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Abstract

A stochastic parameterization scheme for deep convection is described, suitable for

use in both climate and NWP models. Theoretical arguments and the results of cloud-

resolving models, are discussed in order to motivate the form of the scheme. In the

deterministic limit, it tends to a spectrum of entraining/detraining plumes and is sim-

ilar to other current parameterizations. The stochastic variability describes the local

fluctuations about a large-scale equilibrium state. Plumesare drawn at random from

a probability distribution function (pdf) that defines the chance of finding a plume of

given cloud-base mass flux within each model grid box. The normalization of the pdf

is given by the ensemble-mean mass flux, and this is computed with a CAPE closure

method. The characteristics of each plume produced are determined using an adap-

tation of the plume model from the Kain-Fritsch parameterization. Initial tests in the

single column version of the Unified Model verify that the scheme is effective in pro-

ducing the desired distributions of convective variability without adversely affecting

the mean state.

1



1. Introduction

In numerical models of the atmosphere on global and meso-scales, the effects of moist convection

cannot be adequately represented by the resolved-scale motions. Some form of parameterization

scheme is necessary in order to obtain reliable and realistic results. Traditionally, such schemes

are deterministic. The instantaneous grid-scale flow is taken as input and the scheme produces

the feedbacks to that flow from the sub-grid convective motions. In practice, there may of course

be a wide range of sub-grid states that are consistent with the resolved-scale flow, and therefore a

deterministic scheme must be regarded conceptually as an attempt to evaluate the ensemble mean

effect of the sub-grid states.

It is straightforward to demonstrate explicitly that the convective states consistent with a given

resolved flow can indeed be wide-ranging (see Xu et al. (1992)for example), given the lack of

scale separation between the resolved flow and the convective motions. Figure 1 shows the dis-

tribution of updraft mass fluxes (defined as in Sec. 2) near cloud base that were obtained from

a cloud-resolving-model (CRM) simulation of radiative–convective equilibrium. (The simulation

was performed on a doubly-periodic grid of128 × 128km2 with a horizontal resolution of2km.

Convection was strongly forced by artificially cooling the troposphere at16 K day−1, with the

sea-surface temperature held fixed. The Coriolis parameterwas set to zero and no mean shear was

imposed. For full details of the simulation see Cohen (2001); Cohen and Craig (2006).) The result-

ing mass fluxes are averaged over regions of different area, representative of possible grid-box sizes

in a larger-scale model. For such a strong and uniform external forcing, one might hope to find

relatively little variability in the convective response after averaging over areas comparable with

the grid-box sizes of NWP or climate models. However, the actual distribution for a mesoscale

gridlength of16 km is undeniably broad. The increased averaging for a gridlength of64 km does
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produce a narrower distribution. Nonetheless, its width isabout30% of the mean flux, indicating

that fluctuations about the mean may still be a notable feature of the system.

[Figure 1 about here.]

Our discussion would be purely academic, were it not for the fact that convective fluctua-

tions are capable of interacting strongly with non-linearities in the convective system and with

the resolved-scale dynamics. A powerful illustration of the point is provided by the marginal pre-

dictability of some convective structures on the mesoscale. In such cases, moist convection reacts

strongly to near grid-scale noise, which can cause simulations to evolve in quite distinct ways

(Zhang et al. 2003; Done et al. 2006). Interactions of this sort contribute to the spread of ensem-

bles that are based upon simulations with perturbed initialconditions. However, although existing

ensemble techniques provide useful probabilistic information, in many situations the ensemble

spread is insufficient to cover the full range of possible flows (Buizza 1997; Buizza et al. 2005). A

not unrelated point is that many GCMs have insufficient high-frequency variability of convective

heating (Ricciardulli and Garcia 2000) and precipitation (Horinouchi et al. 2003) in the tropics.

This missing variability damages the model wave spectra in the middle atmosphere (Ricciardulli

and Garcia 2000; Horinouchi et al. 2003) and so impacts on important low-frequency features of

the climate system, such as the equatorial quasi-biennial oscillation (Horinouchi et al. 2003).

