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Motivation
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Effects of the boundary layer L

Control simulation, T+60 Simulation with no boundary layer turbulence, T+60.

Simulations with (left) and without (right) boundary layer, of
storm of 30/10/00
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Role of friction: EKman pumping L
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Effects on low-level stabllity L

e Mid-level feature

Sigma

. LU B AL associated with dry
07f /o 1 @ Baroclinic frictional
: S "' effects increase
o7 — low-level stability over
I the low centre
. @ Reduces the strength
of coupling between
I tropopause-level PV
LDUN feature and surface

temperature wave
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Some background on turbulence
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TKE L

1 1
KE=-U’=

SU” =2 (0°+ VW) + (u’2+\/2+V\/2) (uu’ +w +ww)

Inc. KE of mean flow, KE of turbulence and cross terms

@ Reynolds average gives KE=mean flow KE + TKE

2
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TKE Evolution L

De ou ¢

— = —UW—+4+ w0 —

ot - WorTe Y e P ez
Storage + Advection = Shear + Buoyancy + Pressure

correlations + Dissipation

—wWe—¢

@ A crucial distinction is between the convective BL
(buoyancy generates TKE) and the stable BL (buoyancy
destroys TKE)
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Typical TKE Budgets
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Split of eddy sizes L

Fourier transform of TKE en-
R R R ergy into different k = 211/A

A Energy-containing
range.

E(x)

B Inertial subrange, k—°/3

C Viscous dissipation at
Kolmogorov microscale
2\ 1/4
n= ("—) ~ 1mm

€

In x
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Split of eddy sizes L

HLISNVAL ADYAING

The turbulent energy cas-
cade
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Moisture transports L

Schematic based on boundary-layer moisture budget analysis:

[Z ------------------------------------------------------------------------------------------ 7 km
x Large-

scale
motions

Convection

—_—
T i> i T T— Surface

Turbulent Fluxes

Divergence from high and convergence towards low within the
boundary layer necessary to supply WCB with moisture

=
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Explicit turbulence simulations
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Direct Numerical Simulation L

@ Viscous dissipation
important at ~ 1mm,
and BL height ~ 500m

@ Fully resolving
turbulence with DNS of
Navier-Stokes needs

~ 10" grid points
Snapshot of DNS at Re= 500

yz slice through an array of
cubes with large-scale flow out
of page

=

Inflate viscous scale
and assume Reynolds
number indpendence
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Large Eddy Simulation L

@ Simulate only as far as the inertial subrange: capture the
large eddies

0 Ke=T1/AX
E:/ E(k)dkz/ E (K)dk
0 0

@ Dissipation rate is
00 ke
e — 2\)/ CE (K)dK 2 2\)/ CE (K)dK ~ 0
0 0

@ Without viscous scales there is no sink of TKE
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Energy loss from LES L

e Need a parameterization P of the energy drain
< 2
8%2/ P(K)K2E (K)dk
0

e Ideally P acts close to k; only so well-resolved eddies are
not affected

@ Popular (and very simple) choice is a Smagorinsky

scheme, which is effectively a diffusion with coefficient
L1 AX
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LES snapshots ofw

CBL simulated at AX = Ay = 10m, Az = 4m
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Organization of the problem
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NWP and GCMs: Closure Problem®

@ On an NWP grid, no attempt to simulate turbulent eddies
@ Parameterize full turbulent spectrum.
ou 0u _odu _0du 10p ouu ovu owu

L U AV LW _ fy = _ _
0t+u0x+vay+waz V+pax 0X oy 0z

e Effects of turbulence are described by fluxes like U'w

e Evolution equation for Uw includes Uw'w’ etc
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Mellor-Yamada hierachy L

Level 4 Carry (simplified) prognostic equations for all 2nd order
moments with parameterization of 3rd order terms

Level 3 Carry (simplified) prognostic equations for 62 and TKE
with parameterization of 3rd order terms

Level 2.5 Carry (simplified) prognostic equation for TKE with
parameterization of 3rd order terms

Level 2 Carry diagnostic equations for all 2nd order moments

Level 1 Carry simplified diagnostic equations 2nd order moments,
K theory

=
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NWP/GCMs usually have diagnostic treatment but some

Drop terms in red to get to the level 2.5, TKE approach

Not well justified theoretically though: no fundamental

reason to prefer kinetic to potential energy
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Parameterization of terms L

e After Kolmogorov,

& =

e 632 grel/2
O U

@ Terms involving pressure treated using return-to-isotropy
iIdeas (Rotta)

@ Many possibilities for 3rd order terms, from simple
downgradient forms: eqg,

ou'2
0z

L to much more “sophisticated” (ie, complicated!) methods
-g. The University of Reading

