Department of Meteorology

The Hi-Fi project: a new turbulence scheme for Large-Eddy Simulation of grey zone parametrization

Yuqi Bai¹, Peter Clark¹, Bob Plant¹, George Efstathiou², Bob Beare², Dimitar Vlaykov²

- 1. Department of Meteorology, University of Reading
- 2. Department of Mathematics and Statistics, University of Exeter

What is "Hi-Fi" and why?

- The "novel closure for High-Fidelity Numerical Weather Prediction" project is a subproject under the NERC/Met office project: Parachute
- The Hi-Fi project's objective is to develop an improved turbulent scheme for parameterising sub-km scale turbulence to provide more accurate forecasts of extreme weather events
- The outputs of the project will be implemented in the Met Office Unified Model (UM).

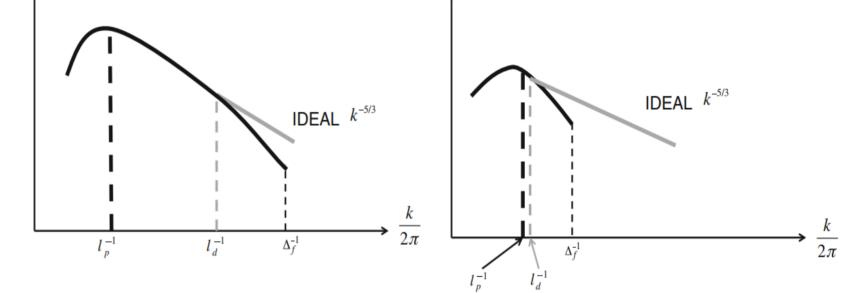
Large Eddy Simulation

"Terra incognita": the grey zone

- In the "grey zone", usually in sub-km range modelling resolution, neither of the traditional approaches for the treatment of unresolved motions is appropriate
- Evidence has shown that further grid refinement to subkilometric resolutions does not always result in a continued improvement in forecasting ability[1]
- The sub-grid scale turbulent properties needs to be parameterised appropriately
 - $E(\kappa)$

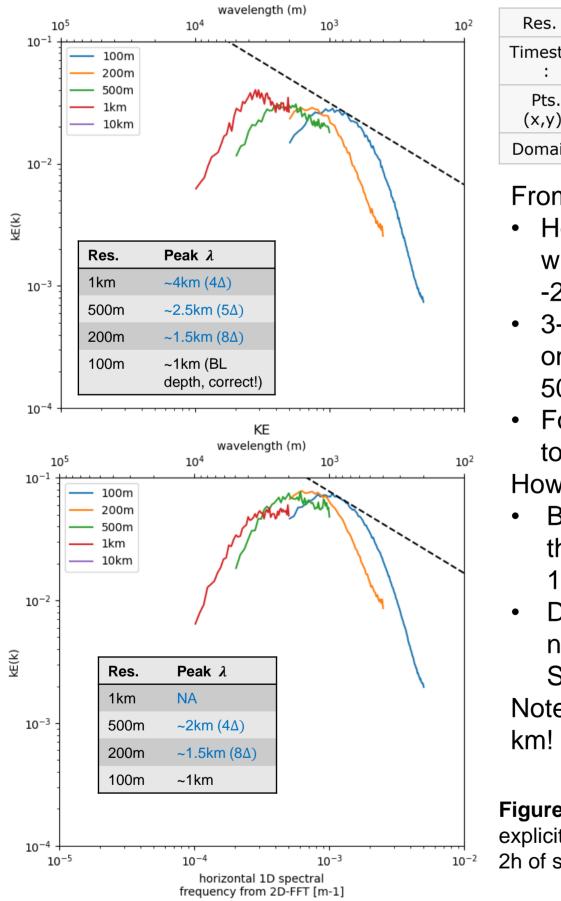
LES

Grey zone


i

University

Exeter


- Turbulent scheme based on spatial filtering of fields; coherent structures are well resolved
- Spectra approach down to grid-scale + parametrisation at sub-grid-scale

 $E(\kappa)$

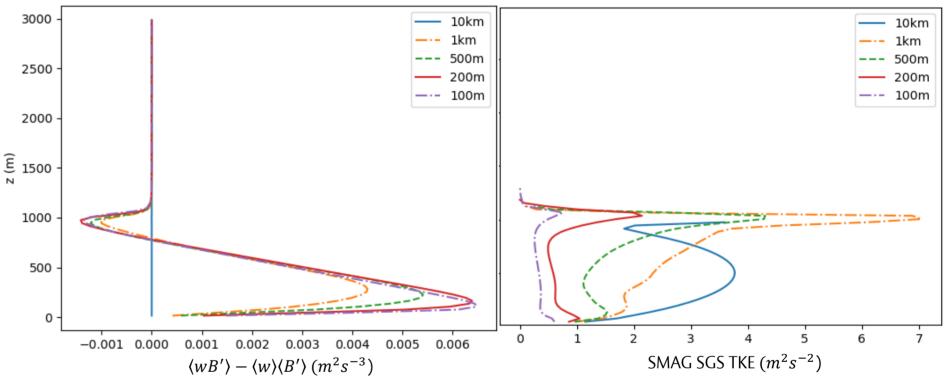
Figure 1. Schematics of turbulent energy spectra of LES and in the grey zone[2].

