

Natural Environment Research Council

Independent Research Fellowship

Dynamic Turbulence Modelling in the 'Terra-Incognita' of turbulence

Georgios Efstathiou

University Robert Beare, Dimitar Vlaykov, John Kealy, John Thuburn

Reading Robert Plant, Peter Clark, Alanna Power, Yuqi Bai

Met Office Adrian Lock, Paul Burns

UC Berkeley Tina Chow

- Scale similarity between resolved and subgrid eddies
- Use smallest resolved fluxes to diagnose the subgrid scales

Germano Identity

$$L_{ij} = \widetilde{\bar{u}_i \bar{u}_j} - \widetilde{\bar{u}}_i \widetilde{\bar{u}}_j = T_{ij}^{(\alpha \Delta)} - \widetilde{\tau}_{ij}$$

 au_{ij} : subgrid stress tensor (Turbulence model)

Dynamic Turbulence Modelling (scale dependent)

Germano Identity

$$Q_{ij} = \widehat{\bar{u}_i \bar{u}_j} - \widehat{\bar{u}}_i \widehat{\bar{u}}_j = T_{ij}^{(\alpha^2 \Delta)} - \widehat{\tau}_{ij}$$

 au_{ij} : subgrid stress tensor (Turbulence model)

Dynamic Turbulence Modelling (scale dependent)

Germano Identity

$$Q_{ij} = \widehat{\bar{u}_i \bar{u}_j} - \widehat{\bar{u}}_i \widehat{\bar{u}}_j = T_{ij}^{(\alpha^2 \Delta)} - \widehat{\tau}_{ij}$$

 au_{ij} : subgrid stress tensor (Turbulence model)

 $C \implies$ Scale dependent

Scale invariant

(Bou-Zeid et al. 2005)

Filter a $\Delta x = 5$ m MONC CBL LES at a scale of $\Delta = 40$ m

 $\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$

Filter a dx = 5 m MONC LES at a scale of Δ = 40 m

z = 250 m

 $\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$

Filter a dx = 5 m MONC LES at a scale of Δ = 40 m

$$au_{ij} = \overline{u_i u}_j - \overline{u}_i \overline{u}_j = \mathcal{L}_{ij} + \mathcal{C}_{ij} + \mathcal{R}_{ij}$$

Dynamic Smagorinsky (eddy-viscocity)

 Smagorinsky: local equilibrium between dissipation and turbulent production

 $\left(\lambda = C_S \Delta\right)$

$$\frac{1}{\lambda^2} = \frac{1}{(kz)^2} + \frac{1}{(C_S \Delta)^2}$$

Dynamic Mixed Model (SMAG + Leonard stress)

 $\tau_{ij} = \overline{u_i u_j} - \overline{u_i} \overline{u_j} = \mathcal{L}_{ij} + \mathcal{C}_{ij} + \mathcal{R}_{ij}$

Spatially filtered equations

Simulations

- Met Office/NERC Cloud Model (MONC)
- Met Office Unified Model (UM)

LES: Δx = 50 m, Δz = 20 m

Grey – zone runs : $\Delta x = 200 \text{ m} - 800 \text{ m}$

MONC vertical resolution ARM: $\Delta z = 40$ m LBA: $\Delta z = 50$ m - 200 m

UM vertical resolution LBA: L80 (stretched)

ARM Diurnal cycle of Shallow Cu over land

LBA

Shallow to deep convection transition over the Amazon

Diurnal cycle of shallow convection over land (ARM) – MONC simulations

(Efstathiou, 2023)

Diurnal cycle of shallow convection over land (ARM) – MONC simulations

Smagorinsky Coefficient

Diurnal cycle of shallow convection over land (ARM) – MONC simulations

Smagorinsky Coefficient

Diurnal cycle of shallow convection over land (ARM) $\Delta x = 400 \text{ m}$

Improved CBL Representation for DYNS

Diurnal cycle of shallow convection over land (ARM) $\Delta x = 400 \text{ m}$

Improved water transport at cloud layer

Diurnal cycle of shallow convection over land (ARM) Δx = 400 m

LES

SMAG

Dynamic Smagorinsky solely depends on resolved flow

Diurnal Convection over land (ARM)

(Alanna Power, PhD thesis 2025)

Diagnostic dynamic derivation of coefficients

LBA Case study

Hydrometeor evolution $(q_l + q_s + q_i + q_g)$

Δx = 400 m

Deep stage (Cb) (t = 6 h)

Hydrometeor evolution

Shallow convection stage (t = 3.5 h) $\Delta x = 400 \text{ m}$

Distribution of vertical velocities

Shallow convection stage (t = 3.5 h) $\Delta x = 400 \text{ m}$

Distribution of vertical velocities

Impact of less diffusive stability functions

Shallow convection stage (t = 3.5 h)

Impact of more diffusive stability functions

2D vertical velocity spectra vs height (z)

Δx = 200 m

Thoughts

- Dynamic approaches
 - Locally adjust dissipation, modulating the resolved field
 - Faster spin-up of convective overturning (handle transitions)
 - Optimised Less sensitivity to adjustable parameters
 - Dependence on the resolved flow field Stability/scale
- Eddy viscosity limitations
- Backscatter from Leonard terms (counter-gradient fluxes)
- Higher-order terms to capture the transition
- Usability limit