A stochastic parameterization for deep convection

based on equilibrium statistics

R. S. Plant'*and G. C. Craig?
1Joint Centre for Mesoscale Meteorology, University of RegdUK

2DLR-Institut fur Physik der Atmospdre, Germany.

April 18, 2007

*r.s.plant@rdg.ac.uk Corresponding author. Correspgnaddress: Department of Meteorology, University of
Reading, PO Box 243, Reading, Berkshire RG6 2BB, UK.



Abstract

A stochastic parameterization scheme for deep convedidescribed, suitable for
use in both climate and NWP models. Theoretical argumentstanresults of cloud-
resolving models, are discussed in order to motivate tha foirthe scheme. In the
deterministic limit, it tends to a spectrum of entrainingtféining plumes and is sim-
ilar to other current parameterizations. The stochasti@bdity describes the local
fluctuations about a large-scale equilibrium state. Pluaresdrawn at random from
a probability distribution function (pdf) that defines theacice of finding a plume of
given cloud-base mass flux within each model grid box. Thenadization of the pdf
is given by the ensemble-mean mass flux, and this is computedav\CAPE closure
method. The characteristics of each plume produced arentieed using an adap-
tation of the plume model from the Kain-Fritsch parametdian. Initial tests in the
single column version of the Unified Model verify that the snte is effective in pro-
ducing the desired distributions of convective variapilitithout adversely affecting

the mean state.



1. Introduction

In numerical models of the atmosphere on global and medessdhe effects of moist convection
cannot be adequately represented by the resolved-scaiensioSome form of parameterization
scheme is necessary in order to obtain reliable and reafiestults. Traditionally, such schemes
are deterministic. The instantaneous grid-scale flow isrtaks input and the scheme produces
the feedbacks to that flow from the sub-grid convective nm&tidn practice, there may of course
be a wide range of sub-grid states that are consistent wethettolved-scale flow, and therefore a
deterministic scheme must be regarded conceptually agen@tto evaluate the ensemble mean
effect of the sub-grid states.

It is straightforward to demonstrate explicitly that thegective states consistent with a given
resolved flow can indeed be wide-ranging (see Xu et al. (18&2¢xample), given the lack of
scale separation between the resolved flow and the congautitions. Figure 1 shows the dis-
tribution of updraft mass fluxes (defined as in Sec. 2) nearcclmase that were obtained from
a cloud-resolving-model (CRM) simulation of radiativerngective equilibrium. (The simulation
was performed on a doubly-periodic grid tifs x 128km? with a horizontal resolution ofkm.
Convection was strongly forced by artificially cooling thegosphere at6 K day—!, with the
sea-surface temperature held fixed. The Coriolis parameteset to zero and no mean shear was
imposed. For full details of the simulation see Cohen (20Cdjen and Craig (2006).) The result-
ing mass fluxes are averaged over regions of different agpegsentative of possible grid-box sizes
in a larger-scale model. For such a strong and uniform eatd¢ancing, one might hope to find
relatively little variability in the convective responsieas averaging over areas comparable with
the grid-box sizes of NWP or climate models. However, thei@alistribution for a mesoscale

gridlength of16 km is undeniably broad. The increased averaging for a gridleof64 km does



produce a narrower distribution. Nonetheless, its wididhisut30% of the mean flux, indicating

that fluctuations about the mean may still be a notable feaifithe system.

[Figure 1 about here.]

Our discussion would be purely academic, were it not for tet that convective fluctua-
tions are capable of interacting strongly with non-lingasi in the convective system and with
the resolved-scale dynamics. A powerful illustration @& goint is provided by the marginal pre-
dictability of some convective structures on the mesosdaleuch cases, moist convection reacts
strongly to near grid-scale noise, which can cause sinmnatto evolve in quite distinct ways
(Zhang et al. 2003; Done et al. 2006). Interactions of this sontribute to the spread of ensem-
bles that are based upon simulations with perturbed ird@abitions. However, although existing
ensemble techniques provide useful probabilistic infdroma in many situations the ensemble
spread is insufficient to cover the full range of possible §¢®uizza 1997; Buizza et al. 2005). A
not unrelated point is that many GCMs have insufficient Higlotuency variability of convective
heating (Ricciardulli and Garcia 2000) and precipitatibloinouchi et al. 2003) in the tropics.
This missing variability damages the model wave spectra@émtiddle atmosphere (Ricciardulli
and Garcia 2000; Horinouchi et al. 2003) and so impacts omitapt low-frequency features of
the climate system, such as the equatorial quasi-biensédlation (Horinouchi et al. 2003).

Current ensemble approaches usually aim to allow for uaiceits in the initial conditions and
to do so in a controlled fashion, by which we mean that an as®dn the number of ensemble
members always leads to an increase in the information sori#®wever, model uncertainty is not
normally taken into account. Doubtless this is becausdlgetisuch uncertainty are not known,
the size and character of the errors involved being onlycsiigtunderstood.

Possible approaches include the construction of ensemiflese members take different pa-

3



rameter values in the parameterizations (Yang and Arr@220or employ different parameteriza-
tions entirely (Houtekamer et al. 1996; Stensrud et al. 280@ht and Mullen 2002) or even are
derived from different models (Evans et al. 2000; Hou et @01). Another approach has been
to introduce a random multiplicative factor to the tendesabbtained from all parameterization
schemes prior to feedback to the resolved scale (Buizza £989). Although such methods are
not without flaws, nonetheless there is good evidence tlea¢ thre genuine benefits from at least
trying to deal with model uncertainty (Buizza et al. 1999;uH al. 2001; Mylne et al. 2002).
Progress can also be made by recognizing model uncergamtgicitly within the formula-
tion of the model itself by introducing a stochastic forcifialmer 2001; Wilks 2005). It should
be noted that there are some fundamental issues in the raatsolution of stochastic differential
equations, but the situation is far from hopeless (Penl@@B2Ewald et al. 2004). The scheme
of Buizza et al. (1999) represents perhaps the simplest asdkmown example of a stochastic
forcing. A straightforward improvement would be to scale tandencies from each parameteri-
zation scheme separately (Lin and Neelin 2002; TeixeiraReyholds 2007). However, perhaps
a more promising approach is to introduce small-scale baitiaby including stochastic elements
directly in a model’'s parameterization schemes. There fateuwrse many possible ways of doing
so. Existing examples include Palmer’s (2001) suggesti@am@pproach using cellular automata
and Bright and Mullen’s (2002) use of a stochastic elemerthéntrigger function of the Kain
and Fritsch (1993) convection scheme. Alternatively, Madd Khouider (2002); Khouider et al.
(2003) have described a stochastic scheme for evaluatedrabtional area of a grid box that
supports deep convection, while Lin and Neelin (2003) haepgsed stochastic deep-convective
parameterizations based on random perturbations to e¢itagEAPE (Lin and Neelin 2000) or to

the vertical heating profile.



