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Abstract

Idealized simulations of the diurnal cycle of tropical convection over land are performed with
the Met Office Unified Model (UM) using two different parameterization schemes: the newly
developed CoMorph scheme and the current 6A convection scheme. Identical simulations are
performed using the Met Office NERC Cloud Model (MONC) and serve as a proxy for the
"true" convective behavior. Convective and memory properties of the diurnal cycles simulated
by each model and scheme are examined and compared. Memory of past convection is quan-
tified using a memory function, which is evaluated on the basis of the conditional probability
of finding rain over a given area and at a given time, given the probability of rain occurring
over the same area at a previous time—after removing any effects of random chance. MONC
simulations show three phases of memory: a positive first phase indicating the persistence of
developing convection, a negative second phase indicating the suppression of convection, and a
positive third phase corresponding to a secondary enhancement of convection. CoMorph sim-
ulations of ten-day duration show considerable day-to-day variability and long-term memory
over grey-zone scales (4–10 km), indicating difficulties encountered by the scheme in repre-
senting convection at these spatial scales. At a range of spatial scales (4–50 km), CoMorph
shows a significant improvement over the 6A scheme in producing a realistic diurnal cycle of
precipitation and in capturing memory effects associated with the different phases of convec-
tion. The 6A scheme shows negligible memory at all times, while the CoMorph scheme is able
to represent the first and second phases of memory associated with the development and sup-
pression of convection respectively. However, CoMorph generates excess memory associated
with the first phase, delays the start of the second phase, and extends the duration of both phases
relative to MONC. CoMorph was also found unable to accurately simulate the diurnal cycles
of mass flux and cloud fraction, and to resolve convectively generated small-scale thermody-
namic fluctuations in the lower troposphere. These issues could be partly responsible for the
biases in memory properties within CoMorph. Modifying select parameters within CoMorph
produced some improvements in the behaviour of the precipitation cycle and reduced biases in
the memory, but did not result in significant improvements in simulated convective properties.
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1

1. Scientific Background

“If you wish to make an apple pie from scratch, you must first invent the universe.”

— Carl Sagan

In this first section of the report, we present in detail the scientific ideas essential to our study of
memory effects in convective parameterization schemes. Section 1.1 discusses various aspects
of convective parameterization adopted in weather and climate models, Section 1.2 introduces
the concept of “convective memory” which forms the basis of our study, and Section 1.3 de-
scribes the diurnal cycle of convection which we choose as the convective test case for our
study. Relevant literature surrounding each of these topics is reviewed and summarized.

1.1 Convective Parameterization

Our study involves assessing the efficacy of convective parameterization schemes in simulating
convective and cloud behaviour. To that end, we must first establish the theoretical framework
of convective parameterization, and that is what this section endeavours to do. Section 1.1.1
explains the need to parameterize convection, Section 1.1.2 discusses the assumptions and lim-
itations of traditional parameterization schemes, and Section 1.1.3 summarizes recent efforts to
improve the accuracy of parameterizations.

1.1.1 Introduction

Convective processes, cloud formation, and precipitation typically occur on spatial scales of
10 m–1 km. However, most global weather (numerical weather prediction or NWP) and cli-
mate (global climate model or GCM) models have grid box sizes of much larger scales on
the order of 10 km or greater. It would therefore be much more computationally expensive to
resolve or evaluate convection explicitly in numerical models of the atmosphere. This issue
has given rise to the need for the parameterization of convection in these models. Convective
parameterization is the process of representing convection approximately using known model
variables (such as temperature and moisture) that are resolved at the grid-scale, and it is carried
out by convective parameterization "schemes" employed within weather and climate models. In
general, convective parameterization schemes aim to represent the collective average behaviour
of convection and clouds in each grid box rather than account for individual cloud evolution
(Arakawa, 2004).

One of the first such parameterization schemes was put forward by Arakawa and Schubert
(1974). Their theory assumes an ensemble of clouds covering a small fraction of the total grid
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cell area, with further sub-ensembles for different cloud types. They divide the atmosphere into
the cloud layer, which lies between the cloud base and the cloud top, and the mixed bound-
ary layer beneath the cloud base, from where convective ascent occurs. At each model time
step, convective activity and the cloud ensemble behaviour are determined by the large-scale
environmental “forcing”, which is composed predominantly of surface fluxes and atmospheric
radiative cooling. These large-scale processes act to warm the atmosphere from below or cool
it from above, thereby generating atmospheric instability and the vertical motions (updrafts)
giving rise to convection. Cloudy updrafts increase in size through the process of entrainment
which involves the mixing and exchange of surrounding environmental air. Once formed, the
cloud ensemble can interact with and modify the large-scale thermodynamic profile of the at-
mosphere through the process of detrainment, which is the opposite of entrainment and involves
the movement of air out of the cloud and into the environment.

In order to represent the processes described above, Arakawa and Schubert (1974) base their
scheme on the "mass-flux" formulation of convection. Mass flux refers to the vertical transport
of air induced during convective activity and is given by:

M = ρσw (1)

where ρ is the density of air, σ is the fractional grid box area covered by ascending air masses,
and w is the vertical velocity. M , the mass flux, has units of kg m−2 s−1 and represents the
rate of flow of mass per unit area of the surface (Arakawa and Schubert, 1974, their Equation
2). The mass-flux parameterization framework assumes the existence of sub-grid-scale columns
of vertical transport or fluxes of heat and moisture which remain largely independent of their
surrounding environment, interacting only through the processes of entrainment and detrain-
ment (Plant and Yano, 2016). Hence, their scheme seeks to determine, at each model time step
and within each grid cell, the vertical profile and distribution of mass flux within the cloud
ensemble as well as the behaviour of large-scale thermodynamic fields both within convective
updrafts/downdrafts and in the environment.

The Arakawa-Schubert scheme (1974) has provided a valuable theoretical foundation for subse-
quent convective parameterizations and cloud modelling studies over the past several decades.
Other notable examples of convection schemes which continue to be used are those developed
by Gregory and Rowntree (1990), Kain and Fritsch (1990), Emanuel (1991), Donner (1993),
and Zhang and McFarlane (1995). While most present-day schemes are based on the mass-flux
framework, other types of schemes have also been proposed and found to be reliable (Arakawa,
2004). For instance, Kuo (1974) originated a class of schemes that make use of the principle
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of water vapour conservation and diagnose convective activity on the basis of large-scale mois-
ture convergence. Betts (1986) initiated another scheme type which relies on the concept of
convective adjustment and forces the large-scale vertical temperature and moisture profiles to
approach their observed behaviour in convective regions.

In addition to the physical formulation of convection employed, individual parameterization
schemes differ in their choice of variables used to represent convection as well as in the specific
constraints or "closure" conditions imposed on the convective system (Plant and Yano, 2016).
Despite their differences, however, a few foundational assumptions tend to be shared by most
convective parameterization schemes. These will be briefly discussed in Section 1.1.2 below.

1.1.2 Assumptions and Limitations

Out of the several assumptions and/or approximations a parameterization scheme must make,
two in particular are shared by most traditional convection schemes and are relevant to our study
of memory effects: the quasi-equilibrium assumption and the diagnostic assumption.

The quasi-equilibrium (QE) hypothesis, which was first introduced and implemented by Arakawa
and Schubert (1974) in their scheme, assumes that convective processes are in statistical equilib-
rium with the large-scale forcing at all times. Convection responds instantaneously to changes
in the large-scale forcing and exactly balances out the effects of the large-scale dynamic and
thermodynamic fields, that is, the atmospheric disturbance generated by the large-scale forcing
is stabilized as a result of convective activity. Further, the diagnostic assumption states that the
convective response at any instant can be determined solely using grid-scale variables at that
instant and that there is no dependence of convection on its own past behaviour.

These idealized assumptions have been traditionally employed as closure conditions to sim-
plify the parameterization process. However, in reality, they do not hold true as convective
activity takes a finite adjustment time to respond to variations in the large-scale forcing and also
tends to persist for a specific time period (known as the "life cycle" of a convective system,
Davies et al., 2009). The large-scale forcing itself may vary on relatively short time scales,
making it difficult for the convective response to "keep up" (Jones and Randall, 2011). In such
a situation, convection is not always in equilibrium with the environment and is determined or
influenced at any instant by its history. The failure of these assumptions becomes especially
stark with increasing model resolutions in time and space as convective systems are generated
more frequently and the forcing is allowed to vary more rapidly (Jones and Randall, 2011).
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The challenges posed by the QE and diagnostic assumptions can only be addressed by attempt-
ing to at least partly relax them; that is, by introducing prognostic components into parame-
terization schemes which are explicitly evaluated at each time step and can therefore render
the scheme sensitive to its past behaviour. In other words, convection schemes need to pos-
sess some form of "memory" of their convective history so as to more realistically predict their
future evolution. Section 1.1.3 elaborates on several broad methods employed to improve pa-
rameterizations schemes, including those aimed at endowing schemes with a memory.

1.1.3 Attempts to Improve Parameterizations

In the last few decades, diverse efforts have been directed toward improving the accuracy and
realism of convective parameterization schemes. In their recent review, Rio et al. (2019) pro-
vide a comprehensive summary of these attempts which aim to improve the representation of a
broad range of convective processes and phenomena.

At the foundational level, numerous developments have been aimed at improving the repre-
sentation of convective cloud ensembles (Rio et al., 2019). Current GCMs use separate param-
eterization schemes and physical assumptions for the different regimes of convection and cloud
formation: dry boundary-layer mixing, shallow moist convection (with cumulus clouds), and
deep moist convection (with cumulonimbus clouds). This leads to discontinuities and biases
in the simulation of these otherwise gradual, continuous processes within each model grid cell.
Attempts have been made since the early 2000s to unify multiple convective regimes within
a single parameterization scheme—an approach emphasized by Arakawa (2004)—either by
adopting an eddy-diffusivity/mass-flux (EDMF) approach (e.g., Suselj et al., 2019) or by trig-
gering deep convection from shallow convection processes (e.g., Hohenegger and Bretherton,
2011). Other methods to improve the representation of cloud properties has been to adopt
stochastic rather than discrete deterministic models of entrainment (e.g., Romps, 2016; Romps
and Kuang, 2010) and of the relative area fractions of different cloud types (e.g., Khouider
et al., 2010). In particular, Sušelj et al. (2013) combined the EDMF and stochastic entrainment
techniques in a parameterization scheme and obtained realistic simulations of moist conserved
variable profiles and updraft properties.

On a more complex process-oriented level, recent improvements have been directed toward the
incorporation of convective memory and organization in parameterization schemes (Rio et al.,
2019). As described in Section 1.1.2, the diagnostic quasi-equilibrium formulation of convec-
tion fails to hold true as convection can take a finite time to adjust to variations in the large-scale
forcing, resulting in a dependence of convection on its own history (Jones and Randall, 2011).
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Convective parameterization schemes have attempted to account for this memory effect through
the inclusion of several prognostic variables or through explicit simulation of physical processes
responsible for memory such as cold pools and mesoscale convective systems (Rio et al., 2019).
The concept of convective memory is central to our study which aims to identify and quantify
the properties of memory within convective parameterization schemes. A detailed description
of convective memory, its physical mechanisms, and attempts to include memory in parameter-
ization schemes is presented in Section 1.2.3. Besides memory, GCMs also struggle to capture
the process of mesoscale convective organization and its effects. Few previous attempts have
been made to represent mesoscale circulations through, for instance, the use of water budgets
(Donner, 1993) or vertical wind shear (Yano and Moncrieff, 2016). Future studies are required
to understand in-depth the different mechanisms contributing to convective organization and the
precise relationships between memory and organization.

Finally, convective parameterizations need to better account for the mutual interaction between
convective processes and the large-scale dynamics (Rio et al., 2019). Progress in this regard can
be achieved through extensive use of observational data (such as profiles of vertical velocity,
mass flux, heating rates) to test parameterization schemes, identify model biases, and constrain
relevant scheme parameters. Adopting a multiscale modelling approach with the simultaneous
use of large-eddy simulations (LESs) and cloud-resolving models (CRMs) alongside GCMs for
different regimes of interest will also prove helpful to diagnose systematic model errors and
better understand the coupling between the model physics and the dynamics (Arakawa, 2004).

Significant progress has been realised since convective parameterizations were first developed
half a century ago. However, extensive efforts must continue to be undertaken in the coming
decades to make headway in addressing the challenges outlined in this section. It is essential
that observations and model simulations are also used to identify additional physical processes
that require parameterization, to understand interactions and/or feedbacks between convective
schemes and other model parameterizations (e.g. radiation, microphysics), and to detect model
performance at grey-zone resolutions (Rio et al., 2019).
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1.2 Convective Memory

“I never wish to be easily defined.”

