Abstract

Improving Quantitative Precipitation Forecasting (QPF) of small-scale convective systems is a major challenge in Numerical Weather Prediction (NWP). These systems are the main cause of extreme rainfall within the UK, and can create widespread damage to local communities through generating hazards such as flash floods and landslides.

Two approaches are used to improve forecast accuracy; increasing model resolution so that small-scale features are resolved, and running ensembles, where a probabilistic outcome can be given and extreme events are more likely to be forecast. Each of these developments involve increased computer power and more time to process. Therefore, running a limited number of members of most value within a high-resolution model, such as the 1.5 km 'convective-scale' NWP model developed by the Met Office is a positive solution.

The purpose of this report is to analyse the events that occurred in Boscastle on 16th August 2004, which lead to an intense rainfall event, generating flash floods. Using this event, the effects of perturbations on rainfall output within a high-resolution model are examined. Two strategies are considered: model physics perturbations and potential temperature perturbations.

The model runs fall short of diagnosing the intense precipitation, however using the Fractions Skill Score as a measure of skill, they capture the spatial accuracy of the small-scale rain effectively. This skill score is used to determine a length scale at which the model output is useful, and also to assess the difference in precipitation pattern between selected model runs.

This report proposes a generic method for choosing ensembles that diverge most from a control forecast. My results produce promising results, therefore it is suggested that this method is applied over many more cases with a wider selection of model perturbations, with the aim of diagnosing the most useful 5-6 members to use in a convective-scale ensemble.

Acknowledgements

I would like to thank Dr. Bob Plant and Dr. Giovanni Leoncini for their support and advice generously given whilst supervising this project. A further thank you to Dr. Giovanni Leoncini, for allowing me access to his computer codes that I adapted to use in my analysis.

I would also like to acknowledge C.W.Wang from the Department of Meteorology at the University of Reading, for the use of his computer program, 'Jview'. A further thank you is extended to the Met Office for granting me a license to use some unpublished figures, and to Deborah Miles for advising me on how to go about this.

Contents

Page Number
i. Motivation of report1
ii. Aims of report1
iii. Structure of report
1. Introduction
1.1. Initiation and impacts of convective events in the UK
1.1.1 Boundary layer forcing
1.1.2. Upper level forcing
1.1.3. Secondary generation5
1.1.4. Extreme rainfall leading to flooding
1.2. The Boscastle storm event
1.2.1. Large-scale synoptic conditions
1.2.2. Local air mass analysis10
1.2.3. Storm analysis using rainfall radar data12
1.2.4. Storm analysis using raingauge data14
1.2.5. Sources of uncertainty in observational data15
1.2.6. Summary of meteorological conditions of Boscastle storm16
1.3. Forecast skill of convective events
1.3.1 Numerical Weather Prediction (NWP)17
1.3.1.1. Model forecast uncertainty
1.3.2. Nowcasting19
1.3.3. Hydrological Models
1.3.4. The Boscastle Event
1.3.4.1. Analysis from literature
1.3.4.2. Analysis from 1 km model runs
1.4. Importance of ensemble forecasting
1.4.1. Medium-range ensembles
1.4.2. Short-range ensembles

	1.4.3. Convective-scale ensembles	31
	1.4.4. Exploratory studies of ensembles	31
2. Moo	lel configuration	33
	2.1. Resolution	33
	2.2. Boundary Conditions	34
	2.3. Parametrisation Scheme	34
	2.4. Data Assimilation	34
	2.5. Control Run	35
	2.6. Perturbation Structure	35
	2.6.1. Model physics perturbations	35
	2.6.2. Potential temperature perturbations	38
. Res	ults	40
	3.1. Fractions Skill Score (FSS)	40
	3.1.1. FSS _r and FSS _u	42
	3.2. Time period	44
	3.3. Thresholds	44
	3.4. FSS: Observations vs. Standard Control Run	46
	3.5. FDS: Standard Control Run vs. Perturbed Ensembles	48
	3.5.1. Analysis at L _{skill}	50
	3.5.2. Analysis at 17 – 45 km	54
	3.5.3. Summary of FSS for standard control run vs. all ensembles	56
	3.6. FDS: Second member vs. perturbed ensembles	57
	3.6.1. Summary of FSS for second member vs. all ensembles	59
	3.7. Selection of third member: Calculating averages	59
	3.8. Pathway 1a: allow 2 members from the same ensemble	61
	3.9. Pathway 1b: restrict the use of 2 members from the same ensemble	62
	3.10. Pathway 2: Second member: different member from ' <i>Rough</i> /2' ensemble	62
	3.11. Summary of different pathways	63
. Sun	mary and conclusions	65
	4.1. Recommendation	69
	4.2 Limitations and Further work	69