Current ensemble approaches usually aim to allow for uncertainties in the initial conditions and

to do so in a controlled fashion, by which we mean that an increase in the number of ensemble

members always leads to an increase in the information content. However, model uncertainty is not

normally taken into account. Doubtless this is because details of such uncertainty are not known,

the size and character of the errors involved being only sketchily understood.

Possible approaches include the construction of ensembleswhose members take different pa-
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rameter values in the parameterizations (Yang and Arritt 2002), or employ different parameteriza-

tions entirely (Houtekamer et al. 1996; Stensrud et al. 2000; Bright and Mullen 2002) or even are

derived from different models (Evans et al. 2000; Hou et al. 2001). Another approach has been

to introduce a random multiplicative factor to the tendencies obtained from all parameterization

schemes prior to feedback to the resolved scale (Buizza et al. 1999). Although such methods are

not without flaws, nonetheless there is good evidence that there are genuine benefits from at least

trying to deal with model uncertainty (Buizza et al. 1999; Hou et al. 2001; Mylne et al. 2002).

Progress can also be made by recognizing model uncertainties explicitly within the formula-

tion of the model itself by introducing a stochastic forcing(Palmer 2001; Wilks 2005). It should

be noted that there are some fundamental issues in the numerical solution of stochastic differential

equations, but the situation is far from hopeless (Penland 2003; Ewald et al. 2004). The scheme

of Buizza et al. (1999) represents perhaps the simplest and best-known example of a stochastic

forcing. A straightforward improvement would be to scale the tendencies from each parameteri-

zation scheme separately (Lin and Neelin 2002; Teixeira andReynolds 2007). However, perhaps

a more promising approach is to introduce small-scale variability by including stochastic elements

directly in a model’s parameterization schemes. There are of course many possible ways of doing

so. Existing examples include Palmer’s (2001) suggestion of an approach using cellular automata

and Bright and Mullen’s (2002) use of a stochastic element inthe trigger function of the Kain

and Fritsch (1993) convection scheme. Alternatively, Majda and Khouider (2002); Khouider et al.

(2003) have described a stochastic scheme for evaluating the fractional area of a grid box that

supports deep convection, while Lin and Neelin (2003) have proposed stochastic deep-convective

parameterizations based on random perturbations to eitherthe CAPE (Lin and Neelin 2000) or to

the vertical heating profile.
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The consensus emerging from the above studies is that the useof stochastic techniques to

introduce small-scale variability to numerical models of the atmosphere is desirable for both con-

ceptual and practical reasons (see also Williams 2006; Hermanson 2006). However, the stochastic

schemes listed above are based on rather ad hoc assumptions about the time and space scales and

structures of convective variability. This is not to deny their value. Indeed, there are good reasons

for exploring different types of stochastic representations and their impacts with frameworks that

are relatively straightforward. However, stochastic convection schemes should ultimately be based

on systematic observations or simulations of convective behavior.

In this paper we describe a first attempt to build and test a stochastic cumulus parameterization

that will, in a limited sense, produce the ‘correct’ convective variability. In particular the scheme

is designed to reproduce the convective fluctuations that occur in radiative-convective equilibrium

over a uniform sea surface, a situation that is relatively well understood from theory and cumulus

ensemble simulations (Craig and Cohen 2006; Cohen and Craig2006).

Section 2 summarizes the key properties of convective variability in radiative-convective equi-

librium (Section 2a) and the implications for the design of aparameterization (Section 2b). Sec-

tions 3 and 4 describe in detail the implementation of the scheme. Tests with a single-column

model are described in Section 5 to demonstrate the robustness of the scheme and its ability to pro-

duce correct behavior when interacting with an atmosphericstate that can vary in time. It will also

be important to demonstrate that the correct variability isreproduced in a full three-dimensional

model with arbitrary grid size; this will be subject of a follow-up paper.
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2. Basis for a Stochastic Scheme

In this paper we attempt to construct a stochastic parameterization based on a physical description

of convective variability. In particular, we follow Arakawa and Schubert (1974) and assume the

existence of a statistical equilibrium where the total massflux of the ensemble of convective clouds

found in a region is controlled by the large scale environment. It is important to note that large scale

environment is defined by the dynamics of the meteorologicalsituation, and does not necessarily

correspond to a region defined by the model grid length (although the grid length must be at least

small enough to resolve the dynamical features). Arakawa and Schubert (1974) explained that the

size of the region required to define an equilibrium must be large enough to contain many clouds;

a statement that will be made more precise in the next section. A subregion, perhaps a model

grid box, that is smaller than required will contain only a subset of the equilibrium convective

ensemble. Its (spatially-averaged) properties at any given moment will thus not equal those of

the full ensemble, and will vary in adjacent subregions, even though the system as a whole is

in equilibrium. The mass flux in a subregion will thus be a random variable, but the fact that

the convection is a subensemble of an equilibrium system implies that it will be drawn from a

distribution determined by the large scale flow.