W/u/2 |:| _
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Surface layer parameterization
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Surface Layer Similarity L

Similarity theory requires us to:

1. write down all of physically relevant quantities that we
believe may control the strength and character of the
turbulence

2. put these together into dimensionless combinations

3. any non-dimensional turbulent quantity must be a function
of the dimensionless variables: we just need to measure
that function
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Monin-Obukhov theory: Step 1 L

Postulate that surface layer turbulence can be described by

o height

a friction velocity (essentially the surface drag)

U, =1/ —U'wy

@ a temperature scale that we can get from the surface heat
flux

w o’ 0
T, =
U

which is more conveniently expressed as a turbulent
L. production of buoyancy (g/6o)T,

A ‘_.| . . .
The University of Reading Boundary Layer parameterization — p.25/48




Monin-Obukhov theory: Step 2 L

Construct dimensionless combinations from these three. Here
z/L where L is the Obukhov length

— Uf 60
kgT.

L =

L measures relative strength of shear and buoyancy
buoyancy becomes as important as shear at height z~ |L|

-+ve In stable conditions

e P PP

k is von Karman'’s constant, = 0.4
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Monin-Obukhov theory: Step 2 L

@ Express the variables we need in terms of dimensionless
guantities

Ju u, _ 00 T,
0z kz(Pm ’ 0z kz(91

@ Now measure the dimensionless functions (obs or LES)

@ Which must be universal if the scaling is correct

A ‘_.| . . .
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Monin-Obukhov Theory: Step 3 L

35 ; . , : 3.5 , , [ -
f
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S o ]
—EQ.(11.8) = (11.8) 30L Eg((llz.';)) (11.8)
30 -—-EQ.(119) OF  --- EQ.(II.
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re 11.2 Dimensionless wind shear as a function of the M—Q stability par Figure 11.3 Dimensionless potential temperature gradient as a function of the M-O
stability parameters. [Kansas data from Izumi (1971).]

1sas data from Izumi (1971).]

Functions @y, (left) and @, (right)

Boundary Layer parameterization — p.28/48

@ The University of Reading



Computing surface-layer fluxes L

e Lowest model level typically at ~ 10m
e Use Monin-Obukhov similarity theory

ou U,
97 k—Z(Pm(Z/L)

@ Integrate with height to get U for lowest level

U= [In2
0= v

z/L

b= (1-@n)(z/L) d(z/L)

Zo/L

L e Iterative calculations needed: Ujg — U, — L —TUjg— ...
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Connection to diagnostic equation?

@ We can rewrite MOST in the form

— ou
wWu = _K”‘a_z
ou

_ 2, —2U4
Km = (K2)°@, 5

@ So that in the main U equation we have a diffusion
structure
ou 0 0 O0U
- — __W/u/ — _K -
ot 0z 0z "0z

turbulence
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The outer boundary layer
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Mixed Layer Similarity: Step1

@ Surface heat flux W0 drives convective eddies of the
scale of h

@ Scaling velocities for vertical velocity and temperature

g__ 1/3
W, = [—W’e’oh]
Oo

w0’ 0
0, =
W,

e Dimensionless quantity z/h

=
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Mixed Layer Similarity: Step2

etc

w? =W f1(z/h)

w2 = w2 fy(z/h)

82 = 62f3(z/h)
WO = w0, f4(z/h)

£ = g fs(z/h)

The University of Reading
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Mixed layer similarity: Step 3~ ©
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Fig. 3.21 (a) Normalized vertical velocity variance in unstable conditions as a function of — 1
normalized height throughout the CBL. The pecked curve represents Eq. 3.101 with " Wi [W*ﬁt fli;W*
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K theory L

@ For the turbulent fluxes within the boundary layer, the
K-theory formula is

au
Y —
WU = Km—az
. 0U ,0u
Km=Anfm(Ri) 5, compare  Kn = (k2)°qr," 5

@ Ie, generalizes MOST

e Typical eddy size ~ kzor A

1 1 1
~ _ .= where I0h
Ao kz 1 VNeTE

=
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Stability dependence L

e z/L and Richardson number Ri play similar role in
measuring relative importance of buoyancy and shear

998
- B 0z
Rl = 0
(%)°
0z
@ The flux Richardson number is sometimes used instead
—(Q/0Bp WO’
Rf = (%)gn ratio of terms in TKE equation
wo 5
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Properties of K

e K theory should match to MOST for small z

@ and to the relevant similarity theory in the outer layer,
being based on the appropriate scaling parameters