The consensus emerging from the above studies is that thefustechastic techniques to
introduce small-scale variability to numerical modelstu# atmosphere is desirable for both con-
ceptual and practical reasons (see also Williams 2006; Bleson 2006). However, the stochastic
schemes listed above are based on rather ad hoc assumitoariglze time and space scales and
structures of convective variability. This is not to dengithvalue. Indeed, there are good reasons
for exploring different types of stochastic representatiand their impacts with frameworks that
are relatively straightforward. However, stochastic @mtion schemes should ultimately be based
on systematic observations or simulations of convectiveabier.

In this paper we describe a first attempt to build and test@hsitic cumulus parameterization
that will, in a limited sense, produce the ‘correct’ conweetvariability. In particular the scheme
is designed to reproduce the convective fluctuations thairdo radiative-convective equilibrium
over a uniform sea surface, a situation that is relativellf wederstood from theory and cumulus
ensemble simulations (Craig and Cohen 2006; Cohen and 208ig).

Section 2 summarizes the key properties of convective iditiain radiative-convective equi-
librium (Section 2a) and the implications for the design @faaameterization (Section 2b). Sec-
tions 3 and 4 describe in detail the implementation of theesah Tests with a single-column
model are described in Section 5 to demonstrate the rolssstri¢he scheme and its ability to pro-
duce correct behavior when interacting with an atmosplstsite that can vary in time. It will also
be important to demonstrate that the correct variabilitsejgroduced in a full three-dimensional

model with arbitrary grid size; this will be subject of a fm-up paper.



2. Basisfor a Stochastic Scheme

In this paper we attempt to construct a stochastic paraimaten based on a physical description
of convective variability. In particular, we follow Arakanand Schubert (1974) and assume the
existence of a statistical equilibrium where the total nflassof the ensemble of convective clouds
found in aregion is controlled by the large scale environtmiers important to note that large scale
environment is defined by the dynamics of the meteorologitahtion, and does not necessarily
correspond to a region defined by the model grid length (alihdhe grid length must be at least
small enough to resolve the dynamical features). ArakawlaSamubert (1974) explained that the
size of the region required to define an equilibrium must bgel@nough to contain many clouds;
a statement that will be made more precise in the next secttosubregion, perhaps a model
grid box, that is smaller than required will contain only dset of the equilibrium convective
ensemble. Its (spatially-averaged) properties at anyngmement will thus not equal those of
the full ensemble, and will vary in adjacent subregions,netl®ugh the system as a whole is
in equilibrium. The mass flux in a subregion will thus be a @mdvariable, but the fact that
the convection is a subensemble of an equilibrium systentiesthat it will be drawn from a
distribution determined by the large scale flow.

The basic outline of an equilibrium-based parameterinatiat includes this randomness is as

follows.

1. Average the atmospheric state (temperature, moisttag,ie the horizontal, over a region
large enough to contain many clouds (possibly many grid ¥oxedetermine the large-scale

environmental properties;

2. Compute the equilibrium statistics of the full conveetensemble;



3. Draw randomly from the equilibrium distribution to geethonvective mass flux and other

cumulus properties in each grid box; and,

4. Compute convective tendencies of temperature, mojstoefrom the mass flux and cumu-

lus properties.

The crucial additional information required for the stosti@parameterization is the equilib-
rium distribution to be used in steps 2 and 3, and implichiy $cale required for spatial averaging
in step 1. A conventional mass-flux based scheme only regjtiiemean mass flux in a grid box.

A model for equilibrium convective statistics was presdrng Craig and Cohen (2006) and
tested in numerical experiments (Cohen and Craig 2006) wathderve as the basis of the pa-
rameterization presented here. The next subsection (Ranauses this work, and the following
subsection (2b) presents an explicit version of the abayarighm.

It should be recognized that the concept of a large-scaleamient is not well defined unless
there exists a scale separation in the spectrum of cumuluandigs. Whether any such separa-
tion exists has been questioned (e.g. Mapes 1997), mosttheoa the basis of evidence fay f
noise (Yano et al. 2001, 2004a) and self-organized criticéPeters and Neelin 2006) in the trop-
ics. Nonetheless, the concept is the basis for most if natuaent cumulus parameterizations

(Arakawa 2004).

2a. Fluctuations in radiative-convective equilibrium

The convecting atmosphere is considered to support an éhseiconvective clouds (updrafts
or updraft-downdraft pairs). Assuming a large scale emvirent that is in equilibrium, there are

two contributions to the convective variability in a submy First, the individual clouds may be



weaker or stronger; i.e., clouds have different mass flugscond, a region of given area may
contain a larger or smaller number of clouds, depending cerevhi is located.

Using elementary concepts from statistical mechanicsigG@ad Cohen (2006) showed that
for an ensemble of weakly-interacting convective cloudstatistical equilibrium, the probability

distribution function (pdf) of mass flux per clouak, is exponential,

p(m)dm = %) exp (m_ﬂ;) dm (1)

where angled brackets have been used to denote an ensemtageavThe distribution has been
verified in CRM simulations of radiative—convective eduilum (Cohen 2001; Cohen and Craig
2006). The updraft mass fluxes in those CRM simulations wefmeld for the updraft cores:
connected grid points, each with a vertical velocity lati@n1 ms=! (LeMone and Zipser 1980).
The mass flux was themAw, whereA is the area of the updraft core and the overbar denotes an
average over contributing grid points. The relationshipwieen this definition of mass flux and
those used in a convective parameterization can be probte@ivano et al. 2004b). Nonetheless,
we shall assume that the same distribution (Eqg. 1) can alssée to describe the parameterized
mass flux.