The basic outline of an equilibrium-based parameterization that includes this randomness is as

follows.

1. Average the atmospheric state (temperature, moisture, etc.) in the horizontal, over a region

large enough to contain many clouds (possibly many grid boxes) to determine the large-scale

environmental properties;

2. Compute the equilibrium statistics of the full convective ensemble;
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3. Draw randomly from the equilibrium distribution to get the convective mass flux and other

cumulus properties in each grid box; and,

4. Compute convective tendencies of temperature, moisture, etc. from the mass flux and cumu-

lus properties.

The crucial additional information required for the stochastic parameterization is the equilib-

rium distribution to be used in steps 2 and 3, and implicitly the scale required for spatial averaging

in step 1. A conventional mass-flux based scheme only requires the mean mass flux in a grid box.

A model for equilibrium convective statistics was presented by Craig and Cohen (2006) and

tested in numerical experiments (Cohen and Craig 2006), andwill serve as the basis of the pa-

rameterization presented here. The next subsection (2a) summarises this work, and the following

subsection (2b) presents an explicit version of the above algorithm.

It should be recognized that the concept of a large-scale environment is not well defined unless

there exists a scale separation in the spectrum of cumulus dynamics. Whether any such separa-

tion exists has been questioned (e.g. Mapes 1997), most recently on the basis of evidence for1/f

noise (Yano et al. 2001, 2004a) and self-organized criticality (Peters and Neelin 2006) in the trop-

ics. Nonetheless, the concept is the basis for most if not allcurrent cumulus parameterizations

(Arakawa 2004).

2a. Fluctuations in radiative-convective equilibrium

The convecting atmosphere is considered to support an ensemble of convective clouds (updrafts

or updraft-downdraft pairs). Assuming a large scale environment that is in equilibrium, there are

two contributions to the convective variability in a subregion. First, the individual clouds may be
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weaker or stronger; i.e., clouds have different mass fluxes.Second, a region of given area may

contain a larger or smaller number of clouds, depending on where it is located.

Using elementary concepts from statistical mechanics, Craig and Cohen (2006) showed that

for an ensemble of weakly-interacting convective clouds instatistical equilibrium, the probability

distribution function (pdf) of mass flux per cloud,m, is exponential,

p(m)dm =
1

〈m〉
exp

(

−m

〈m〉

)

dm (1)

where angled brackets have been used to denote an ensemble average. The distribution has been

verified in CRM simulations of radiative–convective equilibrium (Cohen 2001; Cohen and Craig

2006). The updraft mass fluxes in those CRM simulations were defined for the updraft cores:

connected grid points, each with a vertical velocity largerthan1 ms−1 (LeMone and Zipser 1980).

The mass flux was thenρAw, whereA is the area of the updraft core and the overbar denotes an

average over contributing grid points. The relationship between this definition of mass flux and

those used in a convective parameterization can be problematic (Yano et al. 2004b). Nonetheless,

we shall assume that the same distribution (Eq. 1) can also beused to describe the parameterized

mass flux.

The pdf in Eq. 1 applies to a fixed level of the atmosphere. However, there is nothing in the

arguments of Craig and Cohen (2006) to constrain what that level should be. For verification

purposes, Cohen and Craig (2006) tested the distribution at2.4 km (at the moist static energy min-

imum; their Figures 1 and 2) and also just above cloud base. Further testing reveals the exponential

shape to be remarkably robust, applying over a wide range of heights and with different forcings

of the CRM. For example1, Figure 2 shows histograms for tropospheric cooling rates of 8 and

1Other examples are given by Lennard (2004).
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16 K day−1 at heights of3.1 and1.3 km respectively. (Note that the distribution does not extend

to the smallest updrafts, a truncation that arises from the finite grid length and the cloud definition

used.)

