

convection-permitting models by evaluating three different pairs of models. They concluded that  

“The differences between the models are significant and robust against small changes in the 

verification settings. An evaluation based on individual months shows that high-resolution models 

give better results, particularly with regard to convective, more localized precipitation events. 

2.5 Fractions Skill Score 

The Fractions Skill Score, or FSS (Roberts (2005), Roberts and Lean (2008)) is a method in the 

neighbourhood group and is the verification method used in this project. The method does not 

require the identification of features, as others do, so can run through data without human input. 

The method is designed to show how the skill varies with neighbourhood size, and determine the 

smallest scale at which the forecasts are deemed useful. The FSS is a variation of the Briar Skill Score 
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(Brier, 1950), but used to make a spatial comparison, rather than point comparisons between 

forecast and observation. 

The model and observational data, usually from radar, are projected onto an identical 

verification grid. These are compared against suitable thresholds to create binary fields such that: 

                                                  {
      
      

    ,      {
      
      

 

Where IO is the pixel value in the observations binary grid, IM is the pixel value in the forecast 

binary grid, Or is the pixel value in the observations grid, Mr is the pixel value in the forecast grid and 

q is the threshold value. 

Roberts and Lean (2008) go on to recommend that a percentile, rather than an accumulation 

threshold is used. A percentile threshold takes the top percentage of grid locations with the heaviest 

rainfall and compares these. A 90% threshold of a 100 cell grid for example, would take the highest 

10 rainfall rates over the whole grid. This allows for the effect of spatial scale to be observed by 

negating the effects of bias in the forecast (e.g. the model produces too much heavy rain). At larger 

scales, a biased forecast always gives lower FSS values and the same is usually true at smaller scales. 

However, it is possible at smaller scales for a higher score to be given by biased forecasts, in certain 

cases. This can be reduced by using a large sample of forecasts (Mittermaier and Roberts, 2010). 

From this a series of grids can be produced each showing the fraction of pixels around it that 

contain rain above the threshold (=1) on different scales, e.g.  1,3,5 grid cells.  This fraction is the 

percentage precipitation forecast that Theis et al (2005) proposed. This can be written in equation 

form as: 
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For each of these grids, a MSE error can be found using: 
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 and from this the FSS can be calculated using: 
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where: MSE(n) is the mean square error of the model to observations (Equation 3) and MSEref is 

defined as (Roberts and Lean, 2008): 

   ( )  
 

    
 ∑ ∑  ( )(   )

  ∑ ∑  ( )(   )
  

  

   
  
   

  

   
  
    (Eq. 5) 

An alternative view of this is: 

      
      

        
(Eq. 6) 

Where FBS is the Fractions Brier Score and FBSworst is the ‘”largest Fractions Brier Score (FBS) that 

could be obtained from the forecast and observed fractions when there is no collocation of non-zero 

fractions and therefore the worst possible FBS” (Roberts, 2008). 

The FSS can then be plotted against scale, resulting in a graph similar to the example in Figure 7. 

 

Figure 7: FSS against scale (Source: Roberts and Lean, 2008). 

2.6 Results from Regional Models 

Like the QPF method used by Theis et al (2005), in Section 2.1, the FSS can be used over both a 

spatial and spatio-temporal neighbourhood.  Mittermaier (2013) shows that “the ‘convection 

permitting’ (4km) Unified Model (MetUM) forecasts are better than the 12km MetUM , significant at 

the 5% level.” This is the result that was expected but not shown from the traditional skill score 

methods.  The method can also be used on QPF forecasts (Zacharov and Rezacova, 2009)  
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At local scale, the forecasts can be compared with an identical verification grid using radar data. 

The UK radar network covers most of the UK to a resolution of 5km, making it suitable for 

comparison. However, the use of radar data comes with its own problems, including beam blockage 

from obstacles, attenuation and brightband (Harrison et al (2000), Wang et al (2008), Met Office 

(2009)). 

2.7 Global model forecasts 

On the global scale, it has been shown that the global model forecast skill deteriorates with 

forecast lead time, but like regional and local models, this has improved in the last few decades 

(Figure 8). 

 

Figure 8: Improvement of forecasts of Sea Surface Pressure since 1967 (Source: Met Office, 2011). 

However, at the global scale there are difficulties in measuring the skill. The global observation 

network is patchy at best. Whilst some areas, mostly in developed western countries, observations 

are plentiful, over other areas, such as West Africa, observation stations are more spread out 

(ECMWF, 2011). Over the ocean, observations are reduced to those made by ships and planes. Main 

shipping or flying routes therefore may be well covered but other parts are not so well covered. 

Observation points fed into the WMO database can be seen in Figure 3, highlighting the lack of 

observations over the oceans. New initiatives such as floating buoys and Argo floats mean that more 

data is being provided (Roemmich et al, 2009). Data can also be received from satellites orbiting the 
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Earth, however complete global coverage at any one time is problematic. It is possible to verify the 

results of the global model over a regional area using observational data such as ARM data in the 

tropical Western Pacific (Culverwell, 2000). 

The skill of a global model can only be detected for smooth fields like the 500hPa geopotential 

height or surface pressure or for rainfall accumulations over 24 hours (that are very smoothed). 

Whilst this is useful to a certain extent, it does not tell us about the quality of the forecast for the 

middle of the next day, or the day after. It also can mean that, like at lower scales, the double 

penalty problem can imply that two forecasts are equally poor, when in reality one is much closer in 

position than the other.  

It should be noted that so far, no research has been published using the FSS, or any other spatial 

approach, on a global scale, that the author is aware of.  
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3. Methodology 

3.1 Data 

The data used in this project is from the Met Office Global Model, from 1st July 2013 to 31st May 

2014. It was extracted from the Met Office operational forecast archive. Unfortunately, within this 

period the forecast data for some days are missing, notably the 10th-12th December 2013. The field 

being examined is the precipitation rate at 12UTC. The precipitation rate includes rain and snow. 

Precipitation is either represented explicitly on the model grid or output from the convection 

parameterisation scheme. The data fits a grid of 769 by 1024 grid squares, which covers the whole 

globe. This is approximately 25km grid spacing at UK latitude, however the spherical shape of the 

earth means that the grid size varies with latitude, particularly at the poles. It was not possible to 

apply the FSS methodology to the whole global grid and therefore a sub-area of 128 by 150 grid 

squares has been used, covering Western Europe, as seen in Figure 9. This area is between 30 and 60 

degrees north and proceeds east from the Greenwich meridian line. For each day the precipitation 

rate from the forecast ‘analysis’, time t=0, 

is used as the observational dataset against 

which the forecast precipitation rates are 

compared. Because these analyses are 

constructed using a previous forecast 

combined with new observational data, 

through the process of data assimilation, 

they are considered more accurate over 

land areas where there are more 

observations comparatively than over the ocean. This was an important factor in the choice of the 

sub-domain, which is largely over land. Each forecast starting at 12UTC was run for 7 days, which 

meant that there were 7 forecast times (T+24, T+48, T+72, T+96, T+120, T+144 and T+168) Analysis 

of the data showed that these were stored in a non-sequential order within the file so care was 

taken to ensure that the forecast lead time was correctly assigned within the code and that the 

correct forecasts were compared. 

3.2 Precipitation Rates 

Previous verification methods tested precipitation accumulations against gauge accumulations 

measured at point locations. (Mittermaier, 2014) However, as the observational grid being used to 

calculate the FSS is the global model analysis, which is naturally smoothed to the model grid and also 

Figure 9: Sub-area over Western Europe.  
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because it is the spatial scale that is being observed, it is possible to verify precipitation rates at a 

snapshot in time, which is of interest. 

3.3 Calculating the Fractions Skill Score 

In order to calculate the FSS for large amounts of data, it was necessary to first create a series of 

Python programs, which were designed to loop through all the days of the year-long period and 

calculate FSS on all scales up to the maximum grid size, for the different forecast times. The method 

is in line with that used by Roberts and Lean (2005), discussed in Section 2.5. The procedure for 

doing this will now be described and the complete code can be found in Appendix A. 

3.3.1 Thresholding 

First, a threshold was applied to pick out the model grid squares that exceed a particular value (e.g. 

1 mm/hour) on both the forecast and analysis grid. A 99% (90%) threshold means that the top 1% 

(10%) of grid squares (sampled from the whole domain including zeroes) are deemed to have 

exceeded the threshold. All the grid squares that exceed the threshold are assigned a value of 1 and 

the others a value of 0.  

a) 
   

   

   

 

   

   

   

b) 
   

   

   

 

   

   

   

Figure 10: Actual vs percentage thresholds. The example on the left (a) shows the forecast (far left) and 
observations binary grid for a threshold of 2mm/hr On the right (b) are the binary grids produced taking the top 33% 
(highest 3 values). These show a much better match between forecast and observations. 

The percentile thresholds used are 99% and 90%, unless otherwise stated. By using percentage 

thresholds, the FSS must asymptote to a value of 1 at a neighbourhood of the whole grid. A benefit 

of using a percentile threshold is that any over- or under-prediction of the rain in the forecasts 

compared to the analyses is removed in the comparison so that the focus can be on the spatial 

distribution of the precipitation. Using a set value as a rainfall rate can be problematic if either most 

of the rainfall is above that threshold or most of it below. For example, in Figure 10a, the forecast 

grid shows 8 out of 9 grid squares to be over 2mm/hr whereas the observations show just 1 out of 9. 

This would result in a low FSS value. If the top 33% were to be taken in each grid (Figure 10b), the 

FSS value would be higher, as the shape of the rainfall is close although the forecast is biased to 

higher rainfall amounts, just exceeding the set threshold whilst the observations show just under the 

threshold. 

Once the model binary grid of 1s and 0s has been constructed, fractions can be computed. The 

first step in computing the fractions is to define a “neighbourhood” size. As an example, consider a 
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square neighbourhood size of 3x3 pixels. Then consider a single target pixel on the model grid. The 

fraction for that pixel of interest is the number of pixels exceeding the threshold in the 3x3 

neighbourhood centred at that pixel divided by the total number of pixels in the 3x3 neighbourhood. 

If the neighbourhood included pixels that were off the edge of the model grid then these pixels were 

assumed to be 0, an example is shown in Figure 11.  

0 1 0 1 0 
 

2/9 2/9 3/9 2/9 2/9 

1 0 0 1 0 3/9 3/9 3/9 2/9 2/9 

1 0 0 0 0 3/9 4/9 3/9 2/9 1/9 

0 1 1 0 0 2/9 3/9 2/9 2/9 1/9 

0 0 0 0 1 
 

1/9 2/9 2/9 2/9 1/9 

Figure 11: Fractions on a 5x5 grid for 3x3 neighbourhoods. The value of the shaded 
square is the fraction of the pixels in the neighbourhood shown on the right. 

 

However, when this process is scaled up to work for larger model grids and bigger 

neighbourhoods then it became highly inefficient to add up all the pixels in the neighbourhood s for 

each target pixel. A more efficient method, which is a common image-processing trick involving 

neighbourhoods and blurring was adapted to reduce the resources required (Russ, 2007). 

This method uses the binary model grid to create a corresponding summed grid where each 

pixel takes the value of the sum of all the pixels above and to the left of it (Figure 12). 