— Franz Kafka

Section 1.1 discussed the characteristics and limitations of convective parameterization schemes,
including their inability to take into account the past behaviour or “memory” of convection.
Convective memory can be broadly defined as the effect or influence that convection at a pre-
vious time has on present convection and its future evolution (Davies et al., 2009; Colin et al.,
2019; Daleu et al., 2020). The exact definition of memory, however, has varied from one study to
another. A brief review of previous studies on convective memory is provided in Section 1.2.1,
while Sections 1.2.2 and 1.2.3 summarize the sources of convective memory and examples of
previous attempts to include memory in convective parameterization schemes.

1.2.1 Previous Studies on Convective Memory

Davies et al. (2009) were among the first to directly and explicitly examine the role of memory
within a convective system. They introduced a simple mathematical model to study the effects
of varying the memory time scale, which was taken to be the adjustment time for the convective
system to respond to changes in the large-scale forcing. Davies et al. (2009) correlates memory
with significant day-to-day variability in the convective response, where each day responds to
the forcing in a different manner due to convective feedbacks from the previous day. Their
results are reproduced in Figure 1 below. They found that for very short memory time scales
(<6 hours), the convective response adapts quickly to the forcing and hence can be assumed to
be in quasi-equilibrium with the environment (Figure 1A). For very long memory time scales
(>20 hours), convection is seen to be almost unchanging and independent of the variations in
the forcing (Figure 1B). The role of memory becomes significant for intermediate time scales
(6–20 hours) over which the convective activity is dependent on the variations in the forcing
and takes a finite time to respond to them, giving rise to an internal feedback within the system
(Figure 1C–D).

Other previous studies have attempted to explore different aspects of convective memory us-
ing CRM simulations. The typical grid-spacing of CRMs is on the order of a hundred metres
which allows them to explicitly model individual cloud behaviour and life cycles, unlike GCMs
(Guichard and Couvreux, 2017). This explicit treatment enables CRMs to investigate the im-
pacts of past convective history on present deep convection. Different studies use different ways
to quantify convective memory, as discussed below.
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Figure 1: The convective heating rate Q1 (variable representing convective activity) produced in re-
sponse to a large-scale diurnal forcing for different memory or adjustment time scales of (A) 1 hour, (B)
24 hours, (C) 11 hours and (D) 5 hours. Reproduced from Davies et al. (2009) (their Figure 1).

Davies et al. (2013) studied the effects of memory in response to varying forcing time scales
in CRM simulations. Again, memory is qualitatively identified as the cycle-to-cycle variability
present in the induced convective response; variability implies memory communicated from
one cycle to the next. The pattern of surface forcing used was sinusoidal and active only during
the first half of each cycle, similar to the forcing adopted in our study. Long forcing periods
on the order of 24 hours or more produced identical cyclical behaviour in the cloud-base mass
flux. Short forcing periods on the order of 1 hour also produced repetitive convective cycles,
with minor modulations from the equilibrium response. Consistent with Davies et al. (2009),
departures from quasi-equilibrium occurred at intermediate forcing time scales of 3–12 hours,
with the convective response varying in an anti-correlated manner from one cycle to the next.
Using these results, Davies et al. (2013) also suggested that small-scale spatial thermodynamic
variability from previous convection may be a potential source of memory between cycles. Over
longer forcing time scales, the thermodynamic fields produced from convective activity become
smooth, preventing feedbacks from being communicated to the start of the next cycle.

Colin et al. (2019) attempted to identify the variables contributing to “microstate” or sub-grid-
scale convective memory—memory occurring on spatial scales smaller than that of a GCM grid
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cell—and examine the link between memory and spatial organization of convection. In their
study, microstate fields were perturbed by homogenization across the domain, and memory was
quantified using the time taken for convection to return to radiative-convective equilibrium with
the environment. They found that memory increases as organization increases and that ther-
modynamic fields (temperature and water vapor) contribute more to memory on average than
winds and hydrometeor variables.

More recently, Daleu et al. (2020) investigated memory properties of the diurnal cycle of scat-
tered, deep convection using high-resolution three-dimensional CRM simulations, and their
methodology forms the basis of our study. Convective memory was investigated using surface
precipitation fields. To quantify the dependence of convection on its own history, Daleu et al.
(2020) defined a memory function over a certain area A as the difference of two probabilities:
the probability of finding rain over an area A at both the present time t0 after the start of con-
vection and at a previous time t0 −∆t minus the probability of finding rain at the two different
times t0 and t0 −∆t if convection had no memory and the two rain events could be treated as
independent events that occurred by random chance. The mathematical form of the memory
function used was as follows:

M(A, t0,∆t) = P [R(A, t0) ∩R(A, t0 −∆t)]− P 2[R(A, t0,∆t)] (2)

In separating the effects of random chance, the memory represents the influence that previous
convection at time t0 − ∆t has on the probability of present convection at time t0. Positive
memory or M > 0 indicates that memory from previous convection increases the probability
of current convection, while negative memory or M < 0 indicates that memory acts to reduce
the probability of present convection relative to a no memory situation.

Equation (2) was used to examine the dependence of memory on time and length scales as
well as on forcing strengths. Unlike Davies et al. (2009) and Davies et al. (2013) who studied
cycle-to-cycle memory effects, Daleu et al. (2020) focuses on intra-cycle memory which was
found to be predominant on timescales of 1–9 hours after the start of convection. Memory was
seen to vary in a three-phased manner, with the initial phase (0–1 hr in duration) representing
the persistence of existing convection, the second phase (1–3 hr) representing the suppression
of convection in areas previously raining, and the third phase (3+ hr) representing a secondary
enhancement of convection in areas previously suppressed. Moreover, memory was observed to
be strongest at gray-zone scales of 4–10 km and reduced greatly at scales of 25 km and greater.
Similar to Colin et al. (2019), Daleu et al. (2020) also attempted to assess the convective mem-
ory associated with initial spatial thermodynamic variability by applying homogenization across
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the domain prior to the start of each diurnal cycle. The phases of memory were found to occur
earlier following homogenization relative to the control, due to the reduced intensity of rainfall
events when thermodynamic feedbacks from the previous day are not taken into account.

These studies convey that convective memory can exist on a range of temporal scales, from
a few hours to longer than a day. On shorter time scales, memory causes a local strengthening
or weakening of convective activity within the diurnal cycle, while on longer time scales, mem-
ory influences the amplitude and timing of the diurnal cycle of convection from one day to the
next. Most importantly, both forms of memory can coexist within any convective system.

1.2.2 Sources of Convective Memory

As Davies et al. (2009) asserts, convective memory could arise from several different sources
and physical mechanisms. As briefly discussed in Section 1.2.1, a strong source of convective
memory is the small-scale (<20 km) spatial variability in water vapour and potential tempera-
ture fields in the lower troposphere (surface–700 hPa) (Stirling and Petch, 2004; Davies et al.,
2013; Colin et al., 2019; Daleu et al., 2020). This thermodynamic or moist static energy vari-
ability arises as a remnant of previous convective activity and influences the development of
future convection and precipitation (Colin et al., 2019). Cold pools, hot thermals, cloud en-
trainment/detrainment and evaporation of rain are candidate processes that could bring about
this memory through the creation of microstate thermodynamic structures, though the precise
mechanisms of cold pool activity as well as other processes remain poorly understood (Colin
et al., 2019; Daleu et al., 2020). Wind fields can be an important memory source for wind-shear
organized convection, and convective organization itself, while not a memory “source”, is an
additional factor contributing to convective memory through its effect of lowering convective
available potential energy (Colin et al., 2019).

Our study focuses solely on microstate memory which remains unresolved in GCMs. However,
as Colin et al. (2019) explains, convective memory can also reside on the grid-scale, known as
“macrostate” memory, and on the scale of multiple grid cells, known as “synoptic-state” mem-
ory. Macrostate memory on the order of 100 km could arise from grid-scale tropospheric tem-
perature and humidity fields and large-scale stratiform precipitation, while synoptic-state mem-
ory on the order of 1000 km could arise from large-scale circulations and synoptic weather fea-
tures such as storms and fronts (Scinocca and McFarlane, 2004; Colin et al., 2019). Since they
occur on spatial scales equal to or larger than the grid-scale, both macrostate and synoptic-state
memory processes are resolved by GCMs through their convective parameterization schemes
and their simulations of atmospheric motion (Colin et al., 2019).
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While recent studies have been able to demonstrate which variables contribute to memory, more
investigations on the convective processes that lead to memory and the resulting feedbacks gen-
erated are required in the future. The relative importance of different thermodynamic processes
also needs to be quantified more robustly in a diverse set of convective conditions (Colin et al.,
2019).

1.2.3 Memory in Convective Parameterization Schemes

In order to overcome the deficiencies outlined in Section 1.1.2, numerous studies have attempted
to incorporate the effects of sub-grid-scale memory into convective parameterization schemes
through the addition of prognostic variables and the relaxation of the quasi-equilibrium and di-
agnostic assumptions of Arakawa and Schubert (1974). Pan and Randall (1998) introduced a
prognostic cumulus kinetic energy (CKE) variable which is explicitly calculated for each cloud
type in the model grid using the cloud-base mass flux and the cloud work function, thereby
introducing a kind of memory for sub-grid-scale convection. Using a similar but linear relation-
ship between CKE and cloud-base mass flux, Yano and Plant (2012) showed that the convective
response under any constant large-scale forcing always follows a nonlinear finite periodic cycle
that departs from quasi-equilibrium. Wagner and Graf (2010) also used a prognostic mass flux
equation integrated to equilibrium in a cumulus parameterization scheme with a high-resolution
entraining plume model. In explicitly determining cloud properties and vertical velocities, they
obtained improved simulations of the magnitude and frequency of precipitation events.

Mapes and Neale (2011) introduced a prognostic qualitative “organization” variable to deter-
mine entrainment rates and found that accounting for organization within each grid cell leads to
a positive feedback on the development of deep convection relative to randomly scattered con-
vection. Piriou et al. (2007) separated grid-scale microphysics and transport terms and allowed
for a prognostic treatment of the microphysics in a parameterization scheme which resulted in
an improved representation of memory in various convective situations. Gerard et al. (2009)
used a very similar approach with prognostic updraft area fraction, vertical velocity, and hy-
drometeor variables and observed a more realistic representation of precipitation at grey-zone
scales. Chen and Bougeault (1993) and Guérémy (2011) both used a prognostic convective
vertical velocity and found improvements in simulated convective behaviour and precipitation.

As Rio et al. (2019) explains, more recent attempts of including memory involve the explicit
modelling of physical processes responsible for memory. Grandpeix and Lafore (2010) intro-
duced a wake (cold pool) parameterization scheme with two prognostic variables for tempera-
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ture and humidity differences between sub-grid wake and non-wake regions. Park (2014) also
incorporated plume memory at each time step into a parameterization scheme with prognostic
calculations of cold pools and mesoscale organized flow. Similar cold pool parameterizations
using prognostic variables were attempted by Qian et al. (1998) and Del Genio et al. (2015).

Despite the attempts outlined above, however, there is a lack of consistency in the various
approaches used which complicates efforts toward understanding memory mechanisms and de-
ciding on how best to represent memory in models of the atmosphere.
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1.3 The Diurnal Cycle of Convection

In Section 1.2, we introduced the physical basis and significance of convective memory, which
can influence convective development on hourly (>1 hour) to diurnal (≥24 hour) timescales.
To investigate the role of memory within convective parameterization schemes, our study looks
at an idealized diurnal cycle of deep convection over land in the tropics. The diurnal cycle is
a fundamental mode of variability in the global climate system, interacting extensively with
various atmospheric budgets and processes including solar radiation, surface radiative fluxes,
moisture, temperature, convection, and turbulence (e.g., Yang and Slingo, 2001). Due to the
central role of the diurnal cycle in interacting with large-scale circulation, accurate and realistic
model simulations of the diurnal cycle have been used over the past few decades as one robust
test of the reliability of the physical parameterization schemes used in GCMs (e.g., Yang and
Slingo, 2001; Bechtold et al., 2004). The following sections 1.3.1 to 1.3.3 will briefly discuss
important features of the diurnal cycle of convection, difficulties in its simulation, and examples
of previous studies that have focused on the diurnal cycle.