The pdf in Eg. 1 applies to a fixed level of the atmosphere. Hewedhere is nothing in the
arguments of Craig and Cohen (2006) to constrain what tival Ehould be. For verification
purposes, Cohen and Craig (2006) tested the distributidi &m (at the moist static energy min-
imum; their Figures 1 and 2) and also just above cloud basgh&itesting reveals the exponential
shape to be remarkably robust, applying over a wide rangeights and with different forcings

of the CRM. For example Figure 2 shows histograms for tropospheric cooling rafes and

10ther examples are given by Lennard (2004).



16 K day! at heights of3.1 and1.3 km respectively. (Note that the distribution does not edten
to the smallest updrafts, a truncation that arises from thefgrid length and the cloud definition

used.)

[Figure 2 about here.]

The assumptions leading to the exponential distributichuithe a statement of equilibrium that
enables one to link the large-scale forcing to the ensemmglan convective response. The strength
of the response can be characterized by the ensemble-meaarilma(M) = (N)(m), where(N)
is the ensemble-mean number of convective clouds preseriguilibrium (M) can be regarded
as some function of processes operating on the large scaies, We follow the standard practice
in mass flux schemes of regardind/) as being defined by a closure assumption, specified in
Section 4.

Individual clouds within the ensemble have a mean mass(fhixthat we take to be a fixed
constant. Note that a conventional mass-flux parametemnizegquires only //) and is insensitive
to (m). In the stochastic context, howevemn) (or 1/{N)) sets the scale for the fluctuations of
M about(M). Although the available information abo(it:) is limited, there are indications that
a constant value provides a reasonable first approximatiois found in CRM studies (Robe
and Emanuel 1996; Shutts and Gray 1999; Cohen 2001) thatrdregth of an imposed forcing
has only a weak effect on the mean vertical velocity of irdlinl updrafts, consistent with the
scalings of Emanuel and Bister (1996); Grant and Brown (198Bus, an increase to the forcing
is associated predominantly with an increase to the fraatiarea of updrafts. Cohen (2001) has
gone further by suggesting that changes to the fractiored aray be largely attributable to a
change in the number of updrafts, with changes to their stnegba subsidiary effect. Figure 3
supports this contention by showing CRM results for) as a function of height for different
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strengths of forcing. A doubling of the imposed troposptiedoling increases the total mass flux
by a similar factor (Cohen 2001 ; see also Robe and Emanuél, 188ir Figure 7a) but leaves
the mean mass flux per updraft essentially unchanged. $titegéy, the figure also reveals that
there is only a weak dependence(ai) on height in the mid-troposphere, suggesting that the
mid-level changes in total mass flux with height in these &itns are associated predominantly
with changes to the number of clouds reaching each leveledBas Figure 3, we have chosen

(m) = 2 x 107kgs™"! for the initial tests of the stochastic parameterization.
[Figure 3 about here.]

The variability associated with different numbers of clewgbpearing in a subregion will de-
pend on the degree of spatial organization of the convecilitie simplest assumption is that the
clouds are randomly distributed in space, and this was foorte a reasonably accurate approx-
imation, even in simulations where a strong environmeritabs was imposed, leading to squall
line-like organization (Cohen and Craig 2006). In such saiee standard deviation of the mass
flux in a given region was within about 10% of the value for a ptetely random spatial distri-
bution. Craig and Cohen (2006) have shown that an expomeliabution for the mass flux of

each cloud then implies a pdf for the total mass flux in a regigan by
1 M M+ (M 2
) = o[98 enp (20 1, (2 ). @

wherel, denotes the modified Bessel function of order
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2b. Outline of the stochastic parameterization

The stochastic parameterization is based on the equitibdistribution described above. The
convection in a grid box will be described by the number olidl® of each mass flux present at
a given time. Individual clouds are assumed to have a sizéhrsowller than a grid box and
are distributed randomly in space, leading to no correfatietween the mass flux occurring in
adjacent grid boxes. On the other hand, clouds may have alifieiime, and at each timestep new
clouds are initiated by choosing randomly from the distiifiu of Craig and Cohen (2006).

The distribution of Craig and Cohen (2006) has two pararegtéf) and(m). The ensemble-
mean total cloud-base mass flyx/), comes from a closure assumption, in common with other
mass-flux based parameterizations, while the mean closeé-ass flux of an individual cloud,
(my), is assumed constant as discussed above. Another aspeatinan with conventional mass
flux parameterizations is the computation of vertical pesfibf temperature and moisture tenden-
cies from the cloud base mass flux, using a cloud model suahasteaining plume (Arakawa and
Schubert 1974; Ooyama 1971).

With these assumptions, the four steps of the general éhgopresented earlier can be restated

more precisely.

1. Compute large-scale properties by horizontally aveiagiertical profiles of temperature
and moisture over a region centred on each grid point. TieedSithe region is proportional
to the lengthscalé = 1/ (m)/(M), where()M) is the ensemble-mean total cloud base mass
flux per unit area.L is a measure of the separation between clouds. In prindiestale
is variable, depending on the output of the closure calmriaand iteration is required to
define an averaging region consistent with the resulting. As discussed later, no such

iteration is implemented for the single column tests in gaper.
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2. Compute equilibrium convective distributions, with/) given by the closure applied to the
spatially-averaged sounding afd) assumed constant. Along with Eq. 1, these parameters
give the distribution of the number of clouds of each cloaddmass flux in a grid box of a

given size.

3. Given the lifetime of a cloud and the timestep, the praligtuf initiation of clouds of each
cloud-base mass flux in the grid box can now be computed. Glauthe end of their lifetime
are removed and new clouds are initiated randomly accordiriige specified distribution.
Note that if the size of the grid box is large (compared with diveraging length from step
1), each grid box will contain a representative sample oétitee distribution of cloud sizes,
and the parameterization will converge to a determinisjiglérium mass flux scheme with

a spectral cloud model.

4. Compute large-scale convective tendencies based oophgtion of clouds in the grid box.
A cloud model is used to compute vertical profiles of tendeséor each cloud based on its

cloud-base mass flux.