 

 

 

 

 

From this summed grid, the fraction for any target pixel for any neighbourhood size can be 

calculated using just four numbers. To calculate the sum of the pixels in the neighbourhood, shown 

in Figure 13 for a target pixel shaded red the sum would simply be 7-2-2+0=3. Looking at the binary 

0 1 0 1 0  0 1 1 2 2 

1 0 0 1 0 1 2 2 4 4 

1 0 0 0 0 2 3 3 5 5 

0 1 1 0 0 2 4 5 7 7 

0 0 0 0 1 2 4 5 7 8 

Figure 12: Summation of binary field. The value of each pixel is the sum of 
all the pixels above and to the left of the pixel. The original binary field is 
shown on the left and the summed field on the right. 
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grid on the left shows three pixels with the value 1 within the neighbourhood. The fraction is simply 

this number divided by the total number of pixels in the neighbourhood. 

 

 

 

 

 

 

This is can be expanded to look at any 

neighbourhood size on any model grid, as shown in 

Figure 14, where the sum of the values of the pixels 

within the 5x5 neighbourhood outlined in red can be 

calculated by A-B-D+C. The area shaded red shows the 

area included in the sum for pixel A. To discount the 

areas not included in the red lined neighbourhood, the 

green dashed area (B) and the purple dashed area (D) 

are removed. This means that the area dashed both 

green and purple (C) has been discounted twice so 

must be added on again. 

The same method can be followed to create a corresponding fractions grid from the 

observational dataset. From these fractions grids a single RMS value can be calculated by taking the 

squared difference between the model and observational fractions grids for each corresponding 

pixel and averaging these (Eq3, Section 2.5). The FSS can then be calculated by dividing this by the 

reference MSE calculated using Eq.5, and subtracting from 1 (Eq.4). 

This is completed for all neighbourhood sizes between 1 and the model grid size for each 

threshold analysed. 

0 1 0 1 0  0 1 1 2 2 

1 0 0 1 0 1 2 2 4 4 

1 0 0 0 0 2 3 3 5 5 

0 1 1 0 0 2 4 5 7 7 

0 0 0 0 1 2 4 5 7 8 

Figure 13: Summation of binary field. To calculate the sum of the 
neighbourhood for the target pixel (red) use: green pixel-blue pixels + 
orange pixel. 

          

          

          

          

    x      

          

      A    

          

          

          

Figure 14: Summing the values in a 
neighbourhood of a 5 by 5 grid. 

C D 

B 
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3.3.2 More about Neighbourhoods 

As previously discussed in section 2, neighbourhoods can be 

either spatial or spatio-temporal. In this project, only spatial 

neighbourhoods have been used, future work. The data used is for 

lead times of T+24, T+48 up to T+120 for 12UTC runs. By using this 

side by side with data from the 00UTC or the 18UTC runs, a spatio-

temporal neighbourhood could be conceived for future work. The 

neighbourhoods used increase in increments of 2 grid squares each 

time, from 1 to 3 to 5 to 7 and so on. This allows the grid to remain 

centred on the pixel in question by adding on one pixel on each side 

(Figure 15). 

3.3.3 Dealing with a regional grid 

Due to time constraints and the nature of the latitude-longitude grid it would be unfeasible to 

calculate the FSS for large areas of the globe because of the elongation of pixels at the pole 

compared to lower latitudes and the wrap around. 

Therefore a regional grid of 128 by 150 grid squares is used rather than the whole globe. This 

means that there are edges to deal with. For points close to the edge the neighbourhood will go 

outside of the area being examined. As the neighbourhoods get larger this problem will affect more 

pixels. This is called the ‘edge effect’. To deal with this, it was decided to treat pixels outside the 

edge of the regional verification area as if there was no rain there. When the neighbourhood goes 

off the edge of the grid, the missing pixels are counted as ‘0’ or below the threshold. This is a 

reasonable thing to do because both the analysis observational dataset and the forecast fields are 

treated the same way and so the fractions from the analyses and forecasts can be compared in the 

FSS calculation. It might unfortunately have some effect on the FSS particularly in situations where a 

large area of rain is seen near the edge of the grid in either the forecast or observations but is just 

off the grid in the other. However, it is unlikely to be a dramatic effect for a large sample as long as 

the spatial errors in the forecast are small compared to the size of the verification area. Another 

approach is to nest the FSS grid into a larger grid and include the data from these pixels (outside the 

verification region) in the neighbourhoods but not calculate the FSS for those points. However, this 

means that the percentage thresholds may be skewed so the FSS will not tend to 1. So far, little work 

has been published on this problem so the full impacts are yet to be discovered. Each method has its 

advantages and disadvantages as including the outside data can skew the thresholds. Not including 

     

     

  X   

     

     

Figure 15: Neighbourhoods for 
pixel X, 1 grid square is shown in 
blue, 3 grid squares in red and 5 
grid squares in green 
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the outside data can imply poor forecasts if precipitation consistently occurs just inside the grid in 

the model but is just outside in the observational dataset, or vice versa. 

3.4 The code 

The code uses the fractions grids at each neighbourhood size to calculate the FSS for each 

threshold (and forecast time) and returns these in the form of an array. By looping over multiple 

days and different forecast periods then a large number of arrays can be produced and further 

analysed. 

To allow the code to run smoothly with the large amounts of data, the data has been split into 

‘seasons’ of Summer (June, July, August), Autumn (September, October, November), Winter 

(December, January, February) and Spring (March, April,  May). Whilst reducing calculation time, this 

also allows an interesting comparison between the skill of forecasts in different seasons. However, 

this does mean that there are some gaps in the results were the code is unable to compare the 

forecast from a date at the very end of one season with the analysis charts from a day at the very 

beginning of the next season. 

3.4.1 Graphical Output 

There are 3 basic types of plots shown in Section 4. The first shows the change in FSS with scale. 

On these plots the line where FSS is equal to 0.5 is shown as a blue dotted line. This is of particular 

interest as at this skill level the forecasts are said to be ‘useful’. Below this then the forecast is of 

little use as the user will have more chance of being right by guessing either rain or no rain.  

The second type of plot shows the FSS or useful scale plotted for each season and threshold. This 

is to show the differences between the season and the thresholds. 

 The third type of plot is a bar plot showing the absolute values of the thresholds used. This gives 

an idea of the amount of rain falling and the intensity. For these plots the precipitation rates are 

shown in mm/hr, the most common unit (WMO, 2008). 

The rainfall plots are used throughout the project as a way to visually check the code output. By 

plotting the rainfall, binary and fractions grids the selected data that is being compared (e.g. pixels 

above the threshold from the binary grids) can be compared visually. Although we cannot say 

exactly how skilful the forecast is by sight, it can be seen whether the model is generally a ‘good’ fit 

or a ‘poor’ fit. If the final output suggests differently then this is a sign that something is wrong. 
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Likewise, if the plots show completely different scenarios, this can show that an error has been 

made in choosing the data files to compare. 

3.4.2 Useful Scale 

The code is designed to locate and store the useful scale for each day. The scale is saved by the 

date for which the forecast has been made, so a T+24 forecast from 1st March 2014 would be stored 

under 2nd March. This means that comparison can be made between different forecast ranges easily 

as all forecasts for a day are saved with that date. 

3.4.3 Tests 

To ensure the code was correct, each section was tested individually using synthetic fields. The 

code to calculate the FSS was tested; using a small grid showed the same result as the same grid 

when calculated by hand. 

The data sorting functions were tested using a 10 by 10 number grid. Using a list of 100 

numbers, these were turned into a 2 by 2 array and cut to size. As the numbers were in order, it was 

easy to check the numbers were in the correct position. 

Results were compared with results calculated by Roberts (2014) for different lead times over a 

period at the beginning of March 2014. As the results were very close, it is believed that the code 

was accurate and the small differences may be due to rounding errors. 

3.5 Constraints and Limitations 

As discussed previously, edge effects can cause problems in the verification, especially if large 

accumulations of rain occur just on/off the grid. This is particularly problematic if the useful scale is 

close to the maximum grid size. The model also assumes constant grid size. The area chosen was 

decided specifically to allow for this and means that 1 grid square is approximately 25km. However, 

this also means that the code can be used with different analysis data from a different model on a 

different grid size with relative ease as the code works in terms of grid squares and only converts 

this into km at the very end. This is helpful as the new model currently being put in place by the Met 

Office has a grid size of approximately 17km (Met Office, 2014). 
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3.6 Worked Examples 

Two examples of the fields and how the FSS was used to give a spatial comparison are shown 

below. One may be considered a ‘good’ forecast whilst the other is a ‘poor’ forecast. This is to help 

understanding of the process that has previously been described in this section. 

3.6.1 A ‘good’ forecast (Useful at grid scale, 25km) 

Taking a T+24 forecast from the 15th March 2014 for 12UTC 16th May. The rainfall rates of both 

the forecast and the ‘observational’ analysis  grid can be seen in  the thresholds have been 

converted to mm/hr Visual comparison of these plots shows clearly that the forecast looks very 

similar to the analysis. Therefore it would be expected for the skill as measured by the FSS to be 

high. As the first stage in computing the FSS was to convert the two fields to binary grids for the 

required threshold, Figure 17 shows the binary fields obtained for the 99th percentile (highest 1% of 

values). It is clear that the two binary images look very similar although the exact positioning of the 

shaded pixels is not identical, showing that the forecast has the heaviest rain in the correct area, but 

not exactly the right locations. The thresholds used are shown in Table 1. 

 

Figure 16: T+24 forecast and analysis of rainfall at 12UTC on 16th May 2014. Rainfall rate is in kg/m
2
/s 

The rainfall rate is in kg/m2/s, which is the standard unit used in the Met Office and the unit in 

which the data is provided. This is equivalent to mm/s and can be converted into mm/hr by 
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multiplying by 3600. To maintain consistency, the code keeps the data in the format it was originally 

in and therefore the range in the plots is in kg/m2/s. The conversion of these into mm/hr, a unit that 

is more commonly used in meteorology, is discussed later in the results section where the 

thresholds have been converted to mm/hr. Visual comparison of these plots shows clearly that the 

forecast looks very similar to the analysis. Therefore it would be expected for the skill as measured 

by the FSS to be high. As the first stage in computing the FSS was to convert the two fields to binary 

grids for the required threshold- Figure 17 shows the binary fields obtained for the 99th percentile 

(highest 1% of values). It is clear that the two binary images look very similar although the exact 

positioning of the shaded pixels is not identical, showing that the forecast has the heaviest rain in 

the correct area, but not exactly the right locations. The thresholds used are shown in Table 1. 