[Figure 2 about here.]

The assumptions leading to the exponential distribution include a statement of equilibrium that

enables one to link the large-scale forcing to the ensemble-mean convective response. The strength

of the response can be characterized by the ensemble-mean mass flux,〈M〉 = 〈N〉〈m〉, where〈N〉

is the ensemble-mean number of convective clouds present. In equilibrium〈M〉 can be regarded

as some function of processes operating on the large scale. Thus, we follow the standard practice

in mass flux schemes of regarding〈M〉 as being defined by a closure assumption, specified in

Section 4.

Individual clouds within the ensemble have a mean mass flux〈m〉 that we take to be a fixed

constant. Note that a conventional mass-flux parameterization requires only〈M〉 and is insensitive

to 〈m〉. In the stochastic context, however,〈m〉 (or 1/〈N〉) sets the scale for the fluctuations of

M about〈M〉. Although the available information about〈m〉 is limited, there are indications that

a constant value provides a reasonable first approximation.It is found in CRM studies (Robe

and Emanuel 1996; Shutts and Gray 1999; Cohen 2001) that the strength of an imposed forcing

has only a weak effect on the mean vertical velocity of individual updrafts, consistent with the

scalings of Emanuel and Bister (1996); Grant and Brown (1999). Thus, an increase to the forcing

is associated predominantly with an increase to the fractional area of updrafts. Cohen (2001) has

gone further by suggesting that changes to the fractional area may be largely attributable to a

change in the number of updrafts, with changes to their size being a subsidiary effect. Figure 3

supports this contention by showing CRM results for〈m〉 as a function of height for different
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strengths of forcing. A doubling of the imposed tropospheric cooling increases the total mass flux

by a similar factor (Cohen 2001 ; see also Robe and Emanuel 1996, their Figure 7a) but leaves

the mean mass flux per updraft essentially unchanged. Interestingly, the figure also reveals that

there is only a weak dependence of〈m〉 on height in the mid-troposphere, suggesting that the

mid-level changes in total mass flux with height in these simulations are associated predominantly

with changes to the number of clouds reaching each level. Based on Figure 3, we have chosen

〈m〉 = 2 × 107kgs−1 for the initial tests of the stochastic parameterization.

[Figure 3 about here.]

The variability associated with different numbers of clouds appearing in a subregion will de-

pend on the degree of spatial organization of the convection. The simplest assumption is that the

clouds are randomly distributed in space, and this was foundto be a reasonably accurate approx-

imation, even in simulations where a strong environmental shear was imposed, leading to squall

line-like organization (Cohen and Craig 2006). In such cases, the standard deviation of the mass

flux in a given region was within about 10% of the value for a completely random spatial distri-

bution. Craig and Cohen (2006) have shown that an exponential distribution for the mass flux of

each cloud then implies a pdf for the total mass flux in a regiongiven by

p(M) =
1

〈m〉

√

〈M〉

M
exp

(

−
M + 〈M〉

〈m〉

)

I1

(

2

〈m〉

√

〈M〉M

)

. (2)

whereI1 denotes the modified Bessel function of order1.
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2b. Outline of the stochastic parameterization

The stochastic parameterization is based on the equilibrium distribution described above. The

convection in a grid box will be described by the number of clouds of each mass flux present at

a given time. Individual clouds are assumed to have a size much smaller than a grid box and

are distributed randomly in space, leading to no correlation between the mass flux occurring in

adjacent grid boxes. On the other hand, clouds may have a finite lifetime, and at each timestep new

clouds are initiated by choosing randomly from the distribution of Craig and Cohen (2006).

The distribution of Craig and Cohen (2006) has two parameters,〈M〉 and〈m〉. The ensemble-

mean total cloud-base mass flux,〈M〉, comes from a closure assumption, in common with other

mass-flux based parameterizations, while the mean cloud-base mass flux of an individual cloud,

〈m〉, is assumed constant as discussed above. Another aspect in common with conventional mass

flux parameterizations is the computation of vertical profiles of temperature and moisture tenden-

cies from the cloud base mass flux, using a cloud model such as an entraining plume (Arakawa and

Schubert 1974; Ooyama 1971).