To this point we have not specified which closure assumptiinbe used to computé//)
(step 2), nor which cloud model will be used for the tendenofiles (step 4). Many choices are
possible, but for the present work, these elements will ls2than the Kain-Fritsch parameteri-
zation scheme (Kain and Fritsch 1990, 1993; Kain et al. 26@®) 2004) (hereafter KF). This
is a state of the art cumulus parameterization designed ésiostale models and widely used in
research and operational forecasting. A brief descriptiotine KF scheme can be found in Ap-
pendix A. Using this existing scheme as a basis has the aatyatitat it is robust and well-tested
code, and allows the original KF scheme to be used as a refepaint for testing.

The cloud model is an entraining/detraining plume withtreédy detailed microphysics. Some
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details of the KF plume model have been adapted for the preseposes, notably the determina-
tion of cloud-base properties for each plume, and the clidetihhe, as described in Section 3. The
vertical profiles of temperature and moisture tendency al®itated as sums over the population
of plumes in the grid box. The closure assumption is ta/8€} to be sufficient to remove CAPE
over a specified timescale. The closure timescale will démenforcing via the cloud spacing,

following Cohen and Craig (2004), and discussed in Section 4

3. The Cloud M odel

3a. The ensemble of plumes

The plume model from the KF scheme is used to specify the bhehafseach cloud in the distri-
bution. Plumes are required with a full range of mass fluxéisealifting condensation level (LCL)
in order to create an exponential distribution (Eq. 1) théteponential distributions should also
occur at higher levels (Section 2a) but are not imposed bpanameterization; in Section 5b, we
test whether the plume ensemble is capable of maintainipgresatial distributions aloft. In this
subsection, we consider how a desired cloud-base mass tigsigned to a plume.

In the plume model, the maximum entrainment rate for the afpds inversely proportional to
updraft radius. In the KF parameterization a single radiussed to represent all convection within
a grid box. Here, a spectrum of clouds can be obtained by altp@ spectrum of entrainment
rates (radii). Although the values used for the updraftirsiould not be interpreted too literally
(Emanuel 1994; Kain 2004) it may nonetheless be reasonaldssume that the radius-like pa-
rameter in the entrainment formulation provides some nmggini measure of updraft size. Indeed,

Kuang and Bretherton (2006) have recently found suppotthigrnotion from CRM simulations.
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We will assume the relationship

m = @rz. 3)

The equation essentially requires that the vertical vékxin updrafts be independent of updraft
size (and hence of the entrainment rate). Such a conditiorargfestly false within the body of
an updraft but may hold close to the level where it is initiat&gs. 1 and 3 are used at the LCL
to provide a pdf of plume radii, or equivalently of entrainmheates. We remark that the ensemble
scheme of Frank and Cohen (1985) also relies on a transfiemiag¢tween cloud size and mass
flux distributions, which is achieved by an equivalent ielaship. A similar assumption was made
by Donner et al. (1992).
The probability in a single timestep (of duratia@n) of initiating a plume of radiug in the

ranger to r + dr with a cloud-base mass flux given by Eg. 3 can now be written as

(N)p(r)dr@ = (M) 2r exp <_:2) dr@ (4)

whereT is the lifetime for which a plume persists. In principlE,may be a function of plume
radius and properties of the large-scale environfhdrere, we make the simple chofoef 7' =
45min.

A description of the closure for determinig/) is deferred to Section 4. Assuming this to be
known, random numbers in the ran@j® 1 can then be generatefibr each possible updraft radius

and tested against the probabilities given by Eq. 4. Theghidiby of initation has a maximum for

2Within an ensemble of clouds, one might expect a larger ctoyzkrsist for longer than a smaller one. It would
certainly be interesting to collect some quantitative infation on this point, perhaps by introducing an element of
cloud-tracking to CRM simulations.

30ther choices of lifetime produced only minor changes tor#iuiative-convective equilibrium state described in
Section 5.

4The random number generator is the minimal Park and Milletho with Bays-Durham shuffle and added
safeguards, as presented in Press et al. (1992).
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r = +/(r?)/2 and the radius intervalr is selected such that this probability5%b, subject to a
maximum bin width of50m.

The convective clouds at a given moment consist of pluméisied at the current timestep,
together with plumes initiated previously whose lifetinhese not expired. Thus, a pre-existing set
of plumes should be specified as part of the initial condgifom a model run. If such information
(from a previous model run) is not available, it is convehtergenerate a full set of plumes during
the first timestep. This can be achieved by neglecting therfa¢/ T in Eq. 4. Plumes generated
in this fashion are not to be designated as newly-initiatedds but have ages assigned randomly

as a uniform distribution extending up to the full lifetime.

3b. Adaptations of KF plume model

When a plume is initiated its characteristics above clouselbae unconstrained by the theory
of Section 2. They could be regarded as depending on the (gddtbox) or on the large-scale
environmental state. (In the latter case, the whole pamrnzation would then depend only on
large-scale properties). Both possibilities have beetoesg (Section 5d). Regardless of whether
the input sounding is local or spatially-averaged, the Kiing model is used to calculate plume
characteristics aloft, albeit with some adaptations theatasirable for our present purposes. This
subsection outlines modifications to the choice of sourgerland initial temperature perturbation,
and notes how negative moisture tendencies are treated.

The plume model considers a sequence of potential updraftedayers, each spanning a
whole number of model levels. This proved problematic irt tfaanges to the identity of the
actual updraft source layer between timesteps could resjumps in the height of the LCL that

are undesirable if attempting to close the parameterizdkiere. We achieve smoother variations
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in the LCL by defining potential source layers to be exa&tlyjnb deep, the base of each being
5mb higher than the previous potential layer tested. Notedhee a suitable source layer has been
found it is then held fixed for a given sounding: i.e., the sedayer is not permitted to vary with
plume radius.

Another issue related to the search for a suitable updraficedayer is the temperature per-
turbation applied when testing for buoyancy at the LCL. Tias been simplified to use a fixed
perturbation of).2K, similarly to the Gregory and Rowntree (1990) scheme. Hereshould no
buoyant source layer be identified then the search is rep@dtk the perturbation incremented
in steps of0.1K. When a parcel is released at the LCL, the updraft caladgtassume an initial
velocity dependent upon the temperature perturbation. rditige, we have found that for any
perturbation beyond threshold, reasonable variationtsistiength have little consequence. This
agrees with Nober’s (2003) observation for a different pgumodel.