1.3.1 Features of Tropical Diurnal Convection

The Earth’s tropics (30◦N–30◦S) experience a strong diurnal cycle of convection (Yang and
Slingo, 2001). Due to the much lower heat capacity of land compared to water, the diurnal cy-
cle is more pronounced over continents than over the oceans (Lin et al., 2000). Yang and Slingo
(2001) provide a useful conceptual picture of the diurnal cycle mechanism over land. The di-
urnal cycle is caused by variations in incoming solar radiation over the course of a day which
result in modulations in the surface temperature and surface fluxes of sensible and latent heat
exchanged with the atmosphere. As incoming solar radiation increases gradually from sunrise,
the land surface warms and exchanges heat with the atmosphere, increasing the temperature of
the troposphere from below. This generates a vertically unstable atmospheric profile, resulting
in convection, formation of shallow and deep convective clouds, and precipitation. Precipita-
tion peaks in the late afternoon to early evening over land (around 3–4 pm), as evidenced by
satellite and surface observations. After sunset, solar radiation is absent and the outgoing long-
wave radiation causes the surface and the atmosphere to cool and stabilize. Convective activity
decreases and precipitation reaches a minimum in the early morning. The peak in precipitation
generally occurs a few hours after the peak in surface temperature due to the time needed for
shallow convection to transition into mid-level and deep convection (Lin et al., 2000). Addi-
tionally, the peaks in cloud height and cloud top minimum temperatures occur a few hours after
the precipitation maximum as clouds continue to deepen and expand even after precipitation
peaks (Lin et al., 2000).



1.3 The Diurnal Cycle of Convection 13

Throughout the cycle, the surface fluxes, which constitute the large-scale “forcing”, are in phase
with the solar heating, peaking at noon and reducing to zero after sunset. In reality, the forcing
itself interacts with and can be modified by convective activity through memory mechanisms
(such as those described in Section 1.2.2) (Yang and Slingo, 2001). However, in our idealized
study, we choose to keep the forcing non-interactive in order to study the effects of atmospheric
memory alone. The diurnal cycle is also influenced by heterogeneous surface conditions such
as orography and land-sea interactions (Yang and Slingo, 2001); however, again for the sake of
simplicity, we choose a homogeneous land surface for our study. A complete description of our
simulation setup is provided in Section 2.2.4.

1.3.2 Difficulties in Simulation

Given the ubiquity of the diurnal cycle, it is essential that weather and climate models are able
to properly simulate the amplitude and phase of the variability in convection and precipitation.
Historically, GCMs have struggled to reproduce the correct intensity and timing of precipitation
over the tropics, with most GCMs tending to produce an earlier onset and peak of precipitation
as well as reduced intensity than what is observed (e.g., Bechtold et al., 2004; Guichard et al.,
2004; Lin et al., 2000; Yang and Slingo, 2001). In fact, these biases persist even in many of
the most recent models (e.g., Christopoulos and Schneider, 2021). The tendency of GCMs to
respond too quickly to the surface forcing has been attributed to limitations in the convective
parameterization schemes used, which result in an imperfect representation of several convec-
tive processes within the diurnal cycle (e.g., Betts and Jakob, 2002; Bechtold et al., 2004). For
instance, as described in Section 1.1.3, most parameterizations separately evaluate the different
regimes of convection (dry, shallow, and deep) instead of treating the process as a continuum,
and this can lead to a neglect of the shallow cloud growth phase before deep convection sets in
(Betts and Jakob, 2002).

In addition to the general shortcomings of parameterization schemes described in Section 1.1.2,
the complexity and difficulty of the diurnal problem lies in the fact that different atmospheric
processes interact closely on various spatial scales to produce the diurnal cycle, and the er-
roneously simulated cycle itself feeds back onto different components of the parameterization
schemes employed. Over the past several decades, a wide range of efforts have been undertaken
with the goals of improved physical understanding and modelling of the diurnal cycle of con-
vection. These are summarized in Section 1.3.3 below.



1.3 The Diurnal Cycle of Convection 14

1.3.3 Previous Studies on the Diurnal Cycle

Previous studies have attempted to simulate the diurnal cycle using a combination of modelling
and observational approaches. Studies focused on better understanding features of the diurnal
cycle have typically involved CRM or single-column model (SCM) simulations initialized with
observations. As explained earlier in Section 1.2.1, a CRM enables explicit modelling of cu-
mulus convection without the need for parameterizations (Sato et al., 2009), while an SCM is a
one-dimensional, single-grid version of a GCM containing the same physical parameterization
schemes (Guichard et al., 2004). CRM and SCM results have also been used in combination to
test and improve GCM parameterizations based on their ability to reproduce a realistic diurnal
cycle.

Using CRM simulations of an idealized diurnal cycle, Stirling and Petch (2004) found that
deep convection intensifies and occurs earlier when moisture and temperature fluctuations gen-
erated from the previous day’s convection are included in the initial conditions. As part of the
Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) within the
Atmospheric Radiation Measurement (ARM) program, Xu et al. (2002) and Xie et al. (2002)
performed an intercomparison of several CRM and SCM parameterizations under summertime
midlatitude continental conditions. They found that while CRMs agreed well with observations,
SCMs could not accurately simulate convective events and surface precipitation due to possi-
ble deficiencies in the triggering mechanism. In the EUROpean Cloud Systems (EUROCS)
project, Guichard et al. (2004) also simulated an idealized diurnal cycle over land using CRMs
and SCMs and found that SCMs predicted an earlier onset of rain compared to the CRMs. Bech-
told et al. (2004) and Chaboureau et al. (2004) further investigated the physical reasons behind
SCM deficiencies, noting that SCM parameterizations were unable to properly reproduce the
cloud growth process from shallow to deep convective regimes.

Several studies have also been directed at diagnosing and rectifying the errors in convective
parameterization schemes. Stratton and Stirling (2012) were able to improve the diurnal cycle
represented over land in an SCM parameterization by reducing the entrainment rate as the lift-
ing condensation level (LCL) increases. Rio et al. (2009) also obtained a more realistic diurnal
cycle through a better representation of boundary-layer thermals and wakes which improve the
triggering and continuation of deep convection. Similar attempts were made by Bechtold et al.
(2014), who introduced an extended CAPE-dependent closure coupled to the boundary layer
forcing, and by Folkins et al. (2014), who allowed the initiation of convection from multiple
near-surface layers instead of a single layer.
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Another approach that has proved useful in improving simulations of the diurnal cycle is “super-
parameterization” or the “multiscale modelling framework” (MMF), which involves using a 2D
CRM within each grid box of a 3D GCM in place of the parameterization scheme (Grabowski,
2001; Khairoutdinov and Randall, 2001). The CRMs explicitly resolve convection in each grid
box and interact with each other through the large-scale circulation simulated by the GCM.
Using superparameterized GCMs, Khairoutdinov et al. (2005) and Tao et al. (2009) obtained
improved diurnal cycles over land and ocean, with the frequency and timing of precipitation
closely agreeing with observations. Zhang et al. (2008) were able to capture the precipitation
maximum, land-sea contrasts, and upper tropospheric relative humidity of the diurnal cycle in
an MMF. DeMott et al. (2007) found that an MMF version of a GCM was able to properly sim-
ulate the evolution of atmospheric thermodynamic variability during the diurnal cycle, unlike
the regularly parameterized version.

Despite these promising results, the high resolution of CRMs renders both CRM studies and
superparameterization approaches computationally expensive and unsuitable for longer, statis-
tically steady time integrations. It is therefore essential that efforts continue to be devoted to
testing and improving convective parameterization schemes in the near future. This can only
be achieved with a clearer understanding of sub-grid convective processes and organization in
GCMs, which in turn can lead to a better incorporation of memory effects in convective param-
eterization schemes.
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2. Our Study

“If we knew what we were doing, it wouldn’t be called research.”

— Albert Einstein

The previous section (Section 1) provided the scientific basis of our study. We reviewed the
need for and issues with traditional convective parameterizations (Section 1.1), introduced the
concept of convective memory (Section 1.2), and discussed the problem of simulating the diur-
nal convective cycle (Section 1.3). In this section, we elaborate on the specifics of our study,
including our aims, methods, and results. Section 2.1 discusses our research motive and the
questions we wish to address, Section 2.2 outlines the models and parameterization schemes
employed, and Section 2.3 presents our methods and research findings.

2.1 Introduction and Aims

Our study builds directly on that of Daleu et al. (2020), which was described in Section 1.2.1.
We aim to compare the memory properties of different convective parameterization schemes in
GCMs with those found in CRM simulations (which for the purpose of our study are taken to
represent the “true” convective behavior). We use the Met Office NERC Cloud model (MONC)
and the Unified Model (UM) with two different parameterization schemes: CoMorph and the
6a convection scheme. The 6a convection scheme is the current parameterization scheme used
in the Unified Model and is largely based on Gregory and Rowntree (1990). CoMorph is a new
scheme being developed by the Met Office under the Parameterization of Convection (ParaCon)
programme with the aim of improved physical representation of convective processes, model ac-
curacy, and performance (Whitall, 2019). More specifically, our study aims to identify whether
CoMorph shows an improvement over the 6a scheme, and if so, how memory properties of
CoMorph can be further enhanced by modifying various settings within the parameterization
scheme.

We define memory on the basis of 2D surface precipitation fields over the domain, using condi-
tional probabilities of rain events occurring at a given time and area relative to previous convec-
tion (as expressed mathematically in Equation (2)). For each model type and parameterization
scheme, we study the dependence of memory on different temporal and spatial scales. The
convective test case used in our study is that of an idealized diurnal cycle of tropical convection
as done by Daleu et al. (2020). In addition to memory, we also analyze and compare other con-
vective properties of significance including surface precipitation, mass-flux, and cloud fraction
within the different diurnal cycles. Detailed descriptions of the models, convection schemes,
and model settings are given in Section 2.2 below.
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2.2 Model and Scheme Descriptions

“Essentially, all models are wrong, but some are useful.”

— George E. P. Box

In the following sections 2.2.1 to 2.2.3, we provide descriptions of the Met Office NERC Cloud
Model (MONC), the Unified Model (UM), and the two convective parameterization schemes
(6a and CoMorph) employed within the UM. Finally, we outline our simulation setup in Sec-
tion 2.2.4.

2.2.1 Met Office NERC Cloud Model (MONC)

The Met Office NERC Cloud Model (MONC) is a re-write of the Large Eddy Model (LEM)
used in the Met Office for explicit cloud simulations (Brown et al., 2020). Since the 1980s, the
LEM has been used to study atmospheric phenomena and to test the Unified Model’s physical
parameterization schemes (e.g., Marsham et al., 2006; Hill et al., 2014). MONC continues to
serve the same purpose with improved scalability, performance, and compatibility with the lat-
est high-performance computing technology (Brown et al., 2020).

MONC uses a newly developed bulk cloud microphysics scheme known as the Cloud AeroSol
Interactions Microphysics (CASIM) model (Grosvenor et al., 2017). Designed to be more so-
phisticated than the old microphysics package used in the LEM, CASIM consists of prognostic
variables for different hydrometeor species such as vapour, liquid water, snow, ice and graupel,
and performs computationally expensive calculations of the interactions between these vari-
ables in the atmosphere (Grosvenor et al., 2017).

2.2.2 Met Office Unified Model (UM)

The Unified Model (UM) is a numerical model that has been used in the Met Office since the
1990s for weather and climate modelling on a wide range of spatial and temporal scales (Cullen,
1993). It is a fully compressible and deep non-hydrostatic model of the atmosphere, and can be
coupled to land, ocean and sea ice components as required. The model integration occurs using
a semi-implicit semi-Lagrangian (SISL) numerical scheme over a regular latitudinal and longi-
tudinal coordinate grid or an idealised Cartesian grid (as in this study). Horizontal and vertical
resolutions are variable, with horizontal grid sizes in the range of 1–50 km and the vertical grid
typically consisting of about 70 levels. The UM is extremely versatile and flexible, allowing for
different possible configurations depending on the exact needs of the user.
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Parameterization schemes are used for different sub-grid processes including convection, radi-
ation, boundary layer turbulence, and cloud microphysics. The radiation scheme, which repre-
sents the interaction of shortwave and longwave radiation with the surface and the atmosphere,
is based on Edwards and Slingo (1996). The current boundary layer mixing and turbulence
scheme is based on Lock et al. (2000). Gravity wave drag due to orographic and non-orographic
sources are parameterized using schemes proposed by Lott and Miller (1997) and Scaife et al.
(2002) respectively. The microphysics scheme which evaluates large-scale precipitation is that
of Wilson and Ballard (1999). Details of the current convection schemes in use are outlined in
Section 2.2.3 below.

2.2.3 CoMorph and the 6A Convection Scheme

As briefly mentioned in Section 2.1, the current convective parameterization scheme being used
in the UM is known as the “6A convection scheme” and has been in operation for the last three
decades (Gregory and Rowntree, 1990). A new scheme called “CoMorph” is currently being
developed and tested as a potential improved operational scheme that could replace the 6A
scheme. CoMorph was initiated in Phase 1 (2016–2019) of the ParaCon programme organized
jointly by the Met Office and NERC. Its capabilities are now being rigorously tested under dif-
ferent scenarios in Phase 2 of the programme (2019–present).

CoMorph and the 6A scheme are fundamentally similar in the following respects (e.g., Wal-
ters et al., 2019; Saffin et al., 2021):

1. Both schemes are diagnostic and based on the traditional mass-flux framework described
in Section 1.1.1.

2. Convection is coupled to and diagnosed by testing for buoyant ascent from within the
boundary layer.

3. Convection in each grid box is represented as a single “bulk” plume which represents the
statistical average of convective clouds over the whole grid cell.