With these assumptions, the four steps of the general algorithm presented earlier can be restated

more precisely.

1. Compute large-scale properties by horizontally averaging vertical profiles of temperature

and moisture over a region centred on each grid point. The size of the region is proportional

to the lengthscaleL =

√

〈m〉/〈M〉, where〈M〉 is the ensemble-mean total cloud base mass

flux per unit area.L is a measure of the separation between clouds. In principle this scale

is variable, depending on the output of the closure calculation, and iteration is required to

define an averaging region consistent with the resulting〈M〉. As discussed later, no such

iteration is implemented for the single column tests in thispaper.
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2. Compute equilibrium convective distributions, with〈M〉 given by the closure applied to the

spatially-averaged sounding and〈m〉 assumed constant. Along with Eq. 1, these parameters

give the distribution of the number of clouds of each cloud-base mass flux in a grid box of a

given size.

3. Given the lifetime of a cloud and the timestep, the probability of initiation of clouds of each

cloud-base mass flux in the grid box can now be computed. Clouds at the end of their lifetime

are removed and new clouds are initiated randomly accordingto the specified distribution.

Note that if the size of the grid box is large (compared with the averaging length from step

1), each grid box will contain a representative sample of theentire distribution of cloud sizes,

and the parameterization will converge to a deterministic equilibrium mass flux scheme with

a spectral cloud model.

4. Compute large-scale convective tendencies based on the population of clouds in the grid box.

A cloud model is used to compute vertical profiles of tendencies for each cloud based on its

cloud-base mass flux.

To this point we have not specified which closure assumption will be used to compute〈M〉

(step 2), nor which cloud model will be used for the tendency profiles (step 4). Many choices are

possible, but for the present work, these elements will be based on the Kain-Fritsch parameteri-

zation scheme (Kain and Fritsch 1990, 1993; Kain et al. 2003;Kain 2004) (hereafter KF). This

is a state of the art cumulus parameterization designed for mesoscale models and widely used in

research and operational forecasting. A brief descriptionof the KF scheme can be found in Ap-

pendix A. Using this existing scheme as a basis has the advantage that it is robust and well-tested

code, and allows the original KF scheme to be used as a reference point for testing.

The cloud model is an entraining/detraining plume with relatively detailed microphysics. Some
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details of the KF plume model have been adapted for the present purposes, notably the determina-

tion of cloud-base properties for each plume, and the cloud lifetime, as described in Section 3. The

vertical profiles of temperature and moisture tendency are calculated as sums over the population

of plumes in the grid box. The closure assumption is to set〈M〉 to be sufficient to remove CAPE

over a specified timescale. The closure timescale will depend on forcing via the cloud spacing,

following Cohen and Craig (2004), and discussed in Section 4.

3. The Cloud Model

3a. The ensemble of plumes

The plume model from the KF scheme is used to specify the behavior of each cloud in the distri-

bution. Plumes are required with a full range of mass fluxes atthe lifting condensation level (LCL)

in order to create an exponential distribution (Eq. 1) there. Exponential distributions should also

occur at higher levels (Section 2a) but are not imposed by theparameterization; in Section 5b, we

test whether the plume ensemble is capable of maintaining exponential distributions aloft. In this

subsection, we consider how a desired cloud-base mass flux isassigned to a plume.

In the plume model, the maximum entrainment rate for the updraft is inversely proportional to

updraft radius. In the KF parameterization a single radius is used to represent all convection within

a grid box. Here, a spectrum of clouds can be obtained by allowing a spectrum of entrainment

rates (radii). Although the values used for the updraft radii should not be interpreted too literally

(Emanuel 1994; Kain 2004) it may nonetheless be reasonable to assume that the radius-like pa-

rameter in the entrainment formulation provides some meaningful measure of updraft size. Indeed,

Kuang and Bretherton (2006) have recently found support forthis notion from CRM simulations.
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We will assume the relationship

m =
〈m〉

〈r2〉
r2. (3)

The equation essentially requires that the vertical velocities in updrafts be independent of updraft

size (and hence of the entrainment rate). Such a condition ismanifestly false within the body of

an updraft but may hold close to the level where it is initiated. Eqs. 1 and 3 are used at the LCL

to provide a pdf of plume radii, or equivalently of entrainment rates. We remark that the ensemble

scheme of Frank and Cohen (1985) also relies on a transformation between cloud size and mass

flux distributions, which is achieved by an equivalent relationship. A similar assumption was made

by Donner et al. (1992).