Each convective plume present has associated tendenciks gfid-box moisture variables
(in our case water vapor, cloud water and cloud ice). Withtiplel plumes present over multiple
timesteps, there is a possibility of producing a negativeeséor one of the moisture variables. In
such an eventuality, the offending variable is simply réseero by borrowing moisture of another
type (including a corresponding latent heat adjustmeniiis procedure may be insufficient if a
required drying exceeds the total moisture available, anlldt case all plumes present which have
a drying tendency on the problematic model level are remdefdre the end of their envisaged
lifetime. Although occasional small changes of this type@@cessary it is reassuring to note that

removal of plumes is extremely rare in our experience.
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4. Implementation of the CAPE Closure

Calculation of the required ensemble-mean mass fllik), is based on the deep-convection clo-
sure of the KF parameterization (Appendix A), extended folyafd an ensemble of plumes. The
plume spectrum is divided inta) equal radius intervals ranging up2km, with each spectral el-
ement described by the entraining/detraining plume mod®t. ensemble-mean mass-flux profile
and dilute CAPE are determined from the sum over spectraiaits, weighted by their probabil-
ity of occurrence (Eq. 1). Mass fluxes are scaleach that at leasi)% of the dilute CAPE would
be removed were the full ensemble of plumes to act on the-segke environmental sounding for
a timeT,, the closure timescale. The extended closure has beemtedily a number of explicit
checks: for example, taking an “ensemble” of plumes all hgthe same updraft radius, and with
arbitrary weightings that sum to unity, the method produdesitical results to the KF closure
using that radius.

The closure timescale can be interpreted as the adjustineatin response to a change of
forcing (if the forcing were removed, convection would deaathis time). Following Cohen and
Craig (2004), we relate this timescale to the cloud separaiti the large-scale environment, such

that

T.=kL=kF @, ()

wherek is a constant, which will depend on the definition of adjusttneThe relationship is
consistent with the view that the response to a change ahfpis governed by the time taken for
a gravity-wave signal to propagate between clouds (Brethend Smolarkiewicz 1989), since the

average speed of convectively-generated gravity wavesaappo be rather insensitive to the large-

SSubject to the constraint of a maximum scaling, governechbyntass in each layer. There are also some sim-
plifications for extremely weak forcings and facilities fiwaling with numerical problems in the iteration procedure
These are broadly similar to those in the KF code.
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scale environment (Cohen and Craig 2004). Eq. 5 producessare timescale that is relatively

long with weak forcing but short with strong forcing.

5. Tests of the Scheme

In this section, we test the behavior of the stochastic sehelprecondition before more ambi-
tious use of the scheme is that it should be capable of re¢plgcaoth the mean convective state
and the statistical fluctuations about that state for theasiin in which Eqgs. 1 and 2 are known to
hold. To test this, we perform single-column model (SCM)emments which aim to replicate the
radiative-convective equilibrium CRM simulations of Coh&nd Craig (2006). In particular, we

address the following questions:

1. For a steady external forcing, does the convective viditiabecome small with increasing

grid box size? (Section 5b)

2. Are the time-mean temperature and humidity profiles nealsie (comparable with those

obtained using the unmodified KF scheme)? (Section 5b)

3. Are the properties of individual plumes consistent witRMC results (the exponential dis-
tribution of plume mass fluxes and the approximate constahepsemble-mean mass flux

with height)? (Section 5c)

4. Does the variability in a finite-sized grid box follow theepcribed distribution o/ (Eq. 2)?

(Section 5d)

5. Is the parameterization stable under steady externahfip(can the imposed variability be

removed by time-averaging to provide stable input, repriegire of the large-scale environ-
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ment, for the closure calculation in subsequent timeste(&gction 5d)

5a. SCM arrangement

The single column configuration of the Unified Model (UM) (@ul 1993) is used. Apart from
the radiation (imposed) and convection (under test) scekeme employ the physical parameter-
izations available in version 4.5 of that model. Layer cloadge parameterized using the Smith
(1990) scheme, with associated precipitation represeageid Smith et al. (1998); Wilson and
Ballard (1999). The variables considered are for water ugpigiuid water, frozen water and rain.
Total cloud condensate is determined by assuming a triangubbability distribution function
of cloud-conserved variables about the grid-box mean (8&#80). Various microphysical pro-
cesses (Wilson and Ballard 1999) make transfers betweendfsture variables, with frozen water
being treated prognostically while liquid water and raie dragnostic.

Surface fluxes are represented as simple linear functiotteedemperature and moisture dif-
ferences between the first model level and the surface. @aissof proportionality are derived
from the mean fluxes that occur in the equilibrium state ofcttreesponding CRM run (B. Cohen,
personal communication). In the absence of any boundggr-khear in these SCM experiments,
the boundary-layer mixing of temperature, water vapor ayet-cloud water (Smith 1990) is
calculated with a first-order turbulence closure and usieg-tonvective scalings for the eddy
diffusivities (Smith and Williams 2000).

49 sigma surfaces are chosen to correspond approximattiytive vertical resolution of the
CRM simulations. Sea surface temperature is held fix@0@.

As in the CRM simulations, explicit radiation calculaticar® replaced by a prescribed tropo-

spheric cooling rate, which is constant uplt®mb, and decays to zero linearly with pressure up to
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200mb. The cooling rate is here setsit day'. Budget diagnosis of preliminary runs showed that
the only process operating aba@@mb was the convection scheme, which occasionally produced
cooling at the top of the deepest clouds. The result was aidrgotential temperature around
the tropopause. This is an artifact of the simple prescribddtive cooling; similar changes also
occurring in CRM simulations (B. Cohen, personal commuioce Roadnight 2001). We there-
fore introduced a Newtonian relaxation of the potentialgenature towards its initial state above
200 mb, with a relaxation time of a few hours.

Unless otherwise stated, the SCM uses the default set ofmgdees listed in Table 1. The
table includes references to section numbers where discusan be found on the choice of each
parameter, and relevant sensitivities. It should be ndtatlih the results to be presented here,
calculations of initiated plumes were based on instantasiesoundings (see Section 3b). The
alternative of using a time-averaged sounding to reprabeniiarge-scale environment produced

almost identical results for these single-column tests.