In an attempt to improve the efficacy of the parameterization, several assumptions used within
the 6A scheme are relaxed within CoMorph to allow for a more flexible and generalized ap-
proach (Whitall, 2019). This results in some key differences between the two schemes, which
are as follows (Saffin et al., 2021):

1. The 6A scheme uses three different schemes to simulate shallow, mid-level and deep con-
vection respectively, while CoMorph adopts a unified adaptive scheme for all convective
regimes.
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2. In the 6A scheme, the vertical structure of convection is prescribed with a predetermined
cloud base height. In contrast, convection can be initiated at any height within CoMorph
where vertical instability is present (see Figure 2).

Figure 2: Some schematic differences in convection between the 6a scheme (left) and CoMorph (right).
Cloud-base height is predetermined and separate schemes exist for different convective regimes in 6a.
Parcels can ascend from any arbitrary height in CoMorph and a unified scheme is adopted regardless of
regime. Reproduced from Whitall (2019).

3. The 6A scheme employs cloud-base mass-flux as a closure variable which is rescaled to
conserve CAPE and vertical velocity budgets, whereas CoMorph allows mass-flux to be
determined locally from the static stability of the environment.

4. In the 6A scheme, the microphysics is very simple and uses a fixed freezing threshold of
0◦C, while the microphysics scheme within CoMorph allows air parcels to hold mixed-
phase cloud and to become supersaturated.

5. The 6A scheme uses an empirically determined entrainment function which can be mod-
ified based on precipitation and convection from the previous time step. CoMorph uses a
model of spherical buoyant air masses to evaluate the entrainment profile on the basis of
changing parcel radius, mass, and density with height.

6. Detrainment in the 6A scheme occurs through environmental mixing and buoyancy sort-
ing, while CoMorph determines detrainment through buoyancy sorting alone. Moreover,
detrainment in CoMorph assumes a probability distribution function of cloud buoyancy
values, while the 6A scheme uses a single value of buoyancy in each cloud.

7. In the 6A scheme, a downdraught scheme models the process of precipitation starting
from the cloud parcel to the surface, including any evaporation or melting along the way.
In CoMorph, surface precipitation is handled by the large-scale precipitation scheme after
each height level absorbs precipitation into its prognostic fields.



2.2 Model and Scheme Descriptions 20

8. The 6A scheme is explicit in nature as it accounts for changes in convective profiles at the
start of each time step instead of at the end. This often results in overstabilization of the
profile, leading to intermittent behaviour in the scheme. CoMorph involves an implicit
numerical scheme and yields smooth behaviour by accounting for convective properties
at the end of each time step.

Based on pre-operational trials and sensitivity tests (A. Lock, UKMO, 2021, personal commu-
nication), CoMorph has been shown to produce improved simulations of several tropical atmo-
spheric components including high cloud, cloud forcing, surface fluxes, tropospheric humidity
(see Figure 3), tropical cyclones, and the Madden-Julian Oscillation. However, the quality of
the simulated diurnal cycle of convection does not show significant improvement (see Figure 4).

Figure 3: Plots showing total atmospheric column water vapour from current UM (global atmosphere
and land configuration) simulations with a) CoMorph, b) CoMorph minus those with 6A convection
scheme, c) 6A scheme minus ECMWF reanalysis (ERA-40) data of total column water vapour, d) Co-
Morph minus ERA-40 data. Comparing c) and d), it is evident that CoMorph is able to reduce the dry
(negative humidity) bias over tropical land present in the 6A run. Reproduced from A. Lock, UKMO,
2021, personal communication.
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Figure 4: The local time of peak precipitation in the diurnal cycle over land as shown by Tropical Rain-
fall Measuring Mission (TRMM) observations (top) and as simulated by current UM (global atmosphere
and land configuration) simulations with the 6A convection scheme (bottom left) and with CoMorph
(bottom right). On average, CoMorph shows reduced accuracy in simulating the diurnal cycle compared
to the 6A scheme. Reproduced from A. Lock, UKMO, 2021, personal communication.

2.2.4 Model Settings

For our study, we use the same simulation settings as adopted in Daleu et al. (2020). In MONC,
our horizontal resolution is 200 m and the domain size is 102 x 102 km2. There are 512 grid
points in each horizontal direction and 99 grid points in the vertical direction. Our domain is
assumed to lie at the equator with the Coriolis parameter equal to zero. Periodic boundary con-
ditions are imposed on horizontal boundaries for all model variables. We use a non-interactive
land surface so that we are able to evaluate memory arising solely from the atmosphere.

Each of the surface forcings, that is, the surface sensible and latent heat fluxes, is positive and
sinusoidal during the day (0–12 hours after sunrise) when incoming solar radiation is positive,
and set to zero at night (12–24 hours) (see Figure 5). To achieve statistically significant results,
our simulation is run for 10 successive diurnal cycles starting from 6 AM in the morning on the
first cycle. The peak values of surface fluxes are reached at noon when the sun is directly over-
head, and each 24-hour day comprises a single forcing “cycle”. The control forcing has peaks
of sensible and latent heat fluxes equal to 130 and 400 W m−2 respectively. In order to balance
the surface forcing, the atmosphere is subject to an idealized radiative cooling profile which
represents the net effects of shortwave and longwave radiation (see Figure 6). The cooling rate
is −1.75 K day−1 in the lowest 12 km of the atmosphere and decreases linearly to 0 K day−1

from 12 km to 15 km. The radiative profile at night involves an additional cooling of −3.1 K
day−1 at the surface decreasing to 0 K day−1 at 1 km height. This ensures that convection does
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not occur until after the start of the next diurnal cycle.

Figure 5: The time evolution of the surface fluxes comprising latent and sensible heat fluxes over the
last nine days of our simulation. Latent heat fluxes are shown in red, sensible heat fluxes are shown in
blue, and total surface fluxes are shown in black.

Figure 6: The radiative cooling profile (in K day−1) applied to the atmosphere during each 24-hour
diurnal cycle.

In the UM, we use the same settings as in MONC. However, we use different horizontal res-
olutions of 4, 10, and 50 km with the CoMorph parameterization scheme, in order to test the
dependence of memory on horizontal spatial resolution. For the 6A scheme, we adopt a single
horizontal resolution of 10 km. We also use a different domain size in the UM equal to 800 x
800 km2, which remains constant for all UM simulations.
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2.3 Methods and Results

“The first principle is that you must not fool yourself and you are the easiest person to fool.”

— Richard Feynman

Sections 2.1 and 2.2 discussed the objectives of our study and the different models employed.
In this section, we describe the scientific methods adopted and present the results obtained. In
Section 2.3.1, we take a preliminary, qualitative look at the diurnal cycles of precipitation sim-
ulated by MONC and the UM using CoMorph and the 6A parameterization schemes. Next, we
analyze and compare the behaviour of ensemble mean precipitation and convective properties
in Sections 2.3.2 to 2.3.4. In Section 2.3.5, we evaluate and compare memory effects within the
diurnal cycles produced by each simulation. We then study the magnitude of spatial thermody-
namic variability arising from convection in the different simulations in Section 2.3.6. Finally,
in Section 2.3.7, we investigate the changes in the memory properties of the CoMorph scheme
in response to retuning various scheme parameters.

2.3.1 Preliminary Analysis

We begin by considering the behaviour of the domain-average surface precipitation for nine
successive diurnal cycles, from the second to the tenth cycle of our simulation. We leave out
the very first cycle when performing our analysis as our simulation is initialized with homoge-
neous thermodynamic conditions which are not realistic for the diurnal cycle, as Stirling and
Petch (2004) showed. The subsequent nine cycles are influenced by convectively generated
thermodynamic variability of the preceding day. Figure 7 shows the cycle-to-cycle convective
response of surface precipitation for the MONC (CRM) and UM (GCM) simulations with the
6A and CoMorph parameterization schemes.

MONC simulations produce a steady convective response from one diurnal cycle to the next,
without significant changes in amplitude and phase. Minor fluctuations between one cycle and
the next can be attributed to the slightly different initial conditions affecting each convective
cycle. Based on these characteristics, the convective regime produced by MONC can be said
to correspond to the quasi-equilibrium regime of very short memory proposed by Davies et al.
(2009) (as shown in Figure 1A). Convection responds quickly to the forcing, and each cycle
carries little to no memory of the previous cycle.

UM simulations with CoMorph at 4 and 10 km horizontal resolutions show significant cycle-to-
cycle variability within the nine days. The magnitude of peak precipitation decreases gradually
from the start of the simulation, becoming approximately uniform after the 5th day of the simu-
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lation. While not in exact correspondence with any of the memory regimes proposed by Davies
et al. (2009), this behaviour does indicate the presence of longer term memory (on the scale
of 24 hours and above) generated by the convective parameterization scheme. In the CoMorph
simulations, the precipitation magnitude appears to equilibrate after about 5 days, suggesting
that the memory effects set in at the start of the simulation and last for a few days. In the 6A
simulation at 10 km resolution, the behaviour is even more unpredictable—the peak precipita-
tion amplitude decreases over time and abruptly increases towards the end of the simulation.
The shape of the precipitation curve also changes significantly from one day to the next. This
suggests that memory effects might persist for longer than just a few days, perhaps for the en-
tirety of the simulation with the 6A scheme. UM simulations with the CoMorph scheme at 50
km horizontal resolution are less variable in magnitude than the 4 and 10 km simulations, but
do show some fluctuations in the shape of the diurnal cycle in the first few cycles.

Figure 7: Surface precipitation (in mm hr−1) is shown for the last nine successive diurnal cycles of each
simulation, including MONC, UM 6A, and UM CoMorph (4, 10, 50 km) simulations. The total surface
fluxes, that is, the sum of the latent and sensible heat fluxes, are also shown (in W m−2, scaled by factor
of 1000).
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The day-to-day variability in the convective response produced by the two parameterization
schemes is rather unexpected, given the unchanging precipitation series produced by MONC.
The cause of the long-term memory is also unclear. However, one possible source of the mem-
ory could be the initial homogeneous thermodynamic conditions used at the start of the simu-
lation, which may bias the initial response of the convection scheme until sufficient thermody-
namic variability builds up and enables the scheme to reach an equilibrium with model variables
and other model parameterizations. The initial conditions might also be linked to the fact that
the first few cycles (days 1–3 in Figure 7) in the CoMorph 4 and 10 km simulations appear to
trigger the onset of rain slightly earlier than subsequent cycles. Longer simulations of varying
durations (20–50 days) must be run using both schemes to identify if this memory is simply a
response to the initial conditions, or if it is a persistent feature of the convective parameteriza-
tion scheme itself. In the case of the latter, scheme parameters will have to be tested and retuned
in order to detect and possibly remove the source of unrealistic memory. In the case of the for-
mer, the simulation could potentially be initialized with naturally generated initial conditions to
remove the unwanted long term memory. We attempt to investigate the cause of this memory
by considering the day-to-day behaviour of convectively generated thermodynamic variability
in Section 2.3.6.

For our analysis, which is focused on evaluating memory within each diurnal cycle, we need
to neglect the effects of cycle-to-cycle memory which may bias our results. To work around
this issue, we consider only the consecutively consistent cycles within each simulation. For
the MONC simulations, all nine cycles are taken into consideration when evaluating ensemble
mean convective and memory properties. For the CoMorph 4, 10, and 50 km simulations, we
consider only the average of the last 4 cycles (days 6–9) and neglect the first five days during
which cycle-to-cycle memory effects are assumed to be present. For the 6A simulation, cycles
5–8 are chosen for the analysis since they provide the most similar sequence. Figure 8 below
shows the chosen set of cycles for each UM simulation, and the surface precipitation cycles
simulated by MONC are also shown for comparison.

Hereafter, for simplicity, we refer to the diurnal cycle or day number in the UM simulations
on the basis of Figure 8. For instance, the "second diurnal cycle" referred to in our analysis will
imply the seventh diurnal cycle in the original CoMorph simulation (or the sixth diurnal cycle
in the case of the 6A simulation). Original simulation day numbers (cycles 2–10) will be used
when referring to the MONC simulation.
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Figure 8: Surface precipitation (in mm hr−1) is shown for four successive, steady diurnal cycles of each
simulation. The total surface fluxes, that is, the sum of the latent and sensible heat fluxes, are also shown
(in W m−2, scaled by factor of 1000).

2.3.2 The Diurnal Cycle of Precipitation

Using our successive diurnal cycles, we evaluate the ensemble mean time series of precipitation
for each simulation. The composite time series of surface precipitation simulated by MONC,
CoMorph (4, 10, and 50 km), and the 6A scheme (10 km) are shown in Figure 9. The "trigger-
ing" time of the convective response is defined as the time at which convective activity begins
and is typically diagnosed using the time of ascent or nonzero mass flux. Here, we assume that
triggering occurs 15–30 minutes before the onset of precipitation in the diurnal cycle.