The probability in a single timestep (of durationdt) of initiating a plume of radiusr in the

ranger to r + dr with a cloud-base mass flux given by Eq. 3 can now be written as

〈N〉p(r)dr
dt

T
=

〈M〉

〈m〉

2r

〈r2〉
exp

(

−r2

〈r2〉

)

dr
dt

T
, (4)

whereT is the lifetime for which a plume persists. In principle,T may be a function of plume

radius and properties of the large-scale environment2. Here, we make the simple choice3 of T =

45min.

A description of the closure for determining〈M〉 is deferred to Section 4. Assuming this to be

known, random numbers in the range0 to 1 can then be generated4 for each possible updraft radius

and tested against the probabilities given by Eq. 4. The probability of initation has a maximum for

2Within an ensemble of clouds, one might expect a larger cloudto persist for longer than a smaller one. It would
certainly be interesting to collect some quantitative information on this point, perhaps by introducing an element of
cloud-tracking to CRM simulations.

3Other choices of lifetime produced only minor changes to theradiative-convective equilibrium state described in
Section 5.

4The random number generator is the minimal Park and Miller method with Bays-Durham shuffle and added
safeguards, as presented in Press et al. (1992).
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r =
√

〈r2〉/2 and the radius intervaldr is selected such that this probability is5%, subject to a

maximum bin width of50m.

The convective clouds at a given moment consist of plumes initiated at the current timestep,

together with plumes initiated previously whose lifetimeshave not expired. Thus, a pre-existing set

of plumes should be specified as part of the initial conditions for a model run. If such information

(from a previous model run) is not available, it is convenient to generate a full set of plumes during

the first timestep. This can be achieved by neglecting the factor dt/T in Eq. 4. Plumes generated

in this fashion are not to be designated as newly-initiated clouds but have ages assigned randomly

as a uniform distribution extending up to the full lifetime.

3b. Adaptations of KF plume model

When a plume is initiated its characteristics above cloud base are unconstrained by the theory

of Section 2. They could be regarded as depending on the local(grid-box) or on the large-scale

environmental state. (In the latter case, the whole parameterization would then depend only on

large-scale properties). Both possibilities have been explored (Section 5d). Regardless of whether

the input sounding is local or spatially-averaged, the KF plume model is used to calculate plume

characteristics aloft, albeit with some adaptations that are desirable for our present purposes. This

subsection outlines modifications to the choice of source layer and initial temperature perturbation,

and notes how negative moisture tendencies are treated.

The plume model considers a sequence of potential updraft source layers, each spanning a

whole number of model levels. This proved problematic in that changes to the identity of the

actual updraft source layer between timesteps could resultin jumps in the height of the LCL that

are undesirable if attempting to close the parameterization there. We achieve smoother variations
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in the LCL by defining potential source layers to be exactly50mb deep, the base of each being

5mb higher than the previous potential layer tested. Note that once a suitable source layer has been

found it is then held fixed for a given sounding: i.e., the source layer is not permitted to vary with

plume radius.

Another issue related to the search for a suitable updraft source layer is the temperature per-

turbation applied when testing for buoyancy at the LCL. Thishas been simplified to use a fixed

perturbation of0.2K, similarly to the Gregory and Rowntree (1990) scheme. However, should no

buoyant source layer be identified then the search is repeated with the perturbation incremented

in steps of0.1K. When a parcel is released at the LCL, the updraft calculations assume an initial

velocity dependent upon the temperature perturbation. In practice, we have found that for any

perturbation beyond threshold, reasonable variations in its strength have little consequence. This

agrees with Nober’s (2003) observation for a different plume model.