[Table 1 about here.]

It is convenient in the SCM to use a timesteofin so that there are several timesteps within
the specified cloud lifetimé'.

A SCM equilibrium state was also obtained with the unmodiK&dparameterization for com-
parison purposes. This required an additional assumpdioce there was no column-scale vertical
velocity available for calculation of a temperature pdsation,é7" (Appendix A). InsteadyT” was
taken to be constant. There is some sensitivity to the choade. While a deep plume is present
approximately40% of the time, shallow plumes can be relatively rare (snadl) or prevalent
(6T 2z 0.1K). For 6T z 0.2K, the boundary-layer structure starts to suffer, becomingealis-
tically shallow. Reasonable agreement with mean thermaayn profiles from the CRM was
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obtained for0.02 < d7 < 0.2K, with shallow convection occurring more thd0% of the time.

Results presented in this paper aredfor= 0.05K.

5b. Tests of mean state

We consider first a column that represents a large “grid-lmiSide 400km. Some statistics at
equilibrium with the default parameter set are given in &bl It is immediately apparent that the
SCM produces fewer clouds per unit area than the CRM. We séalin Section 5b that while there
are considerably fewer shallow clouds in the SCM, the nuspenetrating to the mid-troposphere
are similar. The SCM column contairs 180 clouds present at any instant. The stochastic aspect
of the parameterization is therefore weak and the vartgtwficonvective properties is small (see

Table 2). This is convenient for testing the equilibriuntesta

[Table 2 about here.]

With the steady external forcing used in these SCM experisyéime total mass flux response
M at equilibrium for a large grid box should also be steadyuFegt shows normalized time series
of mass flux. The convective response is indeed steady whnerngithe SCM over large areas
(Figure 4(a),(b)). By contrast, significant time variagooccur when using the KF parameteri-
zation (Figure 4(d)). Such variations are purely artificthle results of a conventional mass-flux
parameterization are independent of grid-box area buttsent® details of the triggering (as noted
above, on-off behavior occurs when using the KF scheme wighforcing for smalb7’). Coinci-
dentally, a similar level of variability is produced by theshastic parameterization operating over
an area of 64km)? (Figure 4(c)). In Section 5d we check that these variatemesappropriate by

investigating the pdf of total mass flux.
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[Figure 4 about here.]

Figure 5 shows thermodynamic profiles from the equilibridatesof the CRM, along with the
departures from that state that occur in various SCM exparisa The equilibrium states from the
SCM are somewhat moister within the boundary layer and |ldme@osphere and somewhat drier
and cooler above. Departures of this size, however, arastenswith expectations for a change of
modelling famework: the corresponding radiative-conveatquilibrium profiles obtained from a
different CRM (Roadnight 2001) exhibit differences of demisize to those between the SCM and

CRM state$.
[Figure 5 about here.]

The time-averaged equilibrium state in the SCM is not sigaiftly modified by the larger
fluctuations that occur at individual timesteps when rugroxer smaller areas. For model levels
below12km, the RMS differences between equilbrium states wheningrover areas af400km)?
and(64km)? are(.23K and0.11g kg™! for potential temperature and water vapor respectively. In
comparison, the RMS differences in states between SCM tyrs@m)? using RMS radii oft50
and600m (as in Figure 5) aré.49K and0.31g kg*.

The stochastic parameterization contains a root-meaars®MS) radius paramet@/(rT)
which governs the proportions of small and large plumesdlirRirgary tests suggested that a good
balance is obtained fO{/W ~ 450m, and we have adopted this as a default value (Table 1).
Results for other choices of the parameter are shown in &gbiand 6. The changes are modest.
With an increased weighting for small clouds, it is neceg&arthe plumes to be more penetrative:

this is achieved by weakening the inversion, with a cooleal-ra upper-troposphere and a slightly

6See also, for example, Guichard et al. (2004) for a compa$@€RMs and SCMs in simulations of the diurnal
cycle of deep convection.
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warmer boundary layer. A consequence is that the lowewspbperic peak in the updraft mass
flux profile is raised for a smaller RMS radius (Figure 6). Qtlise the mass flux profile is rather

insensitive to the RMS radius, and effects on the heatingéuare likewise minor (not shown).

[Figure 6 about here.]

5c. Tests of individual plume properties

Let us now consider the behavior of individual plumes witthie SCM equilibrium state. Running
plume model offline for various updraft radii produces thesenux profiles shown in Figure 7.
The profiles are highly sensitive to radius, as recognizelddig and Fritsch (1993). The unmod-
ified KF parameterization uses a radiusl&m and this produces a deep-convective profile that
is in marked contraéto that found in the CRM (Figure 6). A reasonable balance betwdeep
and shallow convection can be achieved when using the KRrpeaization in the SCM (Fig-
ure 6), but only by generating artificial variations in timetlWween deep, shallow and no convection
(Figure 4(b)). Allowing a spectrum of plumes leads to a weghsum over cloud types without

requiring artificial fluctuations of a model sounding.

[Figure 7 about here.]

Plumes that entrain very strongly (i.e., with small updrattii) are unable to rise even a single
model level. These are simply ignored by the stochasticrpaterization. For the SCM runs
discussed here, the spectral truncation typically resultssses ot~ 1% of the total mass flux and

~ 3% of the cloud number. Experiments with several “correctioréthods to restore the missing

"Although mass fluxes from a CRM and a convective parametaizare not directly comparable, gross deviations
in the basic shape of the profiles can nonetheless be regasdsginificant.
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mass flux and cloud number confirm that the truncation hasgmfigiant effect for any of the tests
in this paper.

The distributions of plume mass fluxes in the SCM equilibretate provide an important test
of the physical basis for our parameterization. Recall fewntion 2a that theory predicts an expo-
nential distribution for any fixed height in the atmosphékkthough an exponential distribution is
imposed at the LCL, other distributions may be establishexdreer levels. It is therefore encour-
aging that an exponential distribution is indeed obtainealleheights, as shown for an example

level in Figure 8(a).

[Figure 8 about here.]