Daleu et al. (2020) describe in detail the convective response produced by MONC. Convection
shows a triggering time of ∼2.75 hours after the start of day. Precipitation increases steeply
right after triggering, reaching its peak value of 1.0 mm hr−1 at 4.5 hours (1.75 hours after
triggering) and declining more gradually until the surface fluxes drop to zero. This general be-
haviour is shared by the CoMorph 10 and 50 km precipitation time series, with the magnitude
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of the peak precipitation increasing for larger grid box sizes. The maximum precipitation val-
ues for the 10 and 50 km simulations are 1.0 and 1.6 mm hr−1, respectively, and occur at 4.25
and 4.75 hours, respectively. The CoMorph simulation at 4 km shows a maximum precipitation
of 0.8 mm hr−1 at 6.5 hours, but fails to produce the characteristic sharp diurnal peak. The
domain mean daily mean values for all the CoMorph simulations are approximately 0.17 mm
hr−1, slightly below the MONC average of 0.2 mm hr−1.

The precipitation time series produced by the 6A scheme differs greatly from those of MONC
and CoMorph as it shows multiple peaks during the day and underestimates the precipitation
rates throughout. 6A precipitation also shows a smaller domain mean daily mean value of 0.15
mm hr−1, and a significantly earlier onset of precipitation compared to the MONC and Co-
Morph simulations. CoMorph simulations all appear to have triggering times at around 2.75–3
hours after the start of day like in MONC, while the 6A simulation is triggered at 1.25 hours.
Overall, CoMorph simulates a much more realistic diurnal cycle than the 6A scheme, with the
10 km simulation most closely resembling the diurnal cycle produced by MONC.

(a)

(b) (c)

Figure 9: a. Composite time series of precipitation for the MONC (in green), CoMorph 4 km (in blue),
CoMorph 10 km (in purple), CoMorph 50 km (in pink), and 6A (in grey) simulations. Ensemble mean
and standard deviation values are shown by thick lines and shaded areas respectively. The surface forcing
time series (sum of sensible and latent heat fluxes) is also shown, scaled by a factor of 103. b. Same
as in a. but the time axis is shifted such that time equals zero corresponds to the time of convective
triggering in all simulations. c. Same as in b. but the normalized precipitation time series (instantaneous
precipitation divided by the domain mean daily mean precipitation) is shown instead.
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2.3.3 Convective Properties over a Single Forcing Cycle

To be able to better understand and improve the characteristics of the convective response pro-
duced by CoMorph, we further investigate properties of mass flux and cloud fraction simulated
by MONC and CoMorph. We evaluate the domain-mean mass flux (Mdomain = ρw, from Equa-
tion (1)) and domain-mean cloud fraction for each of our simulations. As in Daleu et al. (2020),
we evaluate these properties for two conditionally sampled diagnostics: all cloudy updrafts
(“ACu”) and buoyant cloudy updrafts (“BCu”). All cloudy updrafts are represented by grid
points with cloud liquid (ql) or ice (qi) mass mixing ratio greater than 10−5 kg kg−1 and with
positive vertical velocity (w > 0). In addition to the above two criteria, buoyant cloudy updrafts
also possess a positive virtual potential temperature anomaly with respect to the domain mean
virtual potential temperature (θ′

v > 0 K). The mass flux of ACu and BCu at each grid point sat-
isfying the condition is calculated using the product of the air density ρ and the vertical velocity
w. At each vertical model level, the domain-mean cloud fraction for ACu and BCu is defined as
the number of grid points satisfying the criteria for ACu and BCu respectively, divided by the
total number of grid points in the horizontal domain.

(a)

(b)

Figure 10: The time height-cross sections of a. mass flux per unit area (in kg m−2 s−1) and b. cloud
fraction (in %) for all cloudy updrafts ("ACu", in colours) and buoyant cloudy updrafts ("BCu", in
contour lines) for the second day of the MONC simulation.

Figure 10 shows the time-height cross sections of the domain average mass flux and cloud
fraction for the MONC simulation. The triggering of convection occurs when the mass flux first
turns positive, which occurs at 2.75 hours. The convective response starts out shallow, leading
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to a first peak in cloud fraction at the top of the boundary layer (∼1.5 km height) at 3 hours.
Ascent of cloudy updrafts immediately continues higher into the troposphere, forming mid-level
and high-level clouds which comprise a second peak in cloud fraction between 5–9 hours. The
highest cloud tops occur at 14 km. In the upper troposphere, mass flux peaks at 7.75 hours after
which convective activity decreases, ceasing completely between 15–24 hours. In the lower and
middle troposphere, mass flux peaks at around 4 hours, after which cloud formation decreases
and stops completely at 12 hours. As expected, the cycle in cloud fraction is delayed relative
to the cycle in mass flux, given the time taken for clouds to develop and expand higher into the
atmosphere.

(a) (b)

(c) (d)

(e) (f)

Figure 11: The time height-cross sections of a. mass flux per unit area (in kg m−2 s−1) and b. cloud
fraction (in %) for all cloudy updrafts ("ACu", in colours) and buoyant cloudy updrafts ("BCu", in
contour lines) for the second (or eighth, as in Figure 7) day of the CoMorph 4 km simulation. c.-d. and
e.-f. show mass flux and cloud fraction for the CoMorph 10 km and 50 km simulations respectively.
Note that the contour values/intervals used are different from those used for MONC in Figure 10.
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Figure 11 shows the time-height cross-sections of mass flux and cloud fraction from UM sim-
ulations with CoMorph at 4, 10, and 50 km resolutions. The convective response from the
convective parameterization scheme shows significant differences from the resolved convective
response. Mass flux and cloud fractions show a discontinuity between shallow (1.5–4 km) and
deep convective (5–14 km) regimes. This is expected given that convective parameterizations
generally use separate triggering conditions for boundary-layer, shallow and deep convection,
as was described in Section 1.1.3. Mass flux decreases on average as horizontal resolution de-
creases, while cloud fraction increases marginally for larger grid sizes. Both mass flux and
cloud fraction tend to be overestimated in the parameterized simulations compared to the re-
solved simulations. The peak in shallow convective mass flux occurs at around 7 hours in the
4 and 10 km simulations, which is a few hours later than in the MONC simulation. The peak
in mid-level and deep convective mass flux occurs 2–3 hours earlier than in MONC and is un-
derestimated in magnitude by a factor of almost ∼2. This fits within the commonly observed
pattern of GCMs tending to produce an early onset and reduced amplitude of precipitation in
the diurnal cycle.

Like in MONC, cloud fractions in CoMorph show a vertically bimodal distribution, with the
two peaks corresponding to shallow and deep convective clouds. However, the peak in shallow
cloud fraction is delayed by a few hours and slightly overestimated (consistent with the shallow
mass flux). The deep convective cloud fraction is more well-behaved, with a peak occurring
after 5 hours as in MONC. The cloud fraction peak in the upper troposphere is also larger
than in MONC by a factor of ∼2. Overall, performance by the CoMorph scheme in terms of
reproducing the correct convective behaviour worsens as model resolution decreases, that is,
the 4 km simulation performs the closest to the “truth” out of all three simulations. The 4 km
simulation gives us the least bias in magnitudes of deep convective mass flux and cloud fraction.

2.3.4 Ensemble Mean Convective Properties

In Section 2.3.3, we considered convective properties over a single forcing cycle for MONC and
CoMorph. We now evaluate ensemble mean cloud-base mass flux and cloud-base cloud frac-
tion over several forcing cycles for MONC and CoMorph and compare the simulated behaviour.

The composite time series of cloud-base mass flux for MONC and CoMorph simulations are
shown in Figure 12. Cloud base is taken to be the lowest height at which the cloud liquid mixing
ratio exceeds 10−5 kg kg−1 and is approximately at 1.5 km in both MONC and CoMorph sim-
ulations. Compared to MONC, CoMorph simulations at 4 and 10 km tend to overestimate the
magnitude of mass flux throughout the diurnal cycle, and produce convective activity until later
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in the day (at hours 14–16 instead of hour 12). CoMorph simulations at 50 km underestimate
cloud-base mass flux throughout the day. Overall, CoMorph simulations fail to produce a realis-
tic evolution of convective mass flux within the diurnal cycle when compared with MONC. The
composite time series of cloud-base cloud fraction is also shown in Figure 12. It is clear that
larger grid box sizes (≥ 10 km) tend to produce heavier than normal cloud fractions throughout
the diurnal cycle. The evolution of cloud fraction in the 4 km simulations with CoMorph most
closely matches the cloud fraction in MONC, but has an earlier onset and decay. The defi-
ciencies in mass flux and cloud fraction behaviour are most likely due to various limitations in
the design of the CoMorph parameterization scheme. Section 2.3.5 will attempt to investigate
whether improvements in the features of the simulated diurnal cycle are possible by retuning
select parameters within the scheme.

(a)

(b) (c)

Figure 12: a. The ensemble mean time series of “ACu” cloud-base mass flux (in kg m−2 s−1) is shown
for MONC and CoMorph (4, 10, 50 km) simulations. Ensemble mean and standard deviation values are
shown by thick lines and shaded areas respectively. Scaled values of the surface fluxes are also shown.
b. The ensemble mean time series of “ACu” cloud-base cloud fraction (in %) is shown for MONC and
CoMorph simulations. c. A zoomed in version of b. to show the evolution of cloud fraction in MONC
and CoMorph (4 km).

2.3.5 Memory Properties

Following Daleu et al. (2020), we use Equation (2) to define and quantify memory on the
basis of the conditional probability of occurrence of present convection given the probability of
occurrence of past convection, with a functional dependence on the time t0 after triggering, the
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time lag ∆t between present and past convection, and the spatial area A under consideration.
Equation (2) is reproduced below for reference.

M(A, t0,∆t) = P [R(A, t0) ∩R(A, t0 −∆t)]− P 2[R(A, t0,∆t)]

Here, M represents the magnitude of convective memory from within the diurnal cycle which
influences a given area at a given time. The variable representing convective activity and mem-
ory is chosen to be the two-dimensional surface precipitation field, as in Daleu et al. (2020). M
is given by the difference of two probability terms, where the first term represents the probabil-
ity of rainfall occurring simultaneously over an area A at both the present time t0 and a previous
time t0−∆t, and the second term is the probability of simultaneous rain at the two times if they
were completely random, independent events.

To satisfy the probability condition, rain is said to occur over an area if the mean precipita-
tion over the area is greater than 0.1 mm hr−1 (though we also test other rain threshold values
in the course of our analysis). To test the spatial dependence of memory, the ensemble mean
probabilities of rain and the memory functions are evaluated using the instantaneous surface
precipitation fields averaged onto various coarse grids of areas A equal to or larger than the
grid-scale. The dependence of memory on time scale is examined using different values of
time t0 after the triggering. We evaluate memory functions over different areas and at different
times for MONC simulations and UM simulations with both CoMorph and the 6A convection
schemes.

For statistically significant results, the probability and memory functions are calculated for each
forcing cycle and the ensemble mean is taken. Also, since the different simulations show pre-
cipitation time series which are out of phase with each other (as seen in Figure 9), the various
UM precipitation cycles are phase-shifted so that their triggering time is aligned with that of the
MONC simulation; this ensures that memory from equivalent phases in the different convective
cycles are being compared.

Figure 13 shows probability and memory functions for MONC simulations. The probability
of rain follows a similar distribution in time as the domain-mean precipitation (shown in Fig-
ure 9), with the probability of rain occurrence increasing sharply after triggering and decreasing
gradually to zero when precipitation stops at 12 hours. The maximum probability occurs earlier
and lasts longer for increasing spatial area, due to the presence of more numerous and frequent
rain events over a larger domain.
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(a) (b)

(c) (d)

Figure 13: a. Probabilities of finding rain (P[R(A, t0)]) for different areas in the MONC control sim-
ulations. The time axis is shifted such that time equals zero corresponds to the time of triggering. b.
Memory functions (M(A, t0, ∆t)) for A = 4x4 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and
9 hours after triggering. Memory functions for different areas are shown for (c.) t0 = 3 hours and (d.) 6
hours after triggering.

As explained by Daleu et al. (2020), memory functions for MONC convection exhibit three-
phased behaviour. The first phase shows positive memory decreasing to zero over time and
lasts for about an hour. It indicates the persistence of current convection, which increases the
probability of convection occurring within an hour after first developing (relative to no mem-
ory). The second phase, which lasts from 1–3 hours, shows negative memory decreasing to a
minimum value and increasing to zero again. It indicates a relative suppression of convection in
areas that were previously raining for the first one hour. The third and final phase lasts from 3–5
hours and shows memory increasing from zero, reaching a small positive value and plateauing
to zero again at the end. It indicates a secondary enhancement of convection in areas that were
less likely to rain between 1–3 hours. As described in Section 1.2.1, memory in MONC is
strongest at scales of 4–10 km and is negligible for areas of 25 x 25 km2 and greater. This is
seen in the changing magnitudes of the maxima and minima in each memory phase as a differ-
ent spatial area is considered (Figure 13c.-d.).