Exemplar Problem: Idealised CBL on L100 vert, LEM+ Smag

u

	Res. :	10 km	1 km	500 m	250 m	200 m	100 m
	Timestep :	300 s	30 s	15 s	6s	6s	3 s
	Pts. (x,y):	(64,64)	(128, 128)	(128,128)	(128,128)	(128,128)	(256,256)
	Domain:	640 km	128 km	64 km	32 km	25.6 km	25.6 km

From Figure 2 Summary:

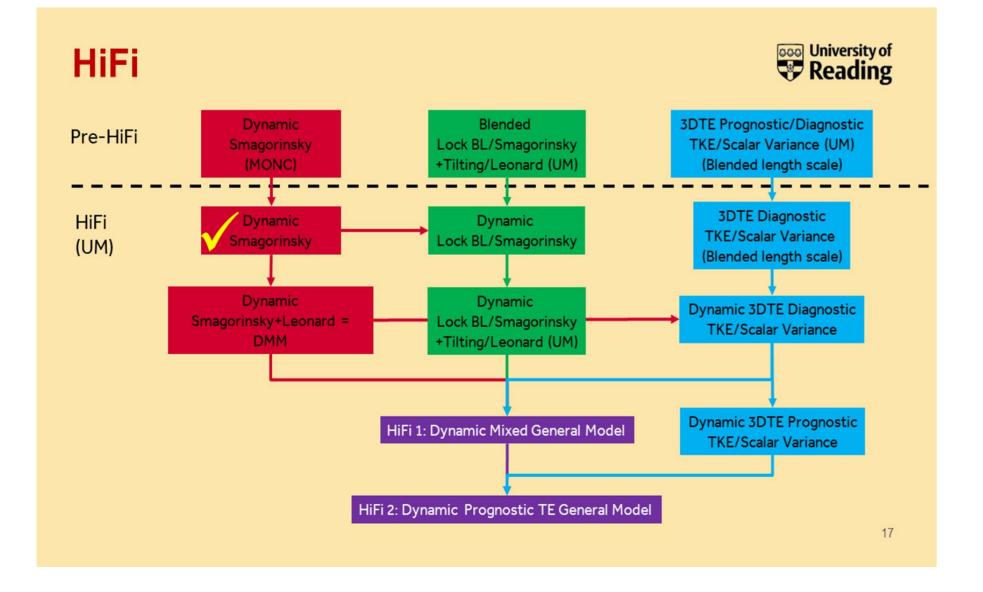

- Horizontal velocity shows typical grey-zone spectra with resolution higher than 1km; inertial subrange with -2/3 exponent
- 3-D total kinetic energy spectra, on the other hand, only shows inertial subrange in resolution higher than 500m;
- For high resolution (200m,100m), u-spectra is similar to KE spectra (isotropy?)

However from Figure 3:

- Buoyancy production of KE of all resolutions higher than 1km are same order of magnitude; 200m and 100m are identical
- Despite surface layer and cap improving, SGS TKE need better parametrisation than standard

Smagorinsky even with 100m resolution Note current UK NWP has 1.5 km resolution, global ~10

km!


Figure 3. Horizontal profile of hourly mean, horizontal averaged buoyancy production rate of KE (left) and Smagorinsky sub-grid scale TKE (right) after 1h of spinning up.

References.

- J. Ito, S. Hayashi, A. Hashimoto, et al. (2017). Stalled Improvement in a Numerical Weather Prediction Model as Horizontal Resolution Increases to the Sub-Kilometer Scale.
- 2. R. Beare (2014). A Length Scale Defining Partially-Resolved Boundary-Layer Turbulence Simulations

Figure 2. Horizontal 2-D spectra of horizontal velocity (top) and explicit kinetic energy (bottom) at z=500m, averaged over 4h after 2h of spinning up.

What Hi-Fi will unify

We currently have three incomplete approaches for parameterising grey zone, which **will be unified by Hi-Fi**:

- Smagorinsky with dynamic lengthscales.
- Ad-hoc blending of Smagorinsky with a 1D BL scheme and 1D Tilting / Leonard paramaterisation
- An enhanced turbulence scheme based on prognosed
 Turbulent Kinetic and Potential energy scales (3DTE)
 developed by us in the ParaCon Programme. This includes
 down-gradient, non-local and tilting/Leonard terms