Table 1: Precipitation rate threshold values for 16th May 2014 

 Model Analysis 

Percentage threshold 99% 90% 99% 90% 

Actual threshold value (mm/hr) 2.17 0.22 2.62 0.25 

 

 

Figure 17: 99% threshold binary plots for 12UTC 16th May. The plot on the left shows the forecast from 24 hours 
previously whilst the right is the analysis chart for the date in question. Plotted on a standard square grid rather than by 
latitude/longitude. 
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Figure 18: Fractions grids at 3, 5 and 7 grid squares neighbourhoods for the T+24 forecast for 16th May 2014. 
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Table 2: FSS values at each scale for 99 and 90% thresholds for 16th May 

Scale 0.99 0.90 Scale 0.99 0.90 

1 0.219 0.643 77 0.965 0.997 

3 0.432 0.783 79 0.965 0.997 

5 0.565 0.843 81 0.966 0.997 

7 0.654 0.881 83 0.967 0.997 

9 0.723 0.907 85 0.968 0.998 

11 0.774 0.925 87 0.969 0.998 

13 0.809 0.938 89 0.969 0.998 

15 0.832 0.949 91 0.970 0.998 

17 0.848 0.957 93 0.971 0.998 

19 0.860 0.963 95 0.972 0.998 

21 0.869 0.968 97 0.973 0.998 

23 0.876 0.972 99 0.974 0.998 

25 0.883 0.976 101 0.975 0.998 

27 0.888 0.979 103 0.976 0.998 

29 0.893 0.981 105 0.977 0.999 

31 0.898 0.984 107 0.978 0.999 

33 0.903 0.986 109 0.979 0.999 

35 0.909 0.988 111 0.979 0.999 

37 0.914 0.989 113 0.980 0.999 

39 0.918 0.990 115 0.981 0.999 

41 0.923 0.991 117 0.981 0.999 

43 0.927 0.992 119 0.982 0.999 

45 0.932 0.993 121 0.982 0.999 

47 0.936 0.993 123 0.983 0.999 

49 0.940 0.994 125 0.984 0.999 

51 0.943 0.994 127 0.984 0.999 

53 0.946 0.995 129 0.985 0.999 

55 0.949 0.995 131 0.985 0.999 

57 0.951 0.995 133 0.986 0.999 

59 0.954 0.996 135 0.986 0.999 

61 0.956 0.996 137 0.987 0.999 

63 0.957 0.996 139 0.987 0.999 

65 0.959 0.996 141 0.988 0.999 

67 0.960 0.997 143 0.988 0.999 

69 0.961 0.997 145 0.989 0.999 

71 0.962 0.997 147 0.989 0.999 

73 0.963 0.997 149 0.990 0.999 

75 0.964 0.997 
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Once each pixel was assigned a fraction between 0 and 1 (Figure 18) these were used to 

calculate the FSS. The FSS for each scale and threshold is shown in Table 2. In this example, the 

forecast is useful at grid scale as the FSS at neighbourhood size 1 is greater than 0.5. 

3.6.2 A ‘poor’ forecast (Useful at 9 grid squares (225km)) 

The T+48 forecast for January 6th (runtime 4thJanuary 12UTC) is shown in Figure 19. Just by a 

simple visual comparison, it can be seen this forecast is not quite as good a fit as the May 16th 

forecast seen in Section 3.5.4.1. The forecast rain is patchier and in some places, none-existent when 

compared with the observational analysis chart. 

 

Figure 19: Model and Analytical rainfall rate plots for January 6th 2014 at 12UTC. Rainfall rate is in kg/m
2
/s. 

From this, the binary outputs for the 99% threshold would be expected to be slightly different, 

as can be seen in Figure 20 where the shapes are noticeably different. Therefore we would expect to 

reach a larger neighbourhood size before the forecast and analysis are close. 
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Figure 20:  Binary outputs for Model (left) and analytical (right) rainfall rates at 99% threshold. 

It is of interest to meteorologists to be able to say in advance the useful scale of forecasts. The 

surface pressure chart for January 6th, Figure 21, shows an area of low pressure sitting over Italy. This 

is during the period of intense storms that passed over Europe during the winter of 13/14. Also 

around this time period was an unusually intense snow storm in North America, well outside the 

area being studied.  

 

Figure 21: Surface pressure chart for January 6th at 00UTC for Europe. (Source: Wetterzentrale, 2014) 
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Figure 22: Fractions grids at neighbourhood sizes of 1, 3, and 5 grid squares for T+48 forecast for January 6th. 
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Table 3: FSS values by scale at different thresholds for January 6th 2014 

Scale 0.99 0.95 0.90 Scale 0.99 0.95 0.90 

1 0.099 0.190 0.310 77 0.822 0.809 0.918 

3 0.183 0.266 0.390 79 0.829 0.816 0.922 

5 0.231 0.310 0.444 81 0.835 0.822 0.926 

7 0.263 0.349 0.493 83 0.842 0.828 0.930 

9 0.291 0.387 0.540 85 0.848 0.835 0.934 

11 0.323 0.428 0.585 87 0.853 0.841 0.937 

13 0.360 0.469 0.626 89 0.858 0.847 0.941 

15 0.396 0.509 0.663 91 0.864 0.854 0.944 

17 0.429 0.543 0.695 93 0.868 0.860 0.947 

19 0.456 0.572 0.721 95 0.873 0.866 0.950 

21 0.479 0.595 0.743 97 0.878 0.872 0.952 

23 0.498 0.612 0.759 99 0.883 0.878 0.955 

25 0.515 0.625 0.772 101 0.888 0.884 0.958 

27 0.532 0.636 0.782 103 0.893 0.890 0.960 

29 0.550 0.645 0.790 105 0.899 0.896 0.963 

31 0.571 0.654 0.798 107 0.904 0.902 0.965 

33 0.593 0.663 0.805 109 0.910 0.907 0.967 

35 0.614 0.672 0.812 111 0.916 0.912 0.969 

37 0.635 0.681 0.818 113 0.921 0.917 0.971 

39 0.654 0.690 0.824 115 0.926 0.921 0.973 

41 0.671 0.698 0.830 117 0.931 0.925 0.974 

43 0.687 0.705 0.835 119 0.936 0.929 0.976 

45 0.701 0.712 0.840 121 0.940 0.932 0.977 

47 0.713 0.718 0.844 123 0.944 0.935 0.978 

49 0.724 0.723 0.849 125 0.947 0.939 0.980 

51 0.734 0.729 0.854 127 0.950 0.942 0.981 

53 0.743 0.735 0.859 129 0.953 0.944 0.982 

55 0.751 0.741 0.864 131 0.956 0.947 0.983 

57 0.759 0.747 0.869 133 0.959 0.950 0.984 

59 0.767 0.753 0.875 135 0.962 0.952 0.984 

61 0.774 0.759 0.880 137 0.964 0.955 0.985 

63 0.780 0.765 0.886 139 0.967 0.957 0.986 

65 0.786 0.772 0.891 141 0.970 0.959 0.987 

67 0.792 0.778 0.896 143 0.973 0.961 0.988 

69 0.798 0.784 0.901 145 0.976 0.963 0.988 

71 0.803 0.790 0.905 147 0.978 0.965 0.989 

73 0.809 0.797 0.910 149 0.980 0.967 0.990 

75 0.816 0.803 0.914 
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4. Results 

4.1 The year as a whole 

The FSS skill score can be plotted against scale, for each individual comparison made.  Figure 23 

shows this for the T+24 forecasts over the whole grid for a 90% threshold. The 90th percentile 

threshold means that it is the top 10% of rainfall rates taken from all pixels in the domain that are 

compared. This threshold will pick out both frontal precipitation and convective areas of 

precipitation, but may miss some of the lightest precipitation. Each red line represents a comparison 

between a T+24 forecast and the analysis chart for the next day. The black line shows the mean FSS 

for the whole period. The blue dashed line is the line where FSS=0.5. If the skill is above this then the 

forecast is considered useful, as defined in the previous section. Therefore the point at which a line 

crosses this threshold is important. This number will be discussed later in this section. All the red 

lines without exception curve up towards high values of FSS with increasing spatial scale showing 

that forecast skill improves with increasing spatial scale – i.e. being less stringent about where the 

rain is positioned increases the skill.  From this we can see that 92% are sufficiently skilful at grid 

scale for a 24 hour forecast. 

The scale is given in number of grid squares. In the domain used, each grid square is taken to be 

25km. Therefore a scale of 3 grid squares would be 75km. These results give the distinct impression 

that the T+24 global model forecasts for general areas of rain are very good. The precipitation is 

mostly in the correct place. It is helped by the fact that the analyses are not the actual noisy 

precipitation fields, but nevertheless it is showing that the 24-hour forecasts tend to put the 

precipitation very close to where the global model has it at the start of the forecasts (analyses) 

beginning 24-hours later.
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Figure 23: FSS against Scale (km) for entire data set with a threshold of 90% 

Because the percentile thresholds have been used, it can be seen that the FSS tends towards 1 

as the scale tends towards the size of the full grid. This is because, by definition, the same number of 

pixels are being compared and therefore there has to be perfect agreement over the whole domain. 

In the case seen in  Figure 23 all the forecasts tend towards FSS=1 at scales much shorter than the 

full grid size (150 pixels). Therefore, plotting only the values up to a shorter grid size, such as 20, 

seen in Figure 24, can provide more detail about the scales at which the forecasts become useful. At 

the T+24 forecast range, all the forecasts are useful (FSS>0.5) at either 1 or 3 grid squares, which 

means the forecasts are consistently useful at scales of between 0-75km. The mean scale at which 

the forecasts become useful is calculated by taking the scale at which the FSS is first greater than 0.5 

(starting at a scale of one grid square and increasing in size) for each comparison and then taking the 

mean of these values. It is not possible to tell at exactly what scale the FSS=0.5 between 

neighbourhood sizes without using a smaller grid size, the value used must be taken as the next 

neighbourhood size. Therefore, whilst the mean line indicates a mean FSS greater than 0.5 for a 

neighbourhood size of 1, the mean scale at which the forecast is considered useful is greater than 1. 

For the T+24 forecasts this value is 1.154 grid squares (28.25 km), suggesting that more forecasts are 

useful at grid scale than at a scale of 3 grid squares. This is discussed further later in this section. 
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Figure 24: FSS against scale as in Figure 1 but zoomed in to a smaller scale to show that all forecasts are considered 
useful by a scale of 3 grid squares. 

Figure 25 shows the T+48 forecasts for the same time period. It can be seen that there is a 

displacement to the right, showing a decrease in the skill at grid level. The mean line, again shown in 

black, shows that the FSS is much closer to 0.5 at grid scale, as can be seen more clearly in the 

zoomed in plot in Figure 26.  
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Figure 25: FSS against scale for T+48 forecasts for the year period. Red lines show individual forecasts. 

 

Figure 26: FSS against scale for T+48 forecasts for whole year. Red lines are individual forecasts and the black line 
shows the mean of all forecasts. 
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The same graphs for T+24 and T+48 can be plotted for the 99th percentile threshold. These can 

be seen below in Figure 27and Figure 28 respectively. Now only the heaviest 1% of rainfall is being 

compared, it is looking at more localised precipitation. This threshold would only pick out the 

heaviest parts of frontal bands or convective areas. For that reason it would be expected that the 

FSS would be slightly lower because the heavier more localised rain precipitation is expected to be 

more difficult to forecast. The graphs show that there is a much larger spread in the scale at which 

forecasts could be considered useful and lower skill overall than was the case for the 90th percentile. 

This suggests that whilst the global model is good at forecasting the location of the wider areas of 

precipitation, it has more difficulty accurately forecasting the position of the heaviest and more 

localised precipitation. The wide range of scales make it harder to say what scale the forecast is 

useful at on any given day, unlike at the 90% threshold. It appears that although most of the T+24 

and T+48 forecasts are still good for the heaviest precipitation there are occasions when the forecast 

can go badly wrong. 