Memory was also evaluated for different conditional thresholds of precipitation to examine
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the sensitivity to the threshold value (see Figure 14). Everywhere, memory was found to be
larger for greater thresholds, implying reduced suppression and greater enhancement of precip-
itation when the mean precipitation is higher. The enhancement phase began earlier for stronger
precipitation thresholds, and the suppression phase was absent for large enough thresholds.

(a)

(b) (c)

Figure 14: Top: Probabilities of finding rain (P[R(A, t0)]) for A = 4x4 km2 for different rain thresholds
of 0.1, 0.2 and 0.5 mm hr−1 in the MONC control simulations. The time axis is shifted such that time
equals zero corresponds to the time of triggering. Bottom: Memory functions (M(A, t0, ∆t)) for A =
4x4 km2 for different rain thresholds for for t0 = 3 (left) and 6 (right) hours after triggering.

Memory properties were then examined for CoMorph simulations performed with three differ-
ent horizontal resolutions—4 km, 10 km, and 50 km—while keeping the domain area constant
at 800 x 800 km2. Probability functions for CoMorph and the 6A scheme are shown in Figure 15
below. The probability cycles for CoMorph and 6A are phase-shifted to match the triggering
times shown by the corresponding MONC probability curves. Due to their triggering times
already being similar, most CoMorph probabilities did not have to be adjusted; however, the
6A probability cycle was shifted to a few hours later in the day to match the MONC triggering
time. As in MONC, the probability curves largely follow the behaviour of their corresponding
domain mean precipitation curves (shown in Figure 9). The peak value of precipitation in Co-
Morph increases as the grid box size increases, and the peak occurs later in the day as horizontal
resolution increases.
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Figure 15: Probabilities of finding rain (P[R(A, t0)]) over grid-scale area in CoMorph (4, 10, 50 km)
and 6A (10 km). The time axis is shifted such that time equals zero corresponds to the time of triggering.
MONC probability functions for corresponding spatial areas are shown for comparison.

Memory functions for CoMorph (4, 10, 50 km) simulations are shown in Figure 16. For Co-
Morph simulations with 4 km resolution, only the first phase of memory is present for convec-
tion up to t0 = 6 hours, and it lasts for 1–6 hours after the start of convection (compared to a
maximum of 1 hour duration for the MONC simulations). This first phase also has larger mag-
nitudes of memory that those found in MONC simulations, indicating excess and prolonged
memory associated with the initial persistence of convection. The second phase of suppression
only sets in for convection produced from t0 = 7 hours after triggering (compared to t0 = 2.25
hours for MONC). From t0 = 7 hours, the first phase is shortened to 1–2 hours in duration and
the second phase lasts at least 6 hours, suppressing rain in regions which were raining in the
first 1–2 hours. The third phase is absent altogether, and all memory becomes negligible after t0
= 9 hours after triggering. With coarse-grained averaging beyond 4 x 4 km2, the memory func-
tion does not exhibit significant changes in magnitude or in phase (Figure 31 in the Appendix).
Compared to MONC memory at the 4 km scale, CoMorph has a first phase of memory that
plays a longer, more dominant role in the convective cycle and delays the onset of the second
phase of memory (Figure 32 in the Appendix). The duration of the second phase in CoMorph
is also approximately double that in MONC simulations, with slightly larger negative memory
associated with it.

For CoMorph simulations with 10 km resolution, we again observe a stronger and prolonged
first phase which lasts for 1–5 hours after the start of convection (compared to 1–2 hours in the
MONC simulations) and is the only phase of memory present up to t0 = 5 hours. The second
phase is present for convection starting from t0 = 5.75 hours after triggering (compared to 3.25
hours for MONC)). At all the times when the second phase is present, the first phase lasts for 1–
3 hours in duration and the second phase lasts for 2-7 hours, suppressing rain in regions raining
for the first few hours. Again, the third phase is absent for convection at all times and memory
effects disappear after t0 = 9 hours. With coarse-grained averaging beyond 10 x 10 km2, the
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magnitude of memory in the first phase decreases significantly as spatial area increases (Fig-
ure 33 in the Appendix). The second phase of memory disappears for areas 20 x 20 km2 and
larger, leaving only the first phase of persistence of convection. Compared to MONC memory
at the 10 km scale, the first phase in CoMorph 10 km lasts longer and delays the second phase.
The duration of the second phase is also on average longer than in the MONC simulations (Fig-
ure 34 in the Appendix).

Figure 16: Memory functions (M(A, t0, ∆t)) for the UM CoMorph simulations for spatial areas of A =
4x4 km2 (in blue), 10x10 km2 (in purple), and 50x50 km2 (in pink) for different times t0 = 1.2, 2, 2.25,
3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours after triggering.
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For CoMorph simulations with 50 km resolution, the first phase of memory is weaker compared
to the 4 km and 10 km resolution for convection produced in the initial hours after triggering.
Persistence memory becomes considerable from t0 = 4.5 hours and decreases again for con-
vection produced at t0 = 9 hours. The second phase sets in for convection produced from t0

= 7 hours, and lasts about 3–4 hours in duration. As before, the third phase is absent. The
MONC simulations show virtually zero memory for all times at scales of 50 km. Hence, Co-
Morph shows excess first phase (positive) and second phase (negative) memory at the 50 km
scale (Figure 36 in the Appendix).

For all CoMorph simulations, memory disappears after t0 = 9 hours as in the MONC simula-
tions. The sensitivity of CoMorph memory to precipitation thresholds was also examined and
was observed to be negligible for all three resolutions (see Figure 31, Figure 33, and Figure 35
in the Appendix).

Figure 17 shows the difference in memory between CoMorph and MONC simulations for each
of the three resolutions at different times t0 after triggering. It is clear that excess positive first
phase memory persists well after the start of convection, and excess negative memory prevails in
the later hours due to a delayed suppression phase in place of a secondary enhancement phase.
On average, the 4 km simulations appears to have greater magnitudes of memory than the 10
and 50 km simulations, especially in the first phase.

Figure 17: Differences in the memory functions (M(A, t0, ∆t)) of UM CoMorph and MONC simula-
tions for spatial areas of A = 4x4 km2 (in blue), 10x10 km2 (in purple), and 50x50 km2 (in pink) for
different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours after triggering.
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Finally, memory properties were examined for UM simulations using the 6A convection scheme
with a single horizontal resolution of 10 km. The 6A scheme exhibits almost zero memory
throughout the diurnal convective cycle, as shown in Figure 18. Memory also remains negligible
regardless of the precipitation threshold and spatial area (Figure 37 in the Appendix).

Figure 18: Memory functions (M(A, t0, ∆t)) for the UM 6A simulation for spatial area A = 10x10 km2

(in grey) for different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours after triggering.

Hence, the CoMorph parameterization scheme shows a strong improvement over the 6A scheme
not only in terms of simulating the diurnal cycle of precipitation (as we saw in Section 2.3.2),
but also in accounting for the effects of convective memory within the diurnal cycle. However,
the CoMorph scheme is far from perfect, as it captures the incorrect magnitude and timing of
memory at all three horizontal resolutions adopted. The very first step in diagnosing how to
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improve the memory properties produced by CoMorph might be to try to improve the accuracy
and behaviour of the simulated diurnal cycle. That is what we attempt to do in Section 2.3.7.
Before that, in the next section, we examine and compare the behaviour of spatial thermody-
namic variability arising from convection in each of our simulations.

2.3.6 Spatial Thermodynamic Variability

Section 1.2.2 emphasized the significant role of low-level spatial thermodynamic variability
in generating convective memory in the atmosphere and influencing future convection. Bear-
ing this in mind, one possible physical explanation for the considerable differences in memory
properties in our different simulations could be discrepancies in the magnitude and/or behaviour
of small-scale thermodynamic variability generated by the corresponding diurnal cycles. In or-
der to better understand memory mechanisms in our models, we evaluate the magnitudes and
spatial distribution of variability in potential temperature (θ) and moisture (qv) in the MONC
and CoMorph simulations. Thermodynamic variability refers to deviations or anomalies in the
potential temperature and specific humidity values at each grid point with respect to the do-
main mean values. A positive (negative) θ anomaly implies warmer (colder) than average air
temperature, and a positive (negative) qv anomaly implies moister (drier) than average humidity
content in the air. We investigate the spatial pattern of variability in both the horizontal and
vertical directions in our 3D simulations. Figure 19 shows the thermodynamic fields generated
in MONC by the end of the third diurnal cycle, therefore comprising the initial conditions for
the fourth diurnal cycle.

As Daleu et al. (2020) assert, thermodynamic and moisture anomalies tend to be negatively
correlated with each other in the lower troposphere. Anomalously warm air possesses a rel-
atively lower humidity content than average, while anomalously cool air possesses a higher
humidity content than average. This is expected given that the saturated vapour pressure of
water vapour increases as temperature increases, favouring the process of evaporation and in-
creasing the saturation capacity of air. It is evident from Figure 19 that moisture fluctuations
are more prominent at a height of 1 km than at 3 km, and reduce greatly above 4 km. Potential
temperature fluctuations, on the other hand, do not show a significant change in magnitude with
height within the troposphere.

In order to examine thermodynamic variability on scales of ∼5–20 km in our CoMorph simu-
lations, we consider the potential temperature and water vapour anomalies within a 100 x 100
km2 subset in the interior of our 800 x 800 km2 UM domain. This enables us to compare spatial
distributions on equivalent domains in the MONC and CoMorph simulations. Thermodynamic
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variability is also examined on the large-scale for the entire UM domain and the cross sections
for each CoMorph case (4, 10, 50 km) are shown in the appendix (Figures 38 to 40).

(a)

(b)

Figure 19: a. Vertical cross section at y = 50 km (left) and horizontal cross sections at heights of z = 1
km (centre) and z = 3 km (right) of potential temperature anomalies with respect to the domain mean
at the end of the third diurnal cycle in the MONC simulation. b. Vertical cross section at y = 50 km
(left) and horizontal cross sections at heights of z = 1 km (centre) and z = 3 km (right) of water vapour
anomalies with respect to the domain mean at the end of the third diurnal cycle in the MONC simulation.

Figure 20 shows the thermodynamic fluctuations at the start of the second forcing cycle in the
CoMorph 4 km simulation. CoMorph does not capture the small-scale variability to the same
detail as MONC does, and produces larger (>10 km), more homogeneous patterns of anoma-
lies. The anti-correlation between moisture and temperature in the lower troposphere is not as
discernible and sharply defined as in MONC’s thermodynamic fields. Figure 21 and Figure 22
show the thermodynamic fluctuations for CoMorph 10 and 50 km simulations respectively. In
general, as resolution decreases, the size and homogeneity of the anomalous regions increase
and the average magnitudes of the thermodynamic perturbations decrease. There is virtually
no evidence of any anti-correlation between moisture and temperature at 10 km and 50 km
resolutions. Overall, convection simulated by the CoMorph scheme fails to generate sufficient
thermodynamic variability to influence future convection in the manner predicted by MONC.
The reasons for this behaviour most likely lie in the assumptions used by the parameterization
scheme in its large-scale treatment of cloud ensembles.
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(a)

(b)

Figure 20: a. Vertical cross section at y = 50 km (left) and horizontal cross sections at heights of z = 1
km (centre) and z = 3 km (right) of potential temperature anomalies with respect to the domain mean at
the end of the first (or sixth, as in Figure 7) diurnal cycle in the CoMorph 4 km simulation. b. Vertical
cross section at y = 50 km (left) and horizontal cross sections at heights of z = 1 km (centre) and z = 3
km (right) of water vapour anomalies with respect to the domain mean at the end of the first diurnal
cycle in the CoMorph 4 km simulation. Note that the contour intervals differ from those in Figure 19 for
MONC, but remain consistent across all UM simulations.

In Section 2.3.1, we surmised that the CoMorph and 6A schemes might be generating a long-
term convective memory which may be responsible for the differences in behaviour between
successive diurnal cycles. In order to gain insight into the possible reason for this memory,
we examined convectively generated thermodynamic variability from the initial few days (days
1–5) for all CoMorph simulations and compared our results with days 6–9 in the second half
of each simulation. No significant differences were observed in the magnitudes and patterns
of spatial variability from one day to another (not shown). As a result, the source of the long-
term memory in the parameterization scheme remains unclear. Performing considerably longer
simulations with CoMorph and analyzing the thermodynamic fluctuations from different days
within the simulation might throw light on whether this memory continues to persist indefi-
nitely, or if not, on how long it lasts and how it might affect the generation of short-term con-
vective memory in the atmosphere. Modifying scheme parameters and studying the resulting
convective response would also throw insight on any other possible reasons, whether physical
or unphysical, for the unexpected cycle-to-cycle variability in CoMorph and 6A simulations.
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(a)

(b)

Figure 21: Same as in Figure 20 but for the CoMorph 10 km simulation.

