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Introduction L

Obtain life cycle statistics for clouds in CRM simulations

e Why bother?

Gathering the statistics

Q
@ Some results: lifetimes and composite lifecycles
@ Role of events

Q

Conclusions
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Why bother?
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Some Issues

@ How good are modelled clouds at cloud-permitting
resolutions?

@ Aerosol effects on lifetime. How to estimate this?

e Could we attempt a simple representation of the life cycle
In a parameterization?

@ Tracking life cycles in observational data is not
straightforward

A ‘_.| . . .
The University of Reading Convective Cloud Lifecycles — p.3/37



Some CRM Issues L

@ More and more use of and interest in models without
convective parameterization

e Many such models do not have AX < cloud size
@ Good to test realism of CRM clouds versus data

@ Does a CRM at coarse resolution provide a reasonable
representation of individual clouds?
(Which aspects are well or less-well captured?)

e Little attention so far on the life cycles of individual clouds
In a statistical sense
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Some Aerosol Issues L

@ 2nd indirect aerosol effect: aerosol loading could affect
lifetime of clouds

@ But how should we assess this?

@ Lots of LES studies trying to understand competing
mechanisms for aerosol effect on Sc and shallow Cu
Jiang et al 2006, Hill et al 2008, Xue et al 2008 ...

@ But statistical information of the effects on cloud lifetimes
seems to be missing
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Some Parameterization Issues L

@ Most convective parameterizations based on
entraining/detraining plumes
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Some Parameterization Issues L

@ Convenient for convective parameterization to assume a
steady plume

e Implicitly, all the variables in the parameterization are
filtered and represent “averages” over a lifecycle

@ But can try to incorporate some lifecycle effects
Fraedrich 1973, Cho 1977 ...

@ Perhaps useful at high-resolution when At < cloud lifetime

@ Recently, various experiments with prognostic aspects of
cloud parameterizations
PC2 and cloud-decay options in UM, Gerard 2007 in Arpege model
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Tracking Issues L

Simulation of shallow Cu, w (left) and ¢ (right) (Heus et al
2009),
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@ Pulses are a normal feature of cloud dynamics

@ Expect interactions between tracked objects to be
L commonplace
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Tracking Issues

Fia, 3. Hosizontal views of mubi-jurrel cumulus cells

stages of development and disipation taken from Barls al
J min intervals fading south. 14071422 Darbades tine,
1969,

LFujita et al 1975

e In real data, tracking
through life cycle often
requires estimate of
propagation speed

@ But internal dynamics,
like pulsing, can make

this difficult

@ The University of Reading
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Tracking from Radar L

Example tracking of “simple” radar echoes (Lopez et al 1984)
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e Very few last longer &|
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FiG. 12, Cumulative frequency distribution of cell duration in
log-probability scales. Data from all of the three summers of FACE-
2 have been used.
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Tracking from Radar L

Simple Tracks Complex Tracks
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Fic. 1. Histogram showing the Lifetime of simple and complex storms ob-
served during the summer of 1991 near Denver, O based on data fiom an aun-
tomated cell tracking svystem called TITAN. A simple storm is one that does ot
merge or split during its hifetime and a complex storm is one that does (froma

Wilson et al 1998

a ~ 10— 20%of the echoes undergo splits or mergers

@ Such storms last much longer, over 30min is very normal

=
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Gathering the statistics
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How Is the Tracking Performed? L

1. Identify the cloud objects present at a given timestep

2. Connect these cloud objects to those identified at the
previous timestep

3. Bookeeping

@ Comprehensive, automated tracking performed online at
every timestep

@ Not cheap

@ But provides a more complete picture
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An example lifecycle L

Want to deal with situations like this...
Oy

13min
Ol A=13.4 f:
A=2.0

O

Oz time
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Stage 1: Identify Clouds L

In real data, has been done through:

@ brightness-temperature threshold for satellite obs
@ radar reflectivity thresholds

@ visual inspection of photographs

In models:
@ W threshold (strong updraughts), also done in aircraft obs
@ model variables for cloud water/ice

@ convective transport of boundary layer air diagnosed by
passive tracer

@ Vvisual inspection in virtual-reality environment

=
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|dentification Issues L
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Ogura and Takahashi 1971
e Different definitions focus on different aspects of cloud

e visual image # radar image #* dynamical plume
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Stage 1: Identify Clouds L

A grid box is cloudy if it has:

1. Positive buoyancy

2. Positive cloud liquid water

3. Positive vertical velocity

GZ
@ The “cloud-core” definition I

@ Provides the best
description of dynamical
plumes
(Siebesma and Cujipers 1995)
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Stage 1: Identify Clouds L

@ Now join-up the cloudy
grid boxes

e Use an eight-segmented
approach
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Constraints L

Exclude small, short-lived fluctuations above threshold:
@ Need at least two cloudy grid boxes
@ Structure must persist for 5 minutes

Final statistics not overly sensitive to details of the thresholding
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Stage 2: Tracking L

@ Which features are common between two time slices?