List of figures

4a. 300hPa height contours and wind speed.....10 4b. 300hPa height contours and Potential Vorticity......10 5. Map of southwest UK......10 9. Satellite image line of cloud situated over Boscastle region at 1203 UTC......13 10. Rainfall intensity at Lesnewth, Cornwall......14 12. NWP model output and radar observations: rainfall accumulation from......22 1200-1800 UTC 13. 6 hour accumulations for the Valency catchment on 16th August 2004: radar,......23 GANDOLF, Nimrod, STEPS 14. Comparison of rainfall accumulation from radar observations and 1km model......24 output at various times throughout the event. 15. CAPE development in the 1km model at 12 UTC, 13 UTC, 15 UTC, and over......25 Boscastle from 02-20 UTC 18. Sketches of mean wind at 13UTC and 15 UTC......27

Page Number

22. Idealised example of application of FSS to determine neighbourhood size	42
23. Mean rainfall 2 hour accumulations within a circle of 60 km diameter centred	44
over Boscastle	
24. Storm total map 12-16 UTC a) radar b) standard unperturbed control run	46
25. FSS curve for the standard control run against observations	47
26. FSS curves for all control physics against the standard control run	49
a) all members, b) mean and standard deviation	
27. FSS curve of 50 member ensemble against the standard control	49
a) all members, b) mean and standard deviation	
28. Mean FDS and standard deviation for standard control at L_{skill} for all ensembles	50
29. Comparison of standard control and members 1 and 2 of the 'No auto' ensemble	51
30. Ranked bar chart of all ensembles showing mean FDS and standard deviation	52
31. Storm total maps with the unperturbed standard control and the 8 members of the	52
<i>Rough/2</i> ensemble	
32. Mean FDS and standard deviation from 17 km to 45 km for all ensembles	55
33. Mean FSS vs standard control for each ensemble, with length	55
34. Standard deviation of FSS vs standard control for each ensemble, with length	56
35. FSS for ' <i>Rough/2</i> ' (member 4) against observations	57
36. Mean FDS and standard deviation at L_{skill} for all ensembles against 'Rough/2'	58
(member 4)	
37. Average mean FDS and standard deviation at L_{skill} against standard control and	60
' <i>Rough</i> /2' (member 4)	
38. Schematic of various methods used to select a few ensemble members	60
39. Mean FDS and standard deviation of all ensembles against 'Rough/2' member 1	61
40. Flow chart of different pathways for choosing ensemble members	63

List of Abbreviations

CAPE	Convective Available Potential Energy
CCN	Cloud Condensation Nuclei
CIN	Convective Inhibition
ECMWF	European Centre for Medium-range Weather Forecasting
EPS	Ensemble Prediction System
FSS	Fractions Skill Score
GANDOLF	Generating Advanced Nowcasts for Deployment in Operational Land-Based
	Flood forecasts
IWP	Ice Water Path
JCMM	Joint Centre for Mesoscale Meteorology
LBCs	Lateral Boundary Conditions
LWP	Liquid Water Path
MetUM	Met Office Unified Model
MOGREPS	Met Office Global and Regional Ensemble Prediction System
MOSES	Met Office Surface Exchange Scheme
NAE	North Atlantic and European
NWP	Numerical Weather Prediction
PDM	Probability Distributed Model
QPF	Quantitative Precipitation Forecasting
STEPS	Short Term Ensemble Prediction System
TEPS	Targeted Ensemble Prediction System
TWP	Total Water Path
UKV	UK Variable model