(a)

(b)

Figure 22: Same as in Figure 20 and Figure 21 but for the CoMorph 50 km simulation.
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2.3.7 Improvement of CoMorph Memory

As we saw in Section 1.2.2, the control settings of CoMorph do not perfectly simulate the diur-
nal cycle. While CoMorph is a significant improvement over the 6A scheme, biases persist in
the magnitudes of the daily mean and peak precipitations, as well as in the qualitative shape of
the simulated precipitation cycle itself.

At 4 km resolution, the peak in precipitation is not sharply defined and precipitation declines
more gradually compared to the MONC simulation. The behaviour of memory in CoMorph
also shows discrepancies in magnitude and phase compared to the memory in MONC. As part
of development testing, several CoMorph parameters were varied in an attempt to improve the
memory properties of the diurnal cycle with respect to the control run at 4 km. From these, we
consider two additional simulation cases with modified settings at 4 km resolution, referred to
as Case 2 and Case 3.

Case 2 includes corrections to avoid a spurious increase in parcel moisture perturbation at
low relative humidity and the double-counting of turbulence-based parcel perturbations within
liquid-cloud. Additionally, the magnitude of turbulence-based parcel perturbations is reduced
from 66.7% to 33.3% and convection is not allowed to trigger from overshooting of forced cu-
muli. Case 3 involves an amplification factor that has been applied only to parcels triggering
liquid-cloud. Case 2 and Case 3 are chosen for analysis because they were seen to produce
better results in simulating the diurnal cycle.

Figure 23 shows the last nine successive diurnal cycles simulated by CoMorph Case 2 and
Case 3 runs. MONC and CoMorph 4 km control cycles are also shown for comparison. As in
the other CoMorph simulations, we observe significantly earlier onset and day-to-day fluctua-
tions in the amplitude of precipitation in the first five days of the simulation. In order to evaluate
statistically steady convective and memory properties, we consider only the consistent, steady
cycles (days 6–9) of the Case 2 and Case 3 simulations in our analysis. The four successive
diurnal cycles considered are shown in Figure 24.
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Figure 23: Surface precipitation (in mm hr−1) is shown for the last nine successive diurnal cycles of the
CoMorph 4 km Control (second panel, in blue), Case 2 (third panel, in cyan), and Case 3 (fourth panel,
in brown) simulations. MONC precipitation cycles are shown in the top panel (in green) for comparison.
The total surface fluxes, that is, the sum of the latent and sensible heat fluxes, are also shown (in W m−2,
scaled by factor of 1000).

Figure 24: Surface precipitation (in mm hr−1) is shown for four successive, steady diurnal cycles of the
CoMorph 4 km Control (second panel, in blue), Case 2 (third panel, in cyan), and Case 3 (fourth panel,
in brown) simulations. MONC precipitation cycles are shown in the top panel (in green) for comparison.
The total surface fluxes, that is, the sum of the latent and sensible heat fluxes, are also shown (in W m−2,
scaled by factor of 1000).
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The composite time series of precipitation for CoMorph 4 km Control, Case 2 and Case 3
simulations are shown in Figure 25. While the control simulation has a triggering time very
similar to MONC at ∼2.75 hours, Cases 2 and 3 show an earlier onset of convection at 2–2.25
hours. However, Cases 2 and 3 show a noticeable improvement over the control run in the
shape of their precipitation cycle—the steep increase and peak in precipitation become more
well-defined. Despite this improvement, both cases underestimate the domain mean daily mean
precipitation rate compared to that of MONC by about 10–15%. This is likely due to the sharper
and earlier decline in precipitation relative to what is seen in MONC.

Probability functions for Case 2 and Case 3 are shown in Figure 26 below. It is clear that
both cases are able to reproduce the sharp increase in precipitation right after triggering. How-
ever, the distribution of rain remains inaccurate; too much rain occurs in the first six hours of
the day and too little rain occurs after noon.

(a)

(b) (c)

Figure 25: a. Composite time series of precipitation for MONC (in green), CoMorph 4 km Control
(in blue), CoMorph 4 km Case 2 (in cyan), CoMorph 4 km Case 3 (in brown) simulations. Ensemble
mean and standard deviation values are shown by thick lines and shaded areas respectively. The surface
forcing time series (sum of sensible and latent heat fluxes) is also shown in W m−2, scaled by a factor of
103. b. Same as in a. but the time axis is shifted such that time equals zero corresponds to the time of
triggering in all simulations. c. Same as in b. but the normalized precipitation time series (instantaneous
precipitation divided by the domain mean daily mean precipitation) is shown instead.
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Figure 26: Probabilities of finding rain (P[R(A, t0)]), using a minimum rain threshold of 0.1 mm hr−1,
over A=4x4 km2 in CoMorph 4 km Control (in blue), Case 2 (in cyan), and Case 3 (in brown) simulations.
The time axis is shifted such that time equals zero corresponds to the time of triggering. The MONC
probability function for A=4x4 km2 is shown (in green) for comparison.

Memory functions for the Control, Case 2, and Case 3 simulations are shown in Figure 27.
Case 2 captures only the first phase of memory until t0 = 6 hours after triggering, and the first
phase lasts for 1–6 hours like in the control case. The second phase of memory is present for
convection starting from t0 = 7 hours, again as in the control. When the second phase is present,
the first phase lasts for ∼1–1.5 hours and the second phase lasts for 4–6 hours. The third phase
is absent as it was in all CoMorph simulations so far. Case 2 shows some improvement over
the control in reducing the magnitude of excess positive memory associated with developing
convection in the first phase and in reducing the excess negative memory associated with sup-
pression of rain in the second phase. Case 2 also slightly reduces the (excess) duration of the
second phase which was present in the control.

Case 3 possesses negligible memory in the first phase until t0 = 4.5 hours and the first phase is
the only active phase of memory for convection until t0 = 5 hours. The second phase sets in for
convection starting at t0 = 5.75 hours, a little more than an hour earlier than in Case 2 and the
control. When the second phase is present, the first phase lasts for 1–2 hours and the second
phase lasts for 2–3 hours. The third phase is absent and all memory effects disappear after t0 = 9
hours. Case 3 performs worse than Case 2 and the control when it comes to reproducing the first
phase of memory in the initial hours of convection, but shows an improvement by reducing the
delay in the onset of the second phase of memory. The magnitude and duration of the second
phase in Case 3 also resemble that of MONC more than the control and Case 2.

As we did in Section 2.3.6, we examine spatial thermodynamic variability in Case 2 and Case 3,
which are shown in Figure 28 and Figure 29 respectively. The potential temperature and water
vapour anomalies show no significant differences in magnitude and in distribution relative to
those in the control simulation (Figure 20). As before, small-scale thermodynamic structures
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are unresolved by the CoMorph scheme at 4 km horizontal resolution even after the modifica-
tion in parameters, and this could contribute to the bias in memory effects relative to the MONC
simulation.

Figure 27: Memory functions (M(A, t0, ∆t)) for A = 4x4 km2 for CoMorph 4 km Control (in blue),
Case 2 (in cyan), and Case 3 (in brown) simulations for different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5,
5.75, 6, 7, 8, 9, 10 and 11 hours after triggering. MONC memory functions for A = 4x4 km2 are also
shown (in green) for comparison.
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(a)

(b)

Figure 28: a. Vertical cross section at y = 50 km (left) and horizontal cross sections at heights of z = 1
km (centre) and z = 3 km (right) of potential temperature anomalies with respect to the domain mean
at the end of the first (or sixth, as in Figure 7) diurnal cycle in the CoMorph 4 km Case 2 simulation. b.
Vertical cross section at y = 50 km (left) and horizontal cross sections at heights of z = 1 km (centre)
and z = 3 km (right) of water vapour anomalies with respect to the domain mean at the end of the first
diurnal cycle in the CoMorph 4 km Case 2 simulation.

(a)

(b)

Figure 29: Same as in Figure 28 but for the CoMorph 4 km Case 3 simulation.
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We also evaluate the domain-mean mass flux and cloud fraction at cloud-base for Case 2 and
Case 3 over multiple forcing cycles, like we did in Section 2.3.4. Figure 30 shows the ensemble
mean cloud-base mass flux and cloud fraction for Case 2 and Case 3 simulations. The behaviour
of ensemble mean mass flux shows a significant improvement in Case 3 compared to the control,
though there is not much improvement in Case 2. Cloud fraction, on the other hand, behaves
worse in Case 2 and Case 3 compared to the control.

(a) (b)

Figure 30: a. The ensemble mean time series of “ACu” cloud-base mass flux (in kg m−2 s−1) is shown
for CoMorph 4 km Control (in blue), Case 2 (in cyan), and Case 3 (in brown) simulations. MONC mass
flux (in green) is also shown for comparison. Ensemble mean and standard deviation values are shown
by thick lines and shaded areas respectively. b. The ensemble mean time series of “ACu” cloud-base
cloud fraction (in %) is shown for MONC and CoMorph 4 km simulations.

Our results show that modifying certain parameters within the CoMorph scheme proves bene-
ficial in improving the behaviour of the precipitation cycle, as well as in reducing some of the
excess and prolonged memory associated with the first and second phases of persistence and
suppression of convection respectively. However, no all-around improvements are obtained in
the simulation of thermodynamic variability on the small-scale and in the simulation of convec-
tive properties of mass flux and cloud fraction.
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3. Conclusion

3.1 Summary and Discussion

We examined and compared idealized diurnal cycles of precipitation simulated by the Unified
Model (UM) using two convective parameterization schemes: CoMorph and the 6A scheme.
Our evaluations were based on the results of similar diurnal cycle simulations performed by
MONC, a high-resolution cloud-resolving model. We made use of three different horizontal
resolutions with the CoMorph scheme (4, 10, and 50 km) and one horizontal resolution (10 km)
with the 6A scheme.

We found that the CoMorph scheme demonstrates a significant improvement over the 6A scheme
in reproducing realistic amplitudes and more importantly, the realistic timing and shape of the
domain-mean precipitation in the diurnal cycle. CoMorph eliminates the issue of multiple pre-
cipitation peaks produced by 6A and reduces the negative bias in precipitation magnitudes.
Specifically, CoMorph performed best in this regard when a horizontal model resolution of 10
km was employed.

We also compared memory effects within the diurnal cycles simulated by each parameteri-
zation scheme. Here too, CoMorph shows a notable improvement over the 6A scheme. While
the 6A scheme shows a complete absence of any memory effects at all time scales after the start
of convection, the CoMorph scheme is able to capture memory effects at all three grid scales
considered. Diurnal cycles in CoMorph show the presence of the first phase of memory asso-
ciated with the persistence of developing convection and the second phase associated with the
suppression of convection. However, the third phase of secondary enhancement of precipitation
is completely absent at all three horizontal resolutions. Moreover, the amplitudes and timing of
the first and second phases in CoMorph possess biases relative to their reference values in the
MONC simulation. On average, CoMorph generates excess positive memory in the first phase
of convection and prolongs the duration of the first phase. CoMorph also delays the onset of the
second phase and prolongs its duration at all spatial scales.

Given CoMorph’s improved memory properties relative to 6A, we investigated convective prop-
erties of domain-mean mass flux and cloud fraction arising from the CoMorph parameterization
scheme. Like in MONC, CoMorph produces two peaks in mass flux and cloud fraction associ-
ated with shallow and deep convection respectively. However, CoMorph tends to delay the peak
in shallow convective mass flux and overestimate its magnitude. The opposite occurs with deep
convective mass flux; the peak occurs earlier and is underestimated in magnitude relative to
MONC. Shallow convective cloud fraction also peaks late, and the magnitudes of shallow and
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deep convective cloud fractions are both overestimated. We next considered the spatial thermo-
dynamic fluctuations generated by the end of each diurnal cycle in the CoMorph scheme. We
found that CoMorph struggles to capture small-scale anomalies in temperature and moisture
and to produce a clear anticorrelation between temperature and moisture anomalies in the lower
troposphere.

Finally, we attempted to retune certain parameters within CoMorph with the aim of obtaining
an improved diurnal cycle and memory properties. At 4 km resolution, our modifications im-
prove the simulation of the steep increase in precipitation after triggering and produce a sharper
diurnal peak. Memory properties also show an improvement over the control in that the excess
first phase memory is reduced and the delayed second phase sets in earlier.

In all simulations, both parameterization schemes produced considerable day-to-day variability
in their initial convective response, indicating the existence of a long-term memory possibly
arising either from the parameterization scheme or from the homogeneous initial conditions
used for the simulations. Our investigation of thermodynamic variability did not reveal quali-
tative or quantitative differences between the initial days and the later days in each simulation.
Hence, the exact cause of this long-term memory effect remains unclear and can only be diag-
nosed with longer simulations of 20–50 days and by modifying a range of scheme parameters.