@ Work online and exploit very high time resolution

e Establish all connections:
le, clouds at previous
timestep that overlap or

adjacent to current clouds

@ Comprehensive because
of CFL
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Connections: What Has Happenea'?

p — Cwhere p and C are the number of previous (p) and
current (C) clouds involved

Q

e P PP

Q

0 — 1 birth of new cloud.

1 — O death of a cloud.

1 — 1 straightforward continuation

1 — 2+ splitting up an old cloud into several pieces.

2+ — 1 merger of old clouds to form a single new cloud.

2+ — 2+ more complicated stuff

Anything with a 2+ we call an “event”

=
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Stage 3: Bookeeping L

@ At each timestep, store cloud size, mass flux, precipitation
rate...

“Events, dear boy, events...”

@ When these happen, archive timeseries of contributing
clouds

@ Start new timeseries for new object
@ Can reconstruct full time history through refs to library

e Inter-library refs allow for multiple generations, back to
birth of the first contributing cloud element
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Stage 3: Bookeeping L

e f estimates fraction of old cloud i that contributes to
current cloud C

e Fora2— lmerger,I,] —C

fiC:ij:].

Fora 1l — 2 split of cloud 1 — c,d

l AC + Ad ’ l AC + Ad

e Easily generalized to multiple generations (product of f’s)
and to complicated events

=
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Constraints L

Purely practical: speed things up without messing up the stats
@ Do not allow > 10 generations

@ Remove from library if association to current clouds
< 0.05
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Some results
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Example Simulation L

Using Met Office LEM to simulate radiative-convective
equilibrium with:

e fixed SST (300K) and imposed 4K/d cooling of
troposphere

e f =0, no mean shear

@ 2km resolution on a 64x64km domain; 76 levels

@ run for 19.5 days to get to equilibrium state

@ then run for another 16.5 days to collect statistics for 4617

clouds
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Some Basic Numbers L

Number of cloudy gridpoints 52.4 + 6.9
Number of cloudy points not part of clouds 7.0 £ 2.8
Number of clouds 10.0 = 2.0
Proportion of continuations 1

Proportion of births and deaths 3.0x 1074
Proportion of splits 2.4x 1074
Proportion of mergers 1.7 %1074
Proportion of complicated events 4.2 x 107°
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Lifetime Distribution L

For simple lifecycles, ignoring any with events...

(=]
800

7OoOO — —

S00 — —

500 — —

ao00 —

Number oflfecyces

300 — —

200 — —
100 — —
o — I

1as 30 as [S]e] s 920 105 120 135 150

54% of lifecycles have no such events
Mean lifetime = 30min

=
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Lifetime Distribution

Including the more complicated lifecycles...
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Mean lifetime = 55 min

More later...
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Composite Cloud L

Normalize timeseries for each cloud and composite to produce
an averaged lifecycle
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Evolution over lifecycle of vertically-integrated mass-flux

=
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Composite Cloud

Evolution over the lifecycle of rate of precip.
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Increases across lifecycle
Highlights the relevance of cloud definitions
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Role of events
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Separation of events L

Distribution of times that separate consecutive events

1.0E+O0= |

Number of evens counte
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TNme elapsed (min)

Often within tens of seconds (~ 50% of separations < 1min)
Splits and mergers are often not “clean”

=
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Effects on lifetime

More useful to look at well-separated events (must be 5min

apart)

Mean lfefime (min)

D)

.
a1 2
Number of separated events

Each well-separated event increases the mean lifetime by

~ 15min
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Comparison with Another Case L

@ Forcing for convection is the same, but instead of fixing
the SST, fix the surface heat and mositure fluxes

@ Expect this to alter the horizontal structure of the
boundary layer

@ Convection over a slowly-evolving “land”-surface

Fixed SST | Fixed fluxes

Mean lifetime, overall (min) 55 37
Mean lifetime, no events (min) 30 28

=
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Comparison with Another Case L

Fixed SST | Fixed fluxes
Mean lifetime, overall (min) 55 37
Mean lifetime, no events (min) 30 28
Lifecycles with events 46% 44%
Lifecycles with separated events 41% 38%

@ Plumes do not seem stronger in the fixed-SST case, and
the plumes interact about as often

@ But interactions more effective for fixed SST

=
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Conclusions

@ Useful tool to generate cumulus life cycle statistics
(Difficult to get such information any other way)
(Easy to adapt code to other features in other models)

@ Cloud definitions are important

@ 20— 30min is ok as a rule of thumb for lifetime of simple
convective plumes

e ~ 40% of lifecycles contain splits and/or mergers, which
Increase lifetimes considerably

e “Events” complicate things, but can be brought into a
single framework that demonstrates their impact

@ The underlying boundary layer seems to be an important
control on their impact
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