 

Figure 27: T+24 forecast with a 99% threshold. Individual comparisons are shown in red with the mean in black. 
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Figure 28: FSS against scale for 99% threshold for T+24 (top) and T+48 (bottom) showing the wide range of scales at 
which the forecast would be considered useful. 

4.2 Seasonal Analysis 

In this section, the differences in the skill of forecasts for different seasons will be examined. 

Different weather conditions are experienced in different seasons, for example, during winter, the 

precipitation areas tend to be more frontal and move more quickly. There is little convection over 

land. During the summer, precipitation tends to come from convection, and is also usually more 

static. By looking at the seasons separately therefore, the effect of the different weather conditions 

on the skill can be seen. As discussed in Section 2, parameterised convective precipitation can be 

considered harder to forecast as there is less continuity. On the other hand, the faster moving 

systems in the winter may create problems as it is more difficult to forecast the position of the 

systems at a particular time. 

4.2.1 Summer 

The FSS against the scale for the 3 summer months, June, July, August, at a 90% threshold can be 

seen in Figure 29. The mean scale at which the forecasts become useful is 1.198 grid squares or 

~30km. This increases to 2.371 grid squares (~60km) for a T+48 forecast in the same season. 
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Logically, we would expect such an increase as increasing errors mean it is harder to forecast further 

in advance.  

4.2.2 Autumn 

The autumnal plots, Figure 30, covering September, October and November show a mean useful 

scale of 1.143 grid squares, slightly lower than the summer. The reasons for this and the differences 

between the other seasons will be discussed later in this section. For the T+48 forecasts, the mean 

useful scale is 1.976 grid squares. 

4.2.3 Winter 

For T+24, the mean useful scale is 1.022 grid squares and for T+48 1.841 grids squares 

(approximately, 26 and 40km respectively). These are the lowest from any season for both forecast 

lead times. The plots all show a sharp increase of skill with increasing scale at lower scales with the 

increase in skill reaching asymptotically to one as the scale approaches the full grid size, Figure 31. 

4.2.4 Spring 

For T+24, the mean useful scale is 1.253 grid squares and for T+48 2.256 grid squares. This is the 

largest scale for T+24 but by T+48, the summer months mean useful scale is larger. Figure 32 shows 

a larger spread in the FSS with scale but still increases more rapidly at lower scales and reaches 

asymptotically for one at the full grid scale. 
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Figure 29: FSS against scale for 90% thresholds during June, July, August for T+24 (top) and T+48(bottom) forecasts. 
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Figure 30: FSS against scale for 90% thresholds during September, October, November for T+24 (top) and 
T+48(bottom) forecasts. 
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Figure 31: FSS against scale for 90% thresholds during December, January, February for T+24 (top) and 
T+48(bottom) forecasts. 
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Figure 32: FSS against scale for 90% thresholds during March, April, May for T+24 (top) and T+48(bottom) forecasts. 
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4.2.5 Comparison 

The mean useful scale for each season is plotted in Figure 34 at the 90th percentile threshold for 

T+24 and T+48. This shows that during the spring and summer the useful scale is larger than during 

the autumn/ winter. This may be due to the smaller, more diurnally heated, spring ‘showers’ which 

are harder to predict than frontal or heavier convective storms that occur during the winter. The 

errors involved are more likely to grow quickly making forecasts worse at longer lead times. Winter 

is clearly the easiest season to forecast, despite being more mobile. This may be due to the bigger 

storms having larger precipitation structures that do not get displaced so quickly. Whilst there are no 

other studies to compare this against using the global model, Figure 33 shows the FSS against scale 

for selected case studies in May, July, August as calculated by Roberts and Lean (2008) for 4-hour 

accumulation periods on a 1km scale with a 6-hour forecast lead time. These graphs cannot be 

directly compared, but it can be seen that the plots show the same general trend, with FSS 

increasing as scale increases and tending towards one. The plot also shows variation in the useful 

scale during the spring/ summer. 

For the purpose of this analysis, all types of precipitation have been classed together.  Further 

work could be done to differentiate between different types of precipitation, either by looking at 

snow or rain or going further to look at the differences between convective (produced by the 

convection parameterisation scheme) and stratiform rain (represented on the grid). 

 

Figure 33: FSS against scale for 4-hour accumulations with a grid scale of 1 km and a forecast lead time of 6 hours. 
Individual comparison from case studies in May, July, August (Source: Roberts and Lean, 2008) 
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Figure 34: The mean scale at which forecasts become useful (measured in grid squares) for each season for T+24 
(blue) and T+48 (green) forecasts 

4.3 Long Range forecasts 

So far it has only been the 24 and 48-hour forecasts that have been examined.  How the useful 

scale varies over longer forecast ranges is also important as it gives an indication of in which 

situations the forecasts may be considered reliable and when useful scale becomes too large. The 

series of plots in Figure 35 to Figure 39 shows the FSS against scale for the 90% threshold in March 

2014 at T+24, T+48, T+72, T+96 and T+120. The mean scale at which the forecasts become useful are 

shown in Table 1 and plotted, along with the same results for the 99% threshold, in Figure 40. 
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Figure 35: FSS against scale for 90% thresholds during March for T+24 forecast. 

 

Figure 36: FSS against scale for 90% thresholds during March for T+48 forecast. 
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Figure 37: FSS against scale for 90% thresholds during March for T+72 forecast. 

 

Figure 38: FSS against scale for 90% thresholds during March for T+96 forecast. 
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Figure 39: FSS against scale for 90% thresholds during March for T+120 forecast. 

Table 4: Mean Useful Scales for different forecast lead times at the 90 and 99% thresholds 

Forecast Lead Time 

Mean Useful Scale 

90% threshold 99% threshold 

Grid Squares Km Grid Squares km 

T+24 1.266 31.65 6.4 160 

T+48 1.966 49.15 14.816 370.4 

T+72 5.429 135.73 21.786 544.65 

T+96 8.259 206.48 30.111 752.775 

T+120 13.154 328.85 37.231 930.775 
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Figure 40: Useful scale against forecast lead time for 99 and 90% thresholds for March 2014. Scale is shown in terms 
of grid squares (25km).  

From these plots, it is clear that the skill decreases with forecast lead time. It can also be seen 

that the spread in forecast error grows with forecast lead time. The 99th percentile is consistently 

more difficult to predict and the spatial error grows linearly, suggesting that the forecast error has 

not saturated (grown so poor it cannot get worse). The spatial error of the 90th percentile forecasts 

grows at a slower rate than for the 99th percentile forecasts and is not linear, with the increase being 

smaller at shorter lead times. 

As Figure 40 shows, the useful scale increases with forecast lead time. With shorter lead times 

the useful scale is close to grid scale but by the T+130 forecast, the useful scale is closer to 10 grid 

squares (250km), an area approximately equal to that of a small country, such as Latvia.  

For the forecast ranges shown, the curves show no sign of flattening, which would indicate 

saturation. It is expected that if further forecast ranges looking further ahead were to be examined, 

at some point the forecasts would all become equally poor and the increase in error would stop 

growing. However, for the forecast ranges shown (even out to T+120) the model can be considered 

sufficiently good at predicting the general areas of precipitation in the correct place and therefore it 
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is locating frontal bands relatively close to where the model analysis locates them. In principle, this 

means that it should be reasonable to embed a regional or local convection-permitting model within 

the global model. This is because the convection-permitting model can more effectively represent 

convection cells provided that the global model places them close to the observed location. 

However, this would still need to be interpreted probabilistically as the showers may not be 

correctly located exactly by the model. 

However, the drop in skill for the 99th percentile suggests that the use of the global model to 

predict the location of extremes would only be possible if a large margin of spatial error is given. If 

the model gives a precipitation amount that is much higher than its own climatology, meteorologists 

interpret this to mean that there is a chance of flood-producing rain, which may not be very effective 

if there is a large spatial displacement. Nevertheless, the output is still useful as it can be taken as an 

indication that precipitation is expected in the wider area and can be used in combination with 

output from regional and local models. It may be that looking at accumulations for the 99th 

percentile gives a different picture. Further research into this is required. 

The flatness of the 90th percentile curves between T+24 and T+48 compared to later times could 

be because errors are slower to grow early on for the more widespread rain. However, it could also 

just be due to the sample size being too small as the plots show only one month.  

The faster growth in the errors for the 99th percentile suggests faster error growth for the more 

localised precipitation. It may be that, if longer range forecasts were to be included, this curve would 

eventually flatten out whilst the 90th percentile curve increases to show similar forecast errors. 

4.4 Predictability periods 

As discussed above, the scale at which a forecast becomes useful varies from one day to the next 

and between different meteorological conditions. The scale at which the forecast becomes useful 

can be plotted against day of the year to show periods where the forecasts are better/worse. Figure 

41 shows such a graph for the T+24 forecasts with a 90% threshold. From this it can be seen that, at 

this forecast range most forecasts are useful at the grid scale. It should be noted that, due to the 

method used, the scale at which the forecast becomes useful is measured in units of grid squares 

and that increase in increments of 2. Therefore the useful scale, in km, will be 25, 75, 125, 175… km. 

In some instances there is a period of a few days where the useful scale increases, in other instances 

it is only one day where the useful scale increases. When it increases for longer than one day it 

suggests a period of lower predictability. 
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The gaps in the data are where either data was missing from the Met Office Archive or a 

comparison was not made either due to there not being enough grid cells containing precipitation 

for the 90th percentile to be taken, or due to problems with overlapping the start and end of the 

seasons. 

 

Figure 41: Scale at which the forecast becomes useful against day of year for T+24 forecasts. 
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Figure 42: Scale at which the forecast becomes useful against day of year for T+48 forecasts. 

Earlier it was seen that the forecasts for T+24 are all considered useful at either 1 or 3 grid 

squares. It can be seen from Figure 41 that most of the forecast are useful at grid scale. The mean 

useful scale is 28.25 km, just above grid scale. The mean has been used in this case, to take into 

account all the useful scales for all the forecasts however it is worth considering that the median and 

mode are both 25km (1 grid square). These techniques also give a middle value that gives a better 

representation of the scale on which we can calculate. The mean suggests that it is possible to 

interpolate between neighbourhood sizes and assumes a linear trend which is unknown. 

At T+48 forecast range, there is more variability in the useful scale. More forecasts (93%) are 

useful at 3 grid squares with another 6% reaching 5 grid squares, 1% reaching 7 and <1% reaching 9 

grid squares before being considered useful. This is important because it makes it more difficult for 

forecasters to say at what scale the forecast is useful.  
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Figure 43: Scale at which the forecast becomes useful against day of year for T+24 (red) and T+48 (blue) forecasts to 
allow for comparison 

It would be useful for meteorologists to be able to know, when a forecast is produced, what 

scale they expect it to be useful on.  The useful scale on each day for the T+24 and T+48 forecasts 

has been plotted on the same Figure, 
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Figure 43, to allow a comparison to be made. It can be seen that, if the useful scale at T+24 is 3 grid 

squares, then the T+48 forecast is also not accurate at grid level. However there are times, such as 

early January when the T+48 is useful at the largest scale, the T+24 forecast is useful at grid scale. 