The cycle-to-cycle fluctuations are significant at resolutions of 4 and 10 km with both schemes,
and are negligible with CoMorph at a resolution of 50 km. This could suggest a possible connec-
tion of this long-term memory with grey-zone scales. Unexpected memory effects could arise
at these scales due to discontinuities between parameterized and resolved convective flows, or
due to the nondeterministic nature of convection given a very small cloud sample size. Further
model runs need to be performed at a range of different resolutions within the grey-zone to iden-
tify the scales at which the inter-cycle memory arises and fades away. This would provide an
indication of the scales over which the assumptions and/or parameters of the parameterization
scheme would have to be modified to introduce stochastic elements and scale-aware behaviour
that can distinguish between convective systems of different sizes and prevent double counting
in the representation of convection.
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3.2 Future Work

“Science never solves a problem without creating ten more.”

— George Bernard Shaw

The previous section 3.1 provided a few recommendations on the way forward based on our
results, and this section will expand on some specific ways in which the questions asked in this
study can be extended and built upon. Several outstanding issues remain to be addressed. How
can convective, thermodynamic, and memory properties simulated by CoMorph be improved?
Specifically, what causes the excess memory in the first phase and how can it be reduced? How
can the second phase of memory be made to start earlier, and how might a third phase of mem-
ory be incorporated into the diurnal cycle? The key to answering some of these questions lies
in performing extensive simulations of different convective test cases with different initial and
forcing conditions using the CoMorph scheme.

Evaluating memory properties within a convective parameterization scheme simply cannot be
done in isolation—it would have to be done in conjunction with investigations of different con-
vective properties (e.g. mass flux, cloud fraction, precipitation), as well as thermodynamic prop-
erties (e.g. potential temperature, water vapour) and dynamic properties (e.g. winds, convective
available potential energy). Only then can possible physical links be established between the
scheme parameters and the memory mechanisms influencing the simulated convective response.
Understanding these physical causes will in turn provide deeper insight into the source of po-
tential biases in the model output and into the modifications that need to be conducted within
the scheme to achieve the desired convective behaviour. Diagnosis of the memory source could
also be achieved using a brute force method wherein a wide range of relevant scheme param-
eters (far more than the two cases we considered in this study) are modified individually or in
combination and the resulting changes in the memory effects are examined. Performing such
an experiment may point us to any physical or artificial sources of memory arising from com-
ponents within the parameterization scheme.

The performance of CoMorph in different convective situations and time scales (e.g. the di-
urnal cycle, monsoons, MJO/ENSO, midlatitude cyclones) can be compared to identify specific
attributes and/or phenomena that the scheme struggles to realistically represent (e.g. thermo-
dynamic fluctuations such as cold pools). Focused efforts could be directed toward the repre-
sentation of those physical processes within the scheme, through prognostic variables or mod-
ified closure conditions. This is equivalent to what was done in the studies summarized in
Section 1.2.3, where attempts were made to incorporate sources of convective memory within
parameterizations.
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Lastly, simulations of the diurnal cycle could be gradually rendered more realistic and changes
in the memory properties could be studied. For instance, initial thermodynamic conditions
could be set to match observed values instead of being homogeneous, and the surface radiative
forcing could be allowed to interact with the atmosphere. A heterogeneous surface representing
the land-sea interface could also be used. Comparing memory effects in realistic versus ideal-
ized conditions might throw light on where an excess or deficit of memory arises from and how
it can be rectified.
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“If I have seen further, it is by standing on the shoulders of giants.”

— Isaac Newton
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Appendix

“The unexamined life is not worth living.”

— Socrates

Additional plots are presented in this section for the sake of completeness.

Figure 31 and Figure 32 show probability and memory functions for the UM CoMorph 4 km
simulation, evaluated for different spatial areas A, different times t0 after triggering, and differ-
ent values of rain thresholds. MONC memory functions for A = 4 x 4 km2 are also shown for
comparison. Figure 33 and Figure 34 present the same plots for the CoMorph 10 km simulation,
Figure 35 and Figure 36 do so for the CoMorph 50 km simulation, and Figure 37 for the 6A 10
km simulation.

Figures 38 to 40 show large-scale (>20 km) spatial thermodynamic anomalies (anomalies in
potential temperature θ and water vapour qv with respect to the domain mean) along the hori-
zontal and vertical dimensions for CoMorph 4, 10, and 50 km simulations.

Figure 41 and Figure 42 show probability and memory functions for the CoMorph 4 km - Case
2 and Case 3 simulations, evaluated for different spatial areas A, different times t0 after trigger-
ing, and different values of rain thresholds. Figure 43 and Figure 44 show large-scale spatial
thermodynamic fluctuations for the CoMorph 4 km Case 2 and Case 3 simulations respectively.
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 31: a. Probabilities of finding rain (P[R(A, t0)]) for different areas A = 4x4 km2, 8x8 km2, 16x16
km2, 24x24 km2 and 48x48 km2 in the UM CoMorph 4 km simulations. The time axis is shifted such
that time equals zero corresponds to the time of triggering. b. Memory functions (M(A, t0, ∆t)) for A =
4x4 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering. Memory functions
for different areas are shown for (c.) t0 = 3 hours and (d.) 6 hours after triggering. e. Probabilities of
finding rain (P[R(A, t0)]) for A = 10x10 km2 for different rain thresholds of 0.1, 0.2 and 0.5 mm hr−1 in
the UM CoMorph 4 km simulations. Memory functions (M(A, t0, ∆t)) for A = 10x10 km2 for different
rain thresholds for (f.) t0 = 3 and (g.) 6 hours after triggering.
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Figure 32: Memory functions (M(A, t0, ∆t)) for the UM CoMorph simulation with 4 km resolution
are shown (in blue) for different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours
after triggering. MONC memory functions for spatial area A = 4x4 km2 are also shown (in green) for
comparison.
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 33: a. Probabilities of finding rain (P[R(A, t0)]) for different areas A = 10x10 km2, 20x20
km2, 30x30 km2, 40x40 km2 and 50x50 km2 in the UM CoMorph 10 km simulations. The time axis
is shifted such that time equals zero corresponds to the time of triggering. b. Memory functions (M(A,
t0, ∆t)) for A = 10x10 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering.
Memory functions for different areas are shown for (c.) t0 = 3 hours and (d.) 6 hours after triggering. e.
Probabilities of finding rain (P[R(A, t0)]) for A = 10x10 km2 for different rain thresholds of 0.1, 0.2 and
0.5 mm hr−1 in the UM CoMorph 10 km simulations. Memory functions (M(A, t0, ∆t)) for A = 10x10
km2 for different rain thresholds for (f.) t0 = 3 and (g.) 6 hours after triggering.
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Figure 34: Memory functions (M(A, t0, ∆t)) for the UM CoMorph simulation with 10 km resolution
are shown (in purple) for different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours
after triggering. MONC memory functions for spatial area A = 10x10 km2 are also shown (in orange)
for comparison.
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(a) (b)

(c) (d)

Figure 35: a. Probabilities of finding rain (P[R(A, t0)]) for for A = 50x50 km2 for different rain thresh-
olds of 0.1, 0.2 and 0.5 mm hr−1 in the UM CoMorph 50 km simulations. The time axis is shifted such
that time equals zero corresponds to the time of triggering. b. Memory functions (M(A, t0, ∆t)) for
A = 50x50 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering. Memory
functions (M(A, t0, ∆t)) for A = 50x50 km2 for different rain thresholds are shown for (c.) t0 = 3 and
(d.) 6 hours after triggering.
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Figure 36: Memory functions (M(A, t0, ∆t)) for the UM CoMorph simulation with 50 km resolution
are shown (in pink) for different times t0 = 1.2, 2, 2.25, 3.25, 4.5, 5, 5.75, 6, 7, 8, 9, 10 and 11 hours
after triggering. MONC memory functions for spatial area A = 50x50 km2 are also shown (in brown) for
comparison.
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Figure 37: a. Probabilities of finding rain (P[R(A, t0)]) for different areas A = 10x10 km2, 20x20 km2,
30x30 km2, 40x40 km2 and 50x50 km2 in the UM 6A simulations. The time axis is shifted such that time
equals zero corresponds to the time of triggering. b. Memory functions (M(A, t0, ∆t)) for A = 10x10
km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering. Memory functions for
different areas are shown for (c.) t0 = 3 hours and (d.) 6 hours after triggering. e. Probabilities of finding
rain (P[R(A, t0)]) for A = 10x10 km2 for different rain thresholds of 0.1, 0.2 and 0.5 mm hr−1 in the UM
6A simulations. Memory functions (M(A, t0, ∆t)) for A = 10x10 km2 for different rain thresholds for
(f.) t0 = 3 and (g.) 6 hours after triggering.
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(a)

(b)

Figure 38: a. Vertical cross section at y = 400 km (left) and horizontal cross sections at heights of
z = 1 km (centre) and z = 3 km (right) of potential temperature anomalies with respect to the domain
mean at the end of the first (or sixth, as in Figure 7) diurnal cycle in the CoMorph 4 km simulation. b.
Vertical cross section at y = 400 km (left) and horizontal cross sections at heights of z = 1 km (centre)
and z = 3 km (right) of water vapour anomalies with respect to the domain mean at the end of the
first diurnal cycle in the CoMorph 4 km simulation. Note that the contour intervals differ from those in
Figure 19 for MONC, but remain consistent across all UM simulations.
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Figure 39: Same as in Figure 38 but for the CoMorph 10 km simulation.

(a)

(b)

Figure 40: Same as in Figure 38 but for the CoMorph 50 km simulation.
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Figure 41: a. Probabilities of finding rain (P[R(A, t0)]) for different areas A = 4x4 km2, 8x8 km2,
16x16 km2, 24x24 km2 and 48x48 km2 in the UM CoMorph 4 km - Case 2 simulations. The time axis
is shifted such that time equals zero corresponds to the time of triggering. b. Memory functions (M(A,
t0, ∆t)) for A = 4x4 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering.
Memory functions for different areas are shown for (c.) t0 = 3 hours and (d.) 6 hours after triggering.
e. Probabilities of finding rain (P[R(A, t0)]) for A = 4x4 km2 for different rain thresholds of 0.1, 0.2
and 0.5 mm hr−1 in the UM 6A simulations. Memory functions (M(A, t0, ∆t)) for A = 10x10 km2 for
different rain thresholds for (f.) t0 = 3 and (g.) 6 hours after triggering.
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Figure 42: a. Probabilities of finding rain (P[R(A, t0)]) for different areas A = 4x4 km2, 8x8 km2,
16x16 km2, 24x24 km2 and 48x48 km2 in the UM CoMorph 4 km - Case 3 simulations. The time axis
is shifted such that time equals zero corresponds to the time of triggering. b. Memory functions (M(A,
t0, ∆t)) for A = 4x4 km2 for different times t0 = 1.5, 2, 2.25, 3.25, 5, 6, and 9 hours after triggering.
Memory functions for different areas are shown for (c.) t0 = 3 hours and (d.) 6 hours after triggering.
e. Probabilities of finding rain (P[R(A, t0)]) for A = 4x4 km2 for different rain thresholds of 0.1, 0.2
and 0.5 mm hr−1 in the UM 6A simulations. Memory functions (M(A, t0, ∆t)) for A = 10x10 km2 for
different rain thresholds for (f.) t0 = 3 and (g.) 6 hours after triggering.
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(a)

(b)

Figure 43: Same as in Figure 38 but for the CoMorph 4 km Case 2 simulation.
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(a)

(b)

Figure 44: Same as in Figure 38 but for the CoMorph 4 km Case 3 simulation.


	Abstract
	Scientific Background
	Convective Parameterization
	Introduction
	Assumptions and Limitations
	Attempts to Improve Parameterizations

	Convective Memory
	Previous Studies on Convective Memory
	Sources of Convective Memory
	Memory in Convective Parameterization Schemes

	The Diurnal Cycle of Convection
	Features of Tropical Diurnal Convection
	Difficulties in Simulation
	Previous Studies on the Diurnal Cycle


	Our Study
	Introduction and Aims
	Model and Scheme Descriptions
	Met Office NERC Cloud Model (MONC)
	Met Office Unified Model (UM)
	CoMorph and the 6A Convection Scheme
	Model Settings

	Methods and Results
	Preliminary Analysis
	The Diurnal Cycle of Precipitation
	Convective Properties over a Single Forcing Cycle
	Ensemble Mean Convective Properties
	Memory Properties
	Spatial Thermodynamic Variability
	Improvement of CoMorph Memory


	Conclusion
	Summary and Discussion
	Future Work

	References
	Appendix