@ eg, for the well-mixed CBL a suitable choice is

Km = w,hgi1(z/h) = kw,z (1 — E) ’

@ eg, Holstlag and Bolville 1993; as used at ECMWF
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The University of Reading Boundary Layer parameterization — p.37/48



A problem in the CBL

The University of Reading

= —Khﬁ —> can diagnose K}, from LES/obs data
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A solution for the CBL L

Simplest possibility is to introduce a non-local contribution

woe = —th—g + Kny

where Y is simply a number
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Parameterizations Based on Scali-r'gs

Possible difficulties are:
@ Developing good scalings for each boundary layer regime
@ Good decison making needed for which regime to apply

e Handling transitions between regimes

A ‘_.| . . .
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Effects of radiation on buoyancy L

Cioppler lidar data in stratocumulus-topped boundary laver

Longuwave cooling
trom cloud top

T Lidar backscatter log, (m ™" =r™")

& a5 10 10.5 11 11.5 12 12.5 13 13.5 14
Time (hours UTC) Shortwave heating

at the surtace

Lead=s to more intense
dgwn-:lr'cL'F'l'ﬂ 'I'h-:ln up-:lr'cl'l:'l's """"ﬂhﬂ “'fﬂ'l:“? tms~")

u -

ﬂ - BT - o
(l Hhi! !{1"'1 L Ir[ r'ﬁ F*
1;“. II - ". | #1; | f d k
=05
k., i 11 * ta |]. -.'* = LHL ,n -1.
10.5 11 11.5 12.5 135 14
Time (hotrs IJT':1 More m‘l’ense updratt=

than downdrat+=
+« K profile specified across the unstable laver by a morviocsd scheme

@ LW cooling at cloud top; SW heating within cloud
produces source of buoyant motions
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UM scheme

L Stable boundary layer, possibly with ner=lurbulent cloud
{no cumules, ne cecoupled Sc, stable surface layer)

3 1

11. Stratocumadlus oves a stable surface |ayer
(e cumulus, decoupled 5o, stable surface |ayer)

B}-"’ =
W [hagE St
= S5
g i ./-"'f
R}
i = el
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L

@ Decision making about type is important
@ Sc treated as BL cloud; shallow Cu separately

The University of Reading

— W [Teper ]

Boundary Layer parameterization — p.42/48



EDMF

Eddy-diffusivity mass-flux treatment,
W@ = —Kdg/dz+ y; Mi(@ — @)

17" Vi U

PDF PDF
Updraughts that are Updraughts that are
axplictly modelled explicitly modelled
Dry updraught Ny E’Y updraught
a u —
K diffusion \ iffusion [\ “Cloudy updraught
(w, By, ) {w.8, q)

Mass flux component for largest, most energetic eddies of
size ~ h which produce the non-local transport

Can be used as a treatment for Sc and (especially)
shallow Cu

Can be high sensitivity to bulk entrainment rate
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The boundary layer grey zone
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The grey zone

e NWHP approaches to turbulence valid when all turbulence
IS parameterized

@ LES approaches to turbulence valid

@ Grey zone is difficult middle range when model grid is
comparable to the size of energy-containing eddies

@ Should we try to ignore or such eddies and use an NWP
approach? Double counting?

@ Or allow them and use an LES approach? Risks under
counting?

e ‘_.| . . .
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A Perspective from LES L

@ Stochastic backscatter useful very near surface where
A < | breaks down

@ eg, improves profiles of dimensionless wind shear near
surface

@ Other LES models proposed for grey zone: dynamic
model, tensorial model...

Q.4

0.3

TKE (mé 8%
Q
N

O 4 8 12 16 20 24 28
time (hours)

hry, neutral boundary layer, Weinbrecht 2006

A ‘_.| . . .
The University of Reading Boundary Layer parameterization — p.46/48




Perspective from NWP

1

e Small boundary layer fluctuations (~ 0.1K) important for

convective Initiation

@ Can easily shift the locations of precipitating cells e.g.

Leoncini et al (2010)

Perturbation at 2000 UTC, 8 km

1 Bt

~ Ho.os

= | 1005

-0.1

Fraction

Raining in both

Raining in control
| Raining in perturbed

The University of Reading
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Time UTC
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Conclusions L

e Most NWP models have relatively simple turbulence
modelling based on K-theory

e Simple methods are able to make use of similarity
arguments

@ These often work very well in the appropriate regimes,
although transitions between regimes can be awkward
and somewhat ad hoc

@ ...because the performance is not very much worse than
using very much more complex and more expensive
turbulence modelling approaches

@ But as resolutions AX — h new approaches may be
needed; ensemble-based modelling breaks down

A ‘_.| . . .
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