The largest values are one off occurrences and do not repeat regularly, but do tend to occur during 

periods when the forecast is not useful at grid scale. Further research is required to be able to say if 

these periods of less predictability are connected to certain weather events or precipitation. To be 

able to pinpoint the cause of this loss of predictability from grid scale would allow meteorologists 

using the global model data to predict the scale at which a new forecast would be useful as it is 

produced, meaning that probabilistic forecasts can be altered accordingly and that the positioning of 

fronts and bands of rain in nested regional and local models stepped down from the global model 

can be taken into account.  

By separating the seasons, it can be seen more clearly how predictable each season is. Table 5 

shows the number of days on which a forecast becomes useful at the given scale for the year 

combined as well as for each season individually for the T+24 forecasts. Whilst 92% of the forecasts 

are useful at grid scale over the whole year, remarkably, 99% of forecasts were useful at grid scale 

during the winter season. On the other end of the scale, during spring, 87% of forecasts were useful 

at grid scale. 



50 
 

Table 5: Number of Forecasts becoming useful at each scale for whole year and by season for T+24 forecasts. 

Scale Year Summer Autumn Winter Spring 

1 (25km) 317 82 78 88 69 

3 (75km) 26 9 6 1 10 

Total 343 91 84 89 79 

 

Table 6: Number of forecasts becoming useful at each scale for whole year and by season for T+48 forecasts. 

Scale Year Summer Autumn Winter Spring 

1 (25km) 177 34 50 56 37 

3 (75km) 137 50 24 29 34 

5 (125km) 20 4 8 2 6 

7 (175km) 2 1 0 0 1 

9 (225km) 1 0 0 1 0 

Total 337 89 82 88 78 

 

Table 6 shows the same figures for the T+48 forecast. Over the year only 53% of forecasts can be 

considered useful at grid scale. However this varies from 38% in the summer to 64% in winter. It 

should be noted that, whilst the winter has more days useful at grid scale, it also has the largest 

useful scale over the whole year. This occurred on 6th January 2014 where the useful scale is 9 grid 

squares or 225 km. The conditions on this day are discussed in Section 3.5.2. 

4.5 Thresholds 

Throughout the project, threshold precipitation rates have been used to allow only the spatial 

variation in forecasts examined and not precipitation-bias. The range of values, in mm/hr for the 

90% threshold, as calculated and used in the code can be seen in Figure 44 showing a separate plot 

for each season. The distribution roughly follows a normal distribution, with values ranging between 

just above 0 to 0.6mm/hr. The spread is lowest in the winter and the largest in the summer. The 

combined result can be seen in Figure 45. The most common threshold is between 0.2 and 

0.25mm/hr.  

The different plots for the 99% thresholds are shown in Figure 46. There is a larger spread in 

thresholds with values up to 3 or 4 mm/hr. The distribution is similar to the 90% thresholds. These 

values are generally larger than the 90% thresholds. 
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Figure 44: 90% threshold rainfall rates in mm/hr. Clockwise from top left: JJA, SON, DJF MAM. 

 

 
Figure 45: 90% thresholds used combined for year. Values in mm/hr. 
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Figure 46: 99% threshold rainfall rates in mm/hr. Clockwise from top left: JJA, SON, DJF MAM 
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5. Conclusion 

The aim of the project was to use the Fractions Skill Score (FSS) to examine the spatial scales 

over which forecasts from the Met Office global model can be regarded as having useful skill at 

different forecast lead times (forecast lengths). In this section, the method and the key results are 

summarised along with assumptions or problems encountered and ideas for future investigations. 

5.1 The Method 

The FSS was used to examine the spatial skill of a years’ worth of global model precipitation 

forecasts (2013-2014). This method has not been used for a global model before because the 

technique was originally intended for fine-scale regional model comparison with radar and as such 

some problems were encountered and had to be resolved satisfactorily. A summary is given below. 

5.1.1 Observational Data 

In previous studies, focussed regional models, radar data has been used as the observational 

dataset against which comparisons are made.  However, there is currently no global radar coverage 

so it would be impossible to satisfactorily verify a global model in this way. It may be possible, in a 

future study, to use a sub-section that is in an area where radar data gives complete coverage but 

this would be difficult to obtain and, as the resolution would be different, could be problematic. 

Added to that, the global observation network, as seen in Section 1, does not provide sufficient 

observations for the whole globe and the observations are not representative of the precipitation 

produced by a global model grid square (~25x25km over UK). Observations are scarce over the 

ocean and in more remote areas such as the Sahara desert.  

Therefore, it was decided that the best estimate of the observational state would be the model 

analyses produced at the start of each forecast run. The disadvantage of this approach is that the 

observational dataset is a combination of observations and model fields and is therefore not a true 

observed precipitation field. The benefit is that there is full spatial coverage and because the 

observed and forecast precipitation is on the same grid there are no problems with trying to verify 

precipitation over a model grid square against point observations. On balance, the benefits outweigh 

the disadvantage because the purpose is to examine the spatial accuracy of the forecasts and for this 

purpose a forecast that is very similar to the analysis can be deemed to be a very good forecast.  For 

this project the T+0 charts from the 12UTC model run have been used for comparison. However, a 

further study might also look into the use of the T+6 forecasts from the 06UTC run as it is recognized 
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that the analysis charts at T+0 may be biased in precipitation extent or amount compared to the 

forecasts because of the data assimilation process. 

5.1.2 The grid size 

As the Earth is a sphere, when a grid is projected onto it the grid squares vary in size and shape, 

with the grid at the poles being almost triangular. As the FSS assumes constant grid size, this means 

that a sub-section of the grid must be used instead. By careful selection, a sub-section can be chosen 

in which the grid squares are consistent enough that a standard grid size can be assumed. It is 

recommended that future work is conducted into potential methods to account for changing grid 

size as this would allow comparisons to be made on a larger scale and also at locations closer to the 

poles. 

5.1.3 The Sub-section 

It is not easy to apply the FSS to the full global model domain because the global model uses a 

latitude-longitude grid, which means that the distance between longitude points varies considerably 

between the equator and the poles, so there would have to be an additional latitude-dependent 

factor included when interpreting spatial distances. In addition, it is not straightforward to calculate 

the FSS when the grid wraps around (no edges). For those reasons, for this project, it was more 

sensible to extract a sub-domain covering most of Europe over which the assumption can be made 

that each model grid square is ~25km, and because the domain chosen is largely over land the 

analyses can be trusted more because there are more observations included in the data assimilation. 

5.2 Annual Data 

The data used has been from July 1st 2013-May 31st 2014. This should be a sufficiently large 

sample to draw some general conclusions but further work may take data from other years in 

comparison with this to see if the conclusions formed here are consistent for all years or if this year 

is unusual. There are a few days of missing data and some data at the start of a season may be 

missing if the data from the longer range forecasts at the end of the previous season are missing. 

This could be avoided by using the data set as a whole rather than each season individually and 

combining the results. However this involves large volumes of data that were unmanageable for this 

scale of project. The number of days missing is so small it is not expected to make a big difference. 

It has been shown that forecast skill improves with spatial scale - it is easier to forecast rain 

somewhere within a 75km square than a 25km square. Although this result was expected, it is 

important to show. Forecast skill has been shown to drop off with forecast length and the spread of 
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forecast skill increases with forecast length as poor forecasts occur more frequently. This was 

expected, but is important because it gives confidence in the more quantitative conclusions that 

follow.  We also see that the more widespread precipitation (90th percentile threshold) is easier to 

forecast than the more localised precipitation (99th percentile). 

5.2.1 T+24 

On average over the whole year, the T+24 forecasts are useful at grid scale over 90% of the time 

for a 90% threshold. For the rest of the time they are useful at 3 grid squares or 75km. The mean 

useful scale is 29km. This indicates that 24-hour forecasts are usually very good at putting the 

precipitation into the correct areas. 

5.2.2 T+48 

At T+48, the scale at which the forecast become useful varies more. Only 50% of the forecasts 

are useful at grid scale.  The largest scale that the forecasts are considered useful is 9 grid squares 

(225km) which occurs only once in the 337 days the forecasts have been compared. Further analysis 

of data from different years is required to be able to show if this is exceptional or not. The mean 

useful scale is 53km.  This indicates that even 48-hour forecasts of precipitation areas have not 

degenerated much spatially, although an uncertainty of around 50 km should be considered when 

using these forecasts. 

5.3 Seasonal differences 

The spatial skill of the forecasts varies with season. The mean scale at which useful skill is 

achieved is lower in the winter and autumn than in spring and summer. For a T+24 forecast, the 

mean useful scale is largest in the spring but for a T+48 forecast it is largest in the summer. It is true 

to for both 90% and 99% thresholds. This difference between seasons may be to do with the 

different nature of the precipitation in the different seasons. In spring and summer, more of the 

precipitation over land comes from convection which can tend to be more spatially localised and less 

temporally coherent than the frontal precipitation bands more evident in the winter and autumn.  

5.4 Longer Range Forecasts 

The month of March has been analysed for forecasts up to 5 days ahead. The analysis for March can 

be taken as a reasonable guide for the other months, expecting the autumn and winter months to 

fare slightly better. However, this has yet to be tested and is an avenue for further work. Forecast 

spatial skill continues to decline out to 5 days. The spatial skill for the more localised precipitation 

drops more rapidly than for the more widespread precipitation and shows a linear decline in the 
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scale at which useful skill is achieved. For a T+120(5 day), 90th percentile forecast then the mean 

useful scale is 13 grid squares or 325km. This means that for those forecast lengths the forecasts can 

be used to forecast the occurrence of precipitation somewhere within larger areas such as larger 

countries or parts of continents rather than smaller countries or regions. The hope is that 

improvements in NWP models in coming years will reduce the size of this spatial error at all lead 

times. The use of this spatial approach is a good way of measuring the performance of global model 

precipitation forecasts and providing a way of detecting future improvements. Other traditional 

metrics, such as RMSE of surface pressure, are starting to become less useful because it is less 

relevant to the weather that people actually experience.  

5.5 Thresholds 

Using the percentage thresholds works well for analysis of the spatial variation. Future studies 

could look at using set absolute thresholds to look at forecast bias. This would show any consistent 

over- or under-estimation of the rain rate. The thresholds used equate to around 0.1-0.5 mm/hr. 

5.6 Further Work 

This project has completed a basic analysis of how the skill of precipitation forecasts depends on 

spatial scale, forecast length and season. There are many areas into which further work could 

expand. The suggestions below are based on the results of this project and comparison with current 

literature investigating different scales. 

Throughout the project, the data has been split into four ‘seasons’ in order to compare between 

them. This showed that forecasts are easier to predict in the winter and hardest in the spring, at 

T+24 range and summer at T+48 forecast range. Further study may show whether variation between 

shorter periods such as months are in fact greater and are cancelled out by calculating over the 

season. Conversely, whilst the data set was too large to allow manipulation of the data set as a 

whole for the year, the results of a study into this may show whether certain periods (either in 

months or seasons) may be taken as a representation of the skill of the forecasts over the period of a 

whole year. 

