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Abstract Results
Local forcing (L) Remote forcing (R)
We assessed the influence of the large-scale circulation on the transition 15 ' N | RS
from suppressed to active convection. As a model tool, we used a two- € 10]
column model. It consists of two cloud-resolving models which are % 5
coupled via a weak-temperature gradient derived large-scale circulation. T
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The simulations of the transition are initialized from the simulations over o T S i 45
non-uniform sea surface temperature (SST) and the transition is forced £ 10.
within the column with suppressed convection by changing the local % i
and/or remote SST towards uniform SST across the columns. 2 | o
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Direct effects from changing SST wane after few days and the subsequent 20 2 46 8 10121416182C 2 0 2 4 6 8 10 12 14 16 18 20
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evolution of the large-scale forcing modulates the transition to active Fig.3: Time-height cross sections of heating rates from the derived circulation (top)
convection. Its contributions are approximately equally divided between and domain -mean heating rates from microphysics (bottom)
the heating and moistening effects. The remotely forced transition is TP *: : S
‘.5 8 y » The transition time, t*is the time 1 Column 1
around twice as long compared to a locally forced transition. A locally- when the rain rate is half way between T4
and-remotely forced transition produces intermediate transition times. L - £
E s
the initial and final value. 5
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Y XZ =128 %X 20 km, AY = 0.5 km Fig.5: To assess the role of the large-scale circulation we compared experiment L (solid curves) with an

Fig.1: Two-column formulation experiment in which the large-scale circulation is not allowed to change from the initial state (dotted curves)

AZ:variable; finer resolution closer to the surface.

V =0m/s,U = 5m/s with a relaxation time scale of 2hours. The roles of |arge-5ca|e forcing
Radiative cooling: 1.5 K/d up to 12 km, then decreases linearly to 0 K/d at 15km.
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s | | ., S : SR Fig.6: To assess the relative role of the heating and the moistening rates from the large-scale circulation we
A AR compared experiment L (solid curves) with an experiment in which the heating rates from the large-scale
— column 1 i3 I A T R circulation adjust interactively as in experiment L while the moistening rates are not allowed to change from
Fig.2: Tephigram of the initial state — column2 | o - o A B L
RSO O SN O St I Q the initial state (dotted curves).

Summary

« The transition time is around twice as long for a remote forcing
compared to a local forcing. A local-and-remote forcing produces

Simulations of the transition

Local forcing: the SST in column 1 is increased by 2 K: L

Remote forcing: the SST in column 2 is decreased by 2 K: R intermediate transition times.
Local-and-remote forcing: the SST in column 1 is increased by 1 K » The change of the remote SST drives a weakening of the large-scale
while the SSTin column 2 is decreased by 1 K: L+R forcing. The change of the local SST promotes convective heating which
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