Each convective plume present has associated tendencies ofthe grid-box moisture variables

(in our case water vapor, cloud water and cloud ice). With multiple plumes present over multiple

timesteps, there is a possibility of producing a negative value for one of the moisture variables. In

such an eventuality, the offending variable is simply resetto zero by borrowing moisture of another

type (including a corresponding latent heat adjustment). This procedure may be insufficient if a

required drying exceeds the total moisture available, and in that case all plumes present which have

a drying tendency on the problematic model level are removedbefore the end of their envisaged

lifetime. Although occasional small changes of this type are necessary it is reassuring to note that

removal of plumes is extremely rare in our experience.
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4. Implementation of the CAPE Closure

Calculation of the required ensemble-mean mass flux,〈M〉, is based on the deep-convection clo-

sure of the KF parameterization (Appendix A), extended to apply to an ensemble of plumes. The

plume spectrum is divided into50 equal radius intervals ranging up to2km, with each spectral el-

ement described by the entraining/detraining plume model.The ensemble-mean mass-flux profile

and dilute CAPE are determined from the sum over spectral elements, weighted by their probabil-

ity of occurrence (Eq. 1). Mass fluxes are scaled5 such that at least90% of the dilute CAPE would

be removed were the full ensemble of plumes to act on the large-scale environmental sounding for

a timeTc, the closure timescale. The extended closure has been validated by a number of explicit

checks: for example, taking an “ensemble” of plumes all having the same updraft radius, and with

arbitrary weightings that sum to unity, the method producesidentical results to the KF closure

using that radius.

The closure timescale can be interpreted as the adjustment time in response to a change of

forcing (if the forcing were removed, convection would decay in this time). Following Cohen and

Craig (2004), we relate this timescale to the cloud separation in the large-scale environment, such

that

Tc = kL = k

√

〈m〉

〈M〉
, (5)

wherek is a constant, which will depend on the definition of adjustment. The relationship is

consistent with the view that the response to a change of forcing is governed by the time taken for

a gravity-wave signal to propagate between clouds (Bretherton and Smolarkiewicz 1989), since the

average speed of convectively-generated gravity waves appears to be rather insensitive to the large-

5Subject to the constraint of a maximum scaling, governed by the mass in each layer. There are also some sim-
plifications for extremely weak forcings and facilities fordealing with numerical problems in the iteration procedure.
These are broadly similar to those in the KF code.
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scale environment (Cohen and Craig 2004). Eq. 5 produces a closure timescale that is relatively

long with weak forcing but short with strong forcing.

5. Tests of the Scheme

In this section, we test the behavior of the stochastic scheme. A precondition before more ambi-

tious use of the scheme is that it should be capable of replicating both the mean convective state

and the statistical fluctuations about that state for the situation in which Eqs. 1 and 2 are known to

hold. To test this, we perform single-column model (SCM) experiments which aim to replicate the

radiative-convective equilibrium CRM simulations of Cohen and Craig (2006). In particular, we

address the following questions:

1. For a steady external forcing, does the convective variability become small with increasing

grid box size? (Section 5b)

2. Are the time-mean temperature and humidity profiles reasonable (comparable with those

obtained using the unmodified KF scheme)? (Section 5b)

3. Are the properties of individual plumes consistent with CRM results (the exponential dis-

tribution of plume mass fluxes and the approximate constancyof ensemble-mean mass flux

with height)? (Section 5c)

4. Does the variability in a finite-sized grid box follow the prescribed distribution ofM (Eq. 2)?

(Section 5d)

5. Is the parameterization stable under steady external forcing (can the imposed variability be

removed by time-averaging to provide stable input, representative of the large-scale environ-

18



ment, for the closure calculation in subsequent timesteps)? (Section 5d)

5a. SCM arrangement

The single column configuration of the Unified Model (UM) (Cullen 1993) is used. Apart from

the radiation (imposed) and convection (under test) schemes, we employ the physical parameter-

izations available in version 4.5 of that model. Layer clouds are parameterized using the Smith

(1990) scheme, with associated precipitation representedas in Smith et al. (1998); Wilson and

Ballard (1999). The variables considered are for water vapour, liquid water, frozen water and rain.

Total cloud condensate is determined by assuming a triangular probability distribution function

of cloud-conserved variables about the grid-box mean (Smith 1990). Various microphysical pro-

cesses (Wilson and Ballard 1999) make transfers between themoisture variables, with frozen water

being treated prognostically while liquid water and rain are diagnostic.