The area, over which the analysis takes place is mainly Eastern Europe. Whilst analysis charts are 

likely to be less accurate over the ocean, due to the lack of observations, the author would be 

interested to see whether the surface type affects the spatial scale at which the model becomes 

useful.  By adapting the code to allow for the change in grid size due to the curvature of the earth, 

this could be developed further to include various surface types including desert, mountains, ocean 
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and snow. However, this would also require research into the skill at different latitudes which may 

or may not be linked to the surface type. So far, only one sub-area (and therefore only one latitude) 

has been analysed and this may or may not represent the whole. 

Throughout this project, all types of precipitation have been classed together.  Further work 

could be done to differentiate between different types of precipitation, either by looking at snow or 

rain or going further to look at the differences between convective (produced by the convection 

parameterization scheme) and stratiform rain (represented on the grid). 

The data from the model runs out to T+168 forecast. Analysis on these time scales has only been 

completed out to the time period T+120 and full analysis only for T+24 and T+48 forecasts. Further 

work must be done in the other seasons. Another option is to look at the skill of persistence 

forecasts by comparing the analysis data with the analysis data from the day before. ‘Persistence’ is 

often a measure against which models are compared to show the value they add so knowing the skill 

of persistence at different scales would be useful for verification scientists. 

By using absolute value thresholds and plotting the FSS against scale, any bias in the model 

forecast would be seen as the FSS would not tend towards one. Further research into this is also 

required. 

The analysis only looks at one domain size. Further research could look at the same area but 

with different domain sizes. Using a bigger or smaller grid may mean that more or less precipitation 

is included and may affect the skill score. Likewise, by using alternative methods for dealing with the 

domain edge, for example, including the precipitation in grid squares within the global model but 

just outside the sub-area in fractions calculations. 

Analysis has been completed on the changing scale for FSS=0.5. Further analysis may look at 

how the FSS varies with forecast range at grid scale and other scales. This would be expected to 

show a decrease in skill with time. 
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Appendix A- Python Code 
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Code 1- input 

“””Input.py 
@Author: Bethan Jones 
“”” 
import numpy as np 
import fsstools 
import random 
import matplotlib.pyplot as plt 
import time 
from datetime import date, timedelta 
import plotting2 as plotting 
import sorting 
import matplotlib.mlab as mlab 
import os 
import glob 
 
#set lat/lon grid 
lat0=90.2340702210663199 
lon0=-0.3515625 
lat=np.zeros(770) 
lon=np.zeros(1025) 
for i in range(0,770): 
    lat[i]= lat0+((i)*-0.2340702210663199) 
for j in range (0,1025): 
    lon[j]=lon0+((j)*0.3515625) 
 
#reduce lat/lons to sub-area 
cutLat=lat[range(128,256)] 
cutLon=lon[range(1,150)] 
points=129*1025 
newfilepath='/home/cg009107/Dissertation/Data/Year/EndOf/DJF.txt' #saves output here 
f1=open(newfilepath, 'a+') 
f1.write(u'\uFEFF'.encode('UTF-8')) 
path='/home/cg009107/Dissertation/Data/Year/DJFdat/'  #imports from here 
listing=os.listdir(path) 
list=[]  #creates empty list 
steps=8  #number of forecasts produced each day 
percentage=0 
arr=np.zeros([steps*len(listing),(129)*(151)+4]) 
b=0 
for infile in listing:  #for each file in the folder 
    string=path+infile 
    print string, percentage 
    t=time.strptime(infile[:8],'%Y%m%d') 
    yr=t.tm_year 
    mon=t.tm_mon 
    day=t.tm_mday 
    percentage +=1 
    for i in range(0,steps): 
        try: 
            dat, forecast=sorting.ImportDatFile(string,i,lat, lon) 
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            mod=sorting.cutToSize(dat) 
            xlen=len(mod[:,0]) 
            ylen=len(mod[0,:]) 
            print 'forecast time', forecast 
            m=0 
            oneD=np.zeros((xlen+1)*(ylen+1)+5) 
            infile=infile.replace('.dat','') 
         
            #plotting.plotGrids(mod, mod, cutLat, cutLon)  #plots the model grid so can check 

inputted correctly 
            arr[b,0]=yr 
            arr[b,1]=mon 
            arr[b,2]=day 
            arr[b,3]=forecast  #checks the date and lead time of forecast 
            count=4 
        for j in range(0,xlen): 
                for k in range(0,ylen):  #puts data into array 
                    x=mod[j,k] 
                    arr[b,count]=x 
                    m=m+1 
                    count +=1 
                    
            b=b+1 
        except IndexError:  #if problems then pass over 
            pass 
    print arr 
        #plotting.plotGrids(mod, check, cutLat, cutLon) 
np.savez(newfilepath, arr)  #saves data in arrays 
   
f1.close() 
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Code 2- multi 

""" 
Created on Wed Jul 02 12:01:48 2014 
@author: Bethan Jones 
""" 
 
import numpy as np 
import fsstools 
import random 
import matplotlib.pyplot as plt 
import plotting2 as plotting 
import sorting 
import matplotlib.mlab as mlab 
import play 
import time 
import datetime 
import utils 
 
xmod=128 
ymod=150 
 
fssarray=[] 
#---------------------------------------------------------------------- 
#Define latitude and longitude 
lat0=90.2340702210663199 
lon0=-0.3515625 
lat=np.zeros(770) 
lon=np.zeros(1025) 
for i in range(0,770): 
    lat[i]= lat0+((i)*-0.2340702210663199) 
for j in range (0,1025): 
    lon[j]=lon0+((j)*0.3515625) 
 
GLat=lat[range(128,256)] 
GLon=lon[range(0,150)] 
 
#---------------------------------------------------------------------- 
#Import Data 
npzfile=np.load('/home/cg009107/Dissertation/Data/Year/EndOf/SON.txt.npz') 
npzfile.files 
array=npzfile['arr_0'] 
days=len(array) 
dateArr=np.zeros([days,19484]) 
dateArr[:,1:]=array 
 
#Create new column with date string for future lookup 
for i in range (days): 
    year=str(int(array[i,0])) 
    if array[i,1]<10: 
        month='0'+str(int(array[i,1])) 
    else: 
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        month=str(int(array[i,1])) 
    if array[i,2]<10: 
        day='0'+str(int(array[i,2])) 
    else: 
        day=str((int(array[i,2]))) 
    #print year, month, day 
    dateArr[i,0]=time.strftime(year+month+day) 
    #print dateArr[i,0] 
norain=[] 
 
zero=[row for row in dateArr if row[4]==0]    #creates array of observational data 
one=[row for row in dateArr if row[4]==24]    #creates array of +24h forecasts 
two=[row for row in dateArr if row[4]==48] 
three=[row for row in dateArr if row[4]==72] 
four=[row for row in dateArr if row[4]==96] 
five=[row for row in dateArr if row[4]==120] 
six=[row for row in dateArr if row[4]==144] 
seven=[row for row in dateArr if row[4]==168] 
 
a=int(len(zero)) 
thresholds=np.zeros([len(zero),8]) 
threshcount=0 
#------------------------------------------------------------------------------------------------------------------------------ 
timesteps=[zero, one, two, three, four, five, six, seven] 
k=0 
for cloud in range(1,2):  #loops once, could increase to look at more than one timestep at once 
    for q in range(0, a):   #0 to ‘a’ for full range of days 
        step=2 
        row=zero[q] 
        today=row[0] 
        theDate=datetime.date(int(row[1]),int(row[2]),int(row[3])) 
        obsv=row[range(5,19484)] 
        modDate=theDate-datetime.timedelta(days=step) 
        print theDate , modDate, 'the date, mod date' 
        yr=str(modDate.year) 
        mon=(modDate.month) 
        day=(modDate.day) 
        print obsv 
        if mon<10: 
            month='0'+str(mon) 
        else: 
            month=str(mon) 
        if day<10: 
            day='0'+str(day) 
        else: 
            day=str(day) 
        strModDate=yr+month+day   #sets date of forecast 
        modRow=0 
        for k in range(0,len(timesteps[step])):  #searches for forecast day 
            kyear=str(int(timesteps[step][k][1])) 
            kmon=timesteps[step][k][2] 
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            kday=timesteps[step][k][3] 
            if (kyear==yr):   #is year the same? 
                print 'year good' 
                #print kmon, mon 
                if int(kmon)==mon:    # is month the same? 
                    print 'mon good' 
                    if int(kday)==int(day): #is it the right day? 
                        modRow=k    #sets the index number to find that row 
                        print 'modrow set at k=', k 
                        break 
                    else: 
                        print 'not day', kday, 'need day', day 
                     
        model=timesteps[step][modRow][range(5,19484)]  #locates data in array 
        print 'model +', timesteps[step][modRow][4], 'obs time', row[4]  
        print strModDate, timesteps[step][modRow][0], today, row[0] 
        if strModDate != str(int(timesteps[step][modRow][0])):  #checks dates compatible 
            print 'dates not compatible' 
            pass 
        else: 
             
            mod=sorting.dataIntoGrid(model, GLat, GLon)  #puts data into grid 
            obs=sorting.dataIntoGrid(obsv, GLat, GLon) 
            #plotting.plotGrids(mod, obs, GLat, GLon)  #plot data 
            countM, countO= play.countRainyDays(mod,obs)   #check there is enough precip. 
            threshMod, threshObs,thresholds, percent, threshcount, norain=play.setThresholds(mod, 

obs, xmod, ymod, thresholds, threshcount, today, norain) 
             
            print threshMod, threshObs 
            FSS=play.compFSS(mod , obs, countM, countO, threshMod, threshObs, percent, today) 
        #print FSS 
            k+=1   
            fssarray.append(FSS) 
print thresholds 
 
#save FSS arrays                    
np.savez('/home/cg009107/Dissertation/Data/Year/EndOf/SON48thresholds',thresholds) 
np.savez('/home/cg009107/Dissertation/Data/Year/EndOf/SON48FSS',fssarray) 
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Code 3- play 

""" 
Created on Mon May 12 12:16:39 2014 
@author: Bethan Jones 
""" 
 
import numpy as np 
import fsstools 
import random 
import matplotlib.pyplot as plt 
import plotting2 as plotting 
import sorting 
import matplotlib.mlab as mlab 
 
 
plt.close('all')   #close all open figures 
#------------------------------------------------------------------------------ 
#create lat lon grid 
lat0=90.2340702210663199 
lon0=-0.3515625 
lat=np.zeros(770) 
lon=np.zeros(1025) 
for i in range(0,770): 
    lat[i]= lat0+((i)*-0.2340702210663199) 
for j in range (0,1025): 
    lon[j]=lon0+((j)*0.3515625) 
 
GLat=lat[range(128,256)] 
GLon=lon[range(0,150)] 