The value of(m), obtained by fitting to the exponential distribution, is wimoas a function of
height in Figure 8(b). As for the convective updrafts in thRN, the ensemble-mean mass flux
derived from the SCM varies little with height over much oé tthoposphere. Values in the lower-
to-mid troposphere compare reasonably well to those in Rl CTaken in conjunction with the
mass flux profiles of Figure 6, this means that the SCM has feladtow clouds, but that there are
a similar number of clouds at mid-levels. This differencéh@ number of shallow clouds explains
the difference in the total number of clouds seen in Tablet#2 $CM also contains fewer clouds
in the upper troposphere, but because the mass flux for edatyés (Figure 8(b)) the total mass
flux there agrees well with the CRM (Figure 6). This uppeeldsehavior of(m) may reflect the
tendency of plume models to over-estimate mass fluxes a¢Wieédf zero buoyancy, as discussed
by Kuang and Bretherton (2006). Moreover, the parametioizaloes not include downdrafts
near cloud top, making it impossible to reproduce the oveitig in convective anvils that occurs

in the CRM.
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5d. Tests of statistical fluctuations

In this subsection, we consider fluctuations about the timean equilibrium SCM state, which
arise from the quantization of convection into discretenpts. A related issue is the steadiness
of the forcing (M) provided by the CAPE closure, since the closure is not a physiource
of fluctuations. To investigate these issues, we compar@dhef total mass flux from SCM
experiments to the expected distribution, Eq. 2.

Some preliminary tests were conducted with an imposed moshat is, with the ensemble-
mean total mass fluk\/) specified as a fixed value at a fixed reference level. With agteacing
imposed, the expected distribution should hold exactlyvaaslindeed accurately reproduced (not
shown).

We wish to check that any timestep-to-timestep variabilitythe closure calculated by the
parameterization does not affect the convective stagistican undesirable way. There are two
aspects of the closure calculations to be considered: tseiie timescalé, (Section 4), and the
profile averaging (step 1 of the algorithm in Section 2b). tRetfons on the closure timescale
arise independently of the averaging, limiting the choité ¢Eq. 5). If T, is too short, then the
parameterization will over-stabilize the atmosphere.sill provoke the closure to reduce the
forcing at future timesteps, and may result in undesirablefb behavior. It is also important that
T, notbe too long, not least because the parameterizationbeustpable of responding to genuine,
physical changes in the large-scale forcing. Our choice mécessarily represents a compromise
and experimentation with the SCM indicates that 0.3sm! (as in Table 1) provides a reasonable
value. This corresponds to a closure timescale of a littex bwo hours in our SCM runs (Table 2),
which is consistent with relaxation timescales used in roffaameterizations (Betts and Miller

1986, for example).
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In an SCM, the only profile averaging available to providegaesentation of the large-scale en-
vironment (Section 2b) is time-averaging. Thus, a compdefaition of profile-averaging for the
stochastic parameterization must be deferred to futuesarel and testing in a three-dimensional
model. However, it is both possible and important to essabivhether the sampling required to
define a suitable large-scale environnigatacceptable for practical use. The degree of sampling
of individual profiles in order to compute a steady forcingstnbe compatible with the scales
characterizing genuine variations in large-scale forcing

Consider for example a typical global forecast model (ohpps a high-resolution climate
model) with a gridlength ob4km. A practical number of profiles available for space-time a
eraging would be 150, corresponding to an averaging are&ef~s 320km (the neighboring
and next-to-neighboring grid boxes) and the 6 previous riesteps Zhr with a20min step).
Running the SCM over an area @km)?, and averaging the input profiles for the closure calacu-
lations over the previous 150 timestapsufficient to produce the steady forcing required. Indeed

Figure 9(a) indicates that a smaller sample size of 100 walslal be acceptable.
[Figure 9 about here.]

Figure 9(b) shows results for a larger gridlengtl9@tm. Using the same space-time averaging
scales as above, and assuming a longer model timest&oh, the corresponding number of
individual profiles is reduced to 44 (or to 30 if using 100 séesn thet4km grid). This remains
a sufficient number because of the smaller variability betwprofiles. We have also explicitly
tested the profile averaging for smaller grid lengths, mgpeal of an NWP model. The variability
between individual profiles is then relatively large, bug thcreased number of profiles for the

same space-time averaging appears to provide than adequrapensation.

8In SCM tests using the instantaneous profiles as input to ltteue calculations, the computéd/) varied
strongly between timesteps and was the dominant sourcengéctive fluctuations.
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6. Conclusions

There are strong theoretical and practical motivationgHeruse of stochastic convective param-
eterizations in both NWP and climate models, but work is drdginning to determine an appro-
priate representation of the variability. This paper hascdbed a scheme in which the variability
is designed to replicate the known fluctuations that occuwutl state of radiative-convective
equilibrium above a uniform surface. The parameterizaigopased on an ensemble of entrain-
ing/detraining plumes, with a conventional mass flux clesuk Poisson distribution is expected
for the occurrence of plumes, with the plume mass fluxes {afized level) being drawn from an
exponential distribution (Craig and Cohen 2006). The \mlity arises in a natural way from the
limited random sampling of the plume ensemble in each gnd bo

The particular closure assumption and plume model useddagted from the Kain-Fritsch
(KF) parameterization. Note, however, that the variougetspof the stochastic parameterization
have some independence, so that one could derive new scloéthés general type (Section 2b)
by replacing, say, the pdf or the plume model used.

Single column tests have been carried out to establishiibgidrameterization is functioning

as designed. In particular, the following expected behawaoe present:

1. In the limit of a large grid box, when the plume ensemble & wampled, convective vari-

ability becomes small, and the parameterization approxdsna deterministic scheme.

2. Mean profiles of temperature and humidity are comparabiedse obtained in companion
CRM simulations and to those in the SCM when a conventionamaterization (KF) is

used.

3. Consistent with CRM simulations, the plume ensemble @éSEBM exhibits an exponential
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distribution of mass fluxes above cloud base, with a mean fhasshat is approximately

constant with height.

4. The prescribed distribution of total mass flux (Eqg. 2) isnt@ned in SCM experiments for

columns of varying sizes.