 
#----------------------------------------------------------------------------- 
xlen=128 
ylen=150 
#-------------------------------------------------------------------------------        
#Set values  

 
def countRainyDays(mod, obs): 
    """Counts how many pixels in grid show rain.""" 
    xmod=len(mod[:,0])    #grid size 
    ymod=len(mod[0,:]) 
    countM=0 
    countO=0 
    for a in range(0,xmod): 
        for b in range(0,ymod):  #loops over whole grid 
            if mod[a,b]>=0.00000000001: 
                countM=countM+1 
            if obs[a,b]>=0.00000000001: 
                countO=countO+1 
    print countM, 'rainy points in Model' 
    print countO, 'rainy points in Obs' 
    return countM, countO 
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#-------------------------------------------------------------------------------- 
#Set thresholds to check data against 
 
def setThresholds(mod,obs, xmod, ymod, thresholds, threshcount, date, norain): 
    """docstring""" 
    maxi=obs.max()  #finds maximum value 
    percent=[0.99, 0.95, 0.90]   #set percentages as thresholds 
    threshObs=np.zeros(len(percent))   #create empty arrays to enter thresholds in. 
    threshMod=np.zeros(len(percent)) 
#finds thresholds as percentages of grid 
    for t in range(0,len(percent)): 
        threshMod[t]= np.sort(np.ravel(mod))[xmod*ymod*percent[t]]  #sorts min to max and finds 

threshold percentile 
        threshObs[t]= np.sort(np.ravel(obs))[xmod*ymod*percent[t]] 
        thresholds[threshcount,2+t]=np.sort(np.ravel(mod))[xmod*ymod*percent[t]] 
        thresholds[threshcount,5+t]=np.sort(np.ravel(obs))[xmod*ymod*percent[t]] 
        thresholds[threshcount,1]=percent[t] 
        thresholds[threshcount,0]=date 
        if threshMod[t]==0 or threshObs[t]==0: 
             norain.append(date) 
    print threshMod, threshObs 
    threshcount +=1  
    return threshMod, threshObs, thresholds, percent, threshcount, norain 
     
#------------------------------------------------------------------------------- 
#calculate FSS using grid at step size below. 
#Step should be multiple of 2 
 
def compFSS(mod, obs, countM, countO, threshMod, threshObs, percent, today): 
    """ calculates FSS of two grids for thresholds provided""" 
    step1=2 
    rows=int(150/step1) #+ int(50/step2) + int(100/step3)-6 # + (int(xmod-200)/step4)-2 
     
    FSS2=np.zeros([rows+1,len(percent)+1]) 
    FSS2[0,0]=today 
    for i in range(len(percent)):    #sets header row with percentages 
        FSS2[0,i+1]=percent[i] 
    i=1 
    print threshMod, threshObs 
    for val in range(0,len(percent)):    #for all thresholds 
        if (float(countM)/(len(GLat)*len(GLon)))>=(percent[val]):  #if no precip do nothing 
            print ('Not enough rainy points for', percent[val], 'percent threshold in Model data on', 

today) 
            print percent[val] 
              
        elif float(countO)/(len(GLat)*len(GLon))>=(percent[val]): 
            print ('Not enough rainy points for', percent[val], 'percent threshold in Observational data 

on', today ) 
                          
        else: #if there is enough precip then 



70 
 

            #create binary grids 
            Bo, Bm= fsstools.convertToBinary(mod,obs,threshMod[val], threshObs[val])   
            #plotting.plotGrids(Bm,Bo, GLat,Glon)  #plot binary grids 
            SummedO, SummedM=fsstools.sumBinary(Bo,Bm) #create summed grids 
            #plotting.plotGrids(SummedM, SummedO, GLat, GLon) 
            FSS2[1,0]=1 
            i=len(Bo[:,0])   #number of rows 
            j=len(Bo[0,:])   #number of columns 
            fracMod=np.zeros([i,j]) 
            fracObs=np.zeros([i,j]) 
 
            for a in range (0,i): 
                for b in range (0, j):     # creates fractions grid for neighbourhood 1 (same as binary grid) 
                    fracMod[a,b]=Bm[a,b] 
                    fracObs[a,b]=Bo[a,b]  
            FSS2[1,val+1] =fsstools.fractionSkillScore(fracMod,fracObs) #calc. FSS 
            print '1' 
            num=2 
            i=i+1 
    
            for scale in range(3,150,step1):   #sets scales to calculate increase by 2 from 1 to max grid 
                FSS2[num,0]=scale #sets first column as scale 
                frac2Mod,frac2Obs=fsstools.genFracMeth2(SummedO, SummedM,scale) 
                #plotting.plotFractions(frac2Mod, frac2Obs, percent[val], i, scale ) 
                FSS2[num,val+1] =fsstools.fractionSkillScore(frac2Mod,frac2Obs) 
                print num, val+1, scale, FSS2[num,val+1] 
                num=num+1 
                i=i+1 
                print scale   #so can tell how far it is along and that it is doing stuff! 
    return FSS2    #returns table of FSS values by scale and threshold 
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Code 4- fsstools 

""" 

Spyder Editor 

 

@Author: Bethan Jones 

""" 

import numpy as np 

import random 

from sklearn import metrics 

 

#---------------------------------------------------------------------------- 

def convertToBinary(model, observed, threshMod, threshObs): 

    """takes model and observational data (in grid squares) and a threshold value  

    for precipitation and returns a grid with 1 for precipitation over that value  

    and 0 for precipitation below that value. Assumes  equal sized grids""" 

    i=len(model[:,0])   #number of rows 

    j=len(model[0,:])   #number of columns 

    Bo=np.zeros([i,j])    #create binary grid for observations 

    Bm=np.zeros([i,j])    #create binary grid for forecast model 

    for a in range (0,i-1):    

        for b in range(0,j-1):    #for each individual grid square 

            if model[a,b]>threshMod:   #if value is greater than threshold 

                Bm[a,b]=1   #set corresponding binary grid square to 1 

                 

            if observed[a,b]>threshObs:  #as above but for observed values 

               Bo[a,b]=1 

    return Bo, Bm 

 

 

#------------------------------------------------------------------------------ 

def sumBinary(Bo, Bm): 

    """Takes binary grids and sums from bottom left corner to top right corner""" 

    i=len(Bo[:,0]) 

    j=len(Bo[0,:]) 

    SummedM=np.zeros([i,j])  #creates array of zeros 

    SummedO=np.zeros([i,j]) 

    SummedM[0,0]=Bm[0,0]  #set top left value 

    SummedO[0,0]=Bo[0,0] 

    for b in range (1,j):  #sets first row 

        SummedM[0,b]=SummedM[0,b-1]+Bm[0,b] 

        SummedO[0,b]=SummedO[0,b-1]+Bo[0,b] 

    for a in range(1,i):  #sets first column 

        SummedM[a,0]=SummedM[a-1,0]+Bm[a,0] 

        SummedO[a,0]=SummedO[a-1,0]+Bo[a,0] 

        for b in range(1,j): #sum the rest of array 

 

            SummedM[a,b]=SummedM[a-1,b]+SummedM[a,b-1]-SummedM[a-1,b-1]+Bm[a,b] 

            SummedO[a,b]=SummedO[a-1,b]+SummedO[a,b-1]-SummedO[a-1,b-1]+Bo[a,b] 

    return SummedO, SummedM 
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#------------------------------------------------------------------------------ 

def generateFractions(Bo,Bm,N):    #The inefficient way 

    """Takes binary grids and spatial scale to return fraction of squares with  

    rain around the square. Returns two arrays.""" 

    n=(N-1)/2 

    i=len(Bo[:,0])   #number of rows 

    j=len(Bo[0,:])   #number of columns 

    Fm= np.zeros([i,j]) 

    Fo= np.zeros([i,j]) 

    denMod=np.zeros([i,j])   #creates masking grid of the number of squares available to 

divide by 

    denObs=np.zeros([i,j]) 

    denMod[:]=N*N  #sets initial size of masking array, maximum number of grid squares. 

    denObs[:]=N*N 

    if N<=10:  #If large array, do less calculations 

        loop=1 

    elif N>10 and N<=50: 

        loop=4 

    elif N>50: 

        loop=int(N/5)+1 

     

    for a in range (0,i,loop):    

        for b in range(0,j,loop):   #for every pixel 

            for c in range (-n,n+1): 

                for d in range (-n,n+1): 

                    if (((a+c <0)or(b+d<0))or ((a+c or b+d)>=i)): 

                        denMod[a,b]=denMod[a,b]-1     #if grid square doesn't exist- discount it from 

calculations 

                        denObs[a,b]=denObs[a,b]-1 

                    else: 

                        try: 

                            Fm[a,b]=Fm[a,b]+Bm[a+c,b+d]   #sums the values of grid squares around 

each grid square for model 

                            Fo[a,b]=Fo[a,b]+Bo[a+c,b+d]   #as above for observations 

                        except IndexError: 

                            denMod[a,b]=denMod[a,b]-1    #if above doesn't work discount it. 

                            denObs[a,b]=denObs[a,b]-1 

                            pass  

    for a in range (i):    

        for b in range(j):    #over whole array 

            Fm[a,b]=Fm[a,b]/N*N   # divide sum by the number of grid squares counted to create 

fraction 

            Fo[a,b]=Fo[a,b]/N*N 

            print Fm[a,b], Fo[a,b] 

    return Fm, Fo 
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#------------------------------------------------------------------------------ 

def genFracMeth2(SummedO, SummedM, N):  #The more efficient way 

    """ Calculates fractions grids for neighbourhood N using Summed grids""" 

    n=(N-1)/2 

    i=len(SummedO[:,0])   #number of rows 

    j=len(SummedO[0,:])   #number of columns 

    Fm2= np.zeros([i,j]) 

    Fo2= np.zeros([i,j]) 

     

    for a in range (0,i,1):    

        for b in range(0,j,1):  #for every pixel 

            if (a+n)>=(i-1):   #check if off grid set to 0 

                aplusn=i-2 

            else: 

                aplusn=a+n 

            if (a-n)<=0: 

                aminusn=0 

                #print 'a-n <0', n, a, b 

            else: 

                aminusn=a-n-1 

            if (b+n)>=(j-1): 

                bplusn=j-2  

            else: 

                bplusn=b+n 

            if (b-n)<=0: 

                bminusn=0 

            else: 

                bminusn= (b-n)-1 

            Fm2[a,b]=(SummedM[aplusn,bplusn]-SummedM[aminusn,bplusn]-

SummedM[aplusn,bminusn]+SummedM[aminusn,bminusn])/(N*N) 

            Fo2[a,b]=(SummedO[aplusn,bplusn]-SummedO[aminusn,bplusn]-

SummedO[aplusn,bminusn]+SummedO[aminusn,bminusn])/(N*N) 

             

    return Fm2, Fo2             

     

#------------------------------------------------------------------------------ 

def fractionSkillScore(Fm,Fo): 

    """Calculates fraction skill score when given fractions grid. Fed two grids  

    (of equal size) the first being the fractional grid of the model the second  

    being the observed data fractional grid. Returns single float number""" 

    i=len(Fo[:,0])   #number of rows 

    j=len(Fo[0,:])   #number of columns 

    

    arrMSE=np.zeros([i,j])  #to create grid for MSE 

    sqObs=np.zeros([i,j])   #blank arrays to fill for reference MSE 

    sqMod=np.zeros([i,j])   #blank arrays to fill for reference MSE 

     

    for a in range (0,i):    

        for b in range(0,j):    #over whole array 

            arrMSE[a,b]=(Fo[a,b]-Fm[a,b])*(Fo[a,b]-Fm[a,b])  #fills in MSE 
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            sqObs[a,b]=Fo[a,b]*Fo[a,b]   #For reference MSE 

            sqMod[a,b]=Fm[a,b]*Fm[a,b]   #For reference MSE  

    MSE=sum(sum(arrMSE))/(i*j)  #Calculate MSE 

    refMSE=(sum(sum(sqObs))+sum(sum(sqMod)))/(i*j)  #Calculate reference MSE 

     