5. An appropriate mean state for the closure calculatiorraslyced by time-averaging the
atmospheric profile. The averaging interval used in thighstwas chosen conservatively
in order to demonstrate the viability of the parameteraati A detailed examination of
profile averaging strategies is not possible in the SCM casiace the the tradeoff between

temporal and spatial averaging cannot be explored.
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A. TheKain-Fritsch Parameterization

The Kain-Fritsch convective parameterization has a lorsgohy, starting with the Fritsch and
Chappell (1980) parameterization, significantly modifiegotoduce the Kain and Fritsch (1990,
1993) parameterization and incrementally modified sinankK2004) recently discussed the ver-
sion used in a semi-operational configuration of the NCEPndel. This version provided a
starting point for the plume model and CAPE-closure codel useéhe stochastic parameteriza-
tion. A brief description of it is presented here. It is sugfge that the reader who requires a fuller
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description consult Sec. 2 of Kain et al. (2003) before stuglgome of the more technical material
in the original papers.

The KF parameterization is a mass-flux scheme which may heedivnto three parts. First, a
decision is made as to whether convection will take place ffigger). Second, the convection is
described in terms of mass flux profiles for a moist updraft,oésstrdowndraft and compensating
dry vertical motions. Third, the intensity of the conveatimust be determined (the closure).

The viability of convection is tested by constructing pataginupdraft source layers, each of
which has thermodynamic properties computed as a massyedigverage over several model
levels. A parcel from the layer is assigned a temperaturigatior? 57", and its buoyancy is
tested at the LCL. If buoyant, an initial vertical velocity assignelf. The second part of the
scheme is then used to calculate the resulting updraft. Glinense searches for an updraft source
layer that will engender deep convecttnlt considers first a layer based at the surface and if
necessary then the layer base is incremented in steps of odel hevel, up to300 mb above
the surface. Should no suitable source layer be found fgo deevection, then the source layer
corresponding to the deepest cloud will nonetheless be asedsource for shallow convection.
In the second and third parts of the parameterization, @watbnvection differs in that: (i) the
detrainment profiles within the updraft are modified for gstency with LES results; (ii) it does
not support an associated downdraft; and, (iii) a diffe@osure and lifetime is used. We retain
the two types of convection in our stochastic parameteordiut do not make the distinction (iii).

Updrafts are computed with an entraining/detraining plunaglel which describes two-way

mass exchange between the updraft and its environment dnneadel level. Mixtures of up-

9Related to the grid-scale vertical velocity at the LCL (Kab04, his Eq. 1).

0Related to the temperature perturbation (Kain 2004, hisSEq.

j.e., with a cloud depth exceeding a threshold value thatfisiation of the LCL temperature (Kain 2004, his
Eq.7)
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draft and environmental air are entrained or detrainedrdaog to whether they are positively or
negatively buoyant respectively. Such calculations megestimates of the maximum rate of en-
trainment? and the distributions of environmental and updraft air enfixtures (Kain and Fritsch
1990, their Sec. 2b). Conversion of condensate to pretigmtavithin the updraft is determined by
an empirical formulation (Kain and Fritsch 1990, their E}j. Bhe downdraft is initiated50 mb
above the top of the updraft source layer. This is computeassyming a fixed entrainment rate
of environmental air above the updraft source layer, anchaehent within and below. The down-
draft is saturated above cloud base, and dried(8g relative humidity kn! below (Kain 2004,
pl78). Compensating vertical motions within the column @ggermined from mass continuity
(Fritsch and Chappell 1980, their Eq. 10).

A starting point for the above mass flux calculations is thdrafi mass flux at cloud base.
This is guessed. Closure of the scheme consists of res¢hlimguess (and all other mass fluxes
appropriately) in an iterative manner until the desiree@msity of convection is achieved. The
intensity is defined by the requirement that the convectas @ remove at leasb% of the dilute
CAPE within the closure timescal&,. Dilute CAPE is calculated for the entraining/detraining
plume rather than for undilute parcel ascent. Note that @oowective activity is identified at a
grid box, it persists for multiple timesteps. Tendencies applied to the grid box state over the
time 7T, and the parameterization is not called again during thig tiif} is set from an estimate
of the transit time for a cloud to cross the grid box, subjedbdunding values 030 and60 min
(Fritsch and Chappell 1980, p1724). In our stochastic patarization, the concept of a plume
lifetime is retained (Sec. 3a) but convective activity does preclude the generation of other

plumes during this time.

12The maximum entrainment rate is inversely proportionaheoupdraft radius (Kain and Fritsch 1990, their Eq. 1),
which is itself variable within the rangeto 2km (Kain 2004, his Eq. 6) accrording to the grid-scale veitielocity
at the LCL.
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by applying Eq. 3 at the LCL, the normalization points beindicated with a cross.
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Figure 9: Probability distribution functions at equilibm for the total convective mass flux per
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profiles used for the closure calculations are determirad Bin average over previous timesteps,
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predictions from Eq. 2 for constad/) (dotted line). The plots have been normalized such that
the area under each pdf is unity.
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Table 1: Default parameter choices for the stochastic atiiveeparameterization, as used in the
SCM runs of Section 5. In each case, the choice made is detusghe Section referred to in the
final column. N, denotes the number of soundings that are time-averageawdprlarge-scale
profiles. All other symbols are defined in the main text.

Parameter Value Refer to Section
(m) 2x10'kgs™! 2a
T 45min 3a
(r?) 450m 5b
k 0.3snt! 5d
N, 90 5d
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Table 2: Statistics of the SCM equilibrium state producedhsy stochastic convective parame-
terization. The SCM represented an aread0bkm)?. “SCM mean” values are are calculated as
time averages between the 10th and 20th days. “Dilute” CAPPtRat calculated for the plume
ensemble (Section 4). Also given (where appropriate) anesponding values obtained from the
domain-averaged state of the companion CRM experiments Wwhs run over a domain of area
(128km)? and so the number of clouds has been scaled-up by the ratiGMft8 CRM areas in
order to provide an appropriate comparison.

Quantity Mean SCM Standard deviatignMean CRM
Closure timescal€, (min) 144 6 -

LCL (m) 1297 72 1839
Number of clouds{N) 181 19 449
Forcing at LCL,(M) (kgm2s7!) |  0.0243 0.0018 0.0634
Dilute CAPE (Jkg) 212 36 -
Surface heat flux (W) 102 2 102
Surface latent heat flux (Wm) 546 8 557
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