    FSS=1-(MSE/refMSE)   #Calculate Fractional Skill Score 

     

    return FSS 
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Code 5- sorting 

""" 
Created on Thu May 22 12:12:42 2014 
@author: Bethan Jones 
""" 
 
import numpy as np 
 
#------------------------------------------------------------------------------- 
def ImportDatFile(location, row, lat, lon): 
    """imports datafile extracts grid size and creates array""" 
    data=np.genfromtxt(location)  #import data 
     
    l=len(data[row,:]) 
    xlen=np.int(data[row,0]) 
    ylen=np.int(data[row,1]) 
    forecast=data[row,2]   #forecast range eg T+24 (not in right order) 
     
    #extract precipitation rates 
    val=data[row,range(3,l)] 
    print val 
    name=np.zeros((ylen+1,xlen+1)) 
    name[:,0]=lat[:] 
    name[0,:]=lon[:] 
    for  i in range(0, int(ylen)): 
        for j in range(0, int(xlen) ): 
            name[(i+1),j+1]=val[(i*xlen)+j] 
    return name, forecast 
 
 
#------------------------------------------------------------------------------- 
def alignGrids(data1,data2): 
    """Ensures grids are the same size for comparison. Assumes starts at same point""" 
 
    x1=len(data1[0,:]) 
    y1=len(data1[:,0]) 
     
    x2=len(data2[0,:]) 
    y2=len(data2[:,0]) 
    if (x1==x2 and y1==y2): 
        return data1, data2 
    elif (x1==x2 and y1!=y2): 
        if y1>y2: 
            new=data1[:,range(0,y2)] 
            return new, data2 
        else: 
            new=data2[:,range(0,y1)] 
            return data1, new 
    elif (x1!=x2 and y1==y2): 
        if x1>x2: 
            new=data1[range(0,y2),:] 
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            return new, data2  
        else: 
            new=data2[range(0,y1),:] 
            return data1, new 
    else: 
        if x1>x2:  
            new=data1[range(0,x2),:] 
            if y1>y2: 
                new2=new[:,range(0,y2)] 
                return new2, data2 
            else: 
                new2=data2[:,range(0,y1)] 
                return new, new2#return new, data2  
        else: 
            new=data2[range(0,x1),:] 
            #return data1, new 
            if y1>y2: 
                new2=data1[:,range(0,y2)] 
                return new2, new 
            else: 
                new2=new[:,range(0,y1)] 
                return data1, new2 
     
def cutToSize(model): 
    """ Cuts size of grid if required """ 
    a=int(len(model)/2) 
    b=50 
    c=52 
    mod1=model[:,range(1,151)] 
    mod=mod1[range(128,256),:] 
    return mod     
 
#-------------------------------------------------------------------------------------------------- 
def dataIntoGrid(listData, lat, lon): 
    """imports datafile extracts grid size and creates array""" 
    grid=np.zeros([len(lat), len(lon)]) 
    count=0 
    for i in range(0,len(lat)): 
        for j in range(0,len(lon)): 
            grid[i,j]=listData[count] 
            count +=1 
     
    return grid 
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Code 6- test 

""" 
Created on Tue May 27 11:30:20 2014 
@author: Bethan Jones 
""" 
 
import numpy as np 
import utils 
import plotting2 as plotting 
import matplotlib.pyplot as plt 
import math 
 
#import data arrays 
npzfile=np.load('N:/Dissertation/Data/Year/EndOf/SON24thresholds.npz') 
FSSfiles=np.load('N:/Dissertation/Data/Year/EndOf/SON24FSS.npz') 
 
#seperate arrays 
thresholds=npzfile['arr_0']*3600 
FSSall=FSSfiles['arr_0'] 
 
#Set empty arrays for scale becomes useful 
useful99=np.zeros(len(FSSall)) 
useful90=np.zeros(len(FSSall)) 
 
#Create empty arrays for FSS at each scale 
scale1=np.zeros(len(FSSall)) 
scale3=np.zeros(len(FSSall)) 
scale5=np.zeros(len(FSSall)) 
scale7=np.zeros(len(FSSall)) 
 
for i in range(0,len(FSSall)):  #for all days 
    FSS=FSSall[i] 
    date=int(FSS[0,0]) 
    scale1[i]=FSS[1,3] 
    scale3[i]=FSS[2,3] 
    scale5[i]=FSS[3,3] 
    scale7[i]=FSS[4,3] 
    for j in range(1,len(FSS[:,0])): 
        if FSS[j,1]>=0.5: 
            useful99[i]=FSS[j,0] 
            break 
        else: 
            useful99[i]=FSS[j,0]  
    for j in range(1,len(FSS[:,0])):  
            if FSS[j,3]>=0.5: 
                useful90[i]=FSS[j,0] 
                break 
            else: 
                useful90[i]=FSS[j,0]     
   
    plotting.plotFSS(FSS,150,2) 
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#plot histogram of thresholds on different days 
plt.figure() 
plt.hist(thresholds[1:,2],bins=14) 
plt.xlabel('Rain rate in mm/hr') 
plt.ylabel('number of days') 
plt.title('99% threshold values for period June, July, August') 
plt.show() 
 
plt.figure() 
plt.hist(thresholds[1:,4],bins=[0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65]) 
plt.xlabel('Rain rate in mm/hr') 
plt.ylabel('number of days') 
plt.title('90% threshold values for March') 
plt.show() 
 
# print important values to screen 
print 'means', np.mean(useful99), np.mean(useful95), np.mean(useful90) 
print 'max', np.max(useful99), np.max(useful90) 
print 'min', np.min(useful99), np.min(useful90) 
print '25th, 75th percentile', np.percentile(useful99,[25,75]), np.percentile(useful90,[25,75])     
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Code 7- plotting 

    "" 
Created on Mon May 19 11:22:28 2014 
@author: Bethan Jones 
""" 
 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.colors as colours 
from mpl_toolkits.basemap import Basemap 
 
#------------------------------------------------------------------------------- 
def plotGrids(Mod, Obs, Glat, Glon): 
    """plots grids in colour scale to allow for easy visulisation""" 
    
    plt.figure()  #makes sure not plotting over something 
 
 
    cmap2 =plt.cm.jet      #('Blue',256)    #colours.Colormap('PuBu')  #set colour map 
    fig, axes = plt.subplots(nrows=1, ncols=2) 
    llclat=30  #Glat[len(Glat)-1] 
    llclon=0   #Glon[0] 
    urclat=60  #Glat[0] 
    urclon=150*0.3515625   #Glon[len(Glon)-1]   #set area 
 
    plt.subplot(2,1,1)   #2,1,1 for one above other, 1,2,1 for side by side 
    

m=Basemap(projection='cyl',llcrnrlat=llclat,urcrnrlat=urclat,llcrnrlon=llclon,urcrnrlon=urclon,resoluti
on='c') 

    m.drawcoastlines() 
    ny= Mod.shape[0]; nx=Mod.shape[1] 
    lons, lats= m.makegrid(nx,ny) 
    x,y= m(lons,lats) 
    maxi=np.max(Mod) 
    maxio=np.max(Obs) 
    print maxi, maxio 
     
    a=np.zeros(50) 
    for i in range(1,len(a)+1): 
        a[i-1]=0.000+(i*0.00005)   #sets values for colour map 
    img2 = m.contourf(x,y,Mod,a,cmap=cmap2) 
    plt.gca().invert_yaxis() 
    plt.title('Model Data') 
 
    plt.subplot(2,1,2)   #2,1,2 for one above other, 1,2,2 for side by side 
    

m=Basemap(projection='cyl',llcrnrlat=llclat,urcrnrlat=urclat,llcrnrlon=llclon,urcrnrlon=urclon,resoluti
on='c') 

    m.drawcoastlines() 
    ny= Obs.shape[0]; nx=Obs.shape[1] 
    lons, lats= m.makegrid(nx,ny) 
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    x,y= m(lons,lats) 
    img3 = m.contourf(x,y,Obs,a,cmap=cmap2) 
    plt.gca().invert_yaxis() 
    plt.title('Observational data') 
  
    cbar_ax = fig.add_axes([0.90, 0.1, 0.02, 0.8]) 
      
    plt.show() 
     
#--------------------------------------------------------------------------------- 
def plotBinary(Bm, Bo,thresh,count): 
    """plots black/white binary grid""" 
    plt.figure(count) 
     
    cmap = colours.ListedColormap(['white','black'])  
    bounds=[0,0.5,0.5,1] 
    norm = colours.BoundaryNorm(bounds, cmap.N) 
    plt.subplot(1,2,1) 
    # tell imshow about color map so that only set colors are used 
    img = plt.imshow(Bm,interpolation='nearest', cmap = cmap,norm=norm) 
    plt.title('Model and Obserbvational output in binary for a threshold of %s percent of maximum 

amount' % thresh) 
    plt.subplot(1,2,2) 
    # tell imshow about color map so that only set colors are used 
    img2 = plt.imshow(Bo,interpolation='nearest', cmap = cmap,norm=norm) 
    # make a color bar 
    plt.colorbar(img,cmap=cmap,norm=norm,boundaries=bounds,ticks=[0,1]) 
     
    plt.show() 
 
#--------------------------------------------------------------------------------------- 
def plotFSS(FSS,grid, legend): 
    """PLots FSS against grid size for different thresholds.""" 
     
    plt.plot(FSS[1:,0],FSS[1:,legend+1],label=FSS[0,0]) 
    percent=[99,95,90]     
    plt.xlabel('scale (in number of grid squares)') 
    plt.ylabel('fss fractional skill score') 
    title=str('Fractional skill score depending on scale at threshold'+ str(percent[legend])+ '%') 
    plt.title(title) 
     
    plt.xlim(1,grid) 
    plt.ylim(0,1) 
    plt.axhline(y=0.5, ls='dashed') 
 
#------------------------------------------------------------------------------- 
def plotFractions(Fm, Fo,thresh,count,scale): 
    """plots black/white binary grid""" 
    plt.figure(count) 
    cmap2 = colours.LinearSegmentedColormap.from_list('my_colormap', ['white','blue'],256) 
    plt.subplot(1,2,1) 
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    img2 = plt.imshow(Fm,interpolation='nearest', cmap = cmap2, origin='lower') 
     
    # make a color bar 
    plt.colorbar(img2,cmap=cmap2) 
    plt.title('Model fractions for a threshold of %s percent of maximum amount in a 

neighbourhood of %s grid squares' % (thresh, scale)) 
     
    plt.subplot(1,2,2) 
     
    cmap3 = colours.LinearSegmentedColormap.from_list('my_colormap', ['white','blue'],256) 
 
    img3 = plt.imshow(Fo,interpolation='nearest', cmap = cmap3, origin='lower') 
    plt.show() 