Surface fluxes are represented as simple linear functions ofthe temperature and moisture dif-

ferences between the first model level and the surface. Constants of proportionality are derived

from the mean fluxes that occur in the equilibrium state of thecorresponding CRM run (B. Cohen,

personal communication). In the absence of any boundary-layer shear in these SCM experiments,

the boundary-layer mixing of temperature, water vapor and layer-cloud water (Smith 1990) is

calculated with a first-order turbulence closure and using free-convective scalings for the eddy

diffusivities (Smith and Williams 2000).

49 sigma surfaces are chosen to correspond approximately with the vertical resolution of the

CRM simulations. Sea surface temperature is held fixed at300K.

As in the CRM simulations, explicit radiation calculationsare replaced by a prescribed tropo-

spheric cooling rate, which is constant up to400mb, and decays to zero linearly with pressure up to
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200mb. The cooling rate is here set at8K day−1. Budget diagnosis of preliminary runs showed that

the only process operating above200mb was the convection scheme, which occasionally produced

cooling at the top of the deepest clouds. The result was a drift in potential temperature around

the tropopause. This is an artifact of the simple prescribedradiative cooling; similar changes also

occurring in CRM simulations (B. Cohen, personal communication; Roadnight 2001). We there-

fore introduced a Newtonian relaxation of the potential temperature towards its initial state above

200 mb, with a relaxation time of a few hours.

Unless otherwise stated, the SCM uses the default set of parameters listed in Table 1. The

table includes references to section numbers where discussion can be found on the choice of each

parameter, and relevant sensitivities. It should be noted that in the results to be presented here,

calculations of initiated plumes were based on instantaneous soundings (see Section 3b). The

alternative of using a time-averaged sounding to representthe large-scale environment produced

almost identical results for these single-column tests.

[Table 1 about here.]

It is convenient in the SCM to use a timestep of5min so that there are several timesteps within

the specified cloud lifetimeT .

A SCM equilibrium state was also obtained with the unmodifiedKF parameterization for com-

parison purposes. This required an additional assumption,since there was no column-scale vertical

velocity available for calculation of a temperature perturbation,δT (Appendix A). Instead,δT was

taken to be constant. There is some sensitivity to the choicemade. While a deep plume is present

approximately40% of the time, shallow plumes can be relatively rare (smallδT ) or prevalent

(δT >
∼

0.1K). For δT >
∼

0.2K, the boundary-layer structure starts to suffer, becomingunrealis-

tically shallow. Reasonable agreement with mean thermodynamic profiles from the CRM was
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obtained for0.02 <
∼

δT <
∼

0.2K, with shallow convection occurring more than30% of the time.

Results presented in this paper are forδT = 0.05K.

5b. Tests of mean state

We consider first a column that represents a large “grid-box”of side400km. Some statistics at

equilibrium with the default parameter set are given in Table 2. It is immediately apparent that the

SCM produces fewer clouds per unit area than the CRM. We shallsee in Section 5b that while there

are considerably fewer shallow clouds in the SCM, the numbers penetrating to the mid-troposphere

are similar. The SCM column contains∼ 180 clouds present at any instant. The stochastic aspect

of the parameterization is therefore weak and the variability of convective properties is small (see

Table 2). This is convenient for testing the equilibrium state.

[Table 2 about here.]

With the steady external forcing used in these SCM experiments, the total mass flux response

M at equilibrium for a large grid box should also be steady. Figure 4 shows normalized time series

of mass flux. The convective response is indeed steady when running the SCM over large areas

(Figure 4(a),(b)). By contrast, significant time variations occur when using the KF parameteri-

zation (Figure 4(d)). Such variations are purely artificial: the results of a conventional mass-flux

parameterization are independent of grid-box area but sensitive to details of the triggering (as noted

above, on-off behavior occurs when using the KF scheme with this forcing for smallδT ). Coinci-

dentally, a similar level of variability is produced by the stochastic parameterization operating over

an area of(64km)2 (Figure 4(c)). In Section 5d we check that these variationsare appropriate by

investigating the pdf of total mass flux.
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[Figure 4 about here.]

Figure 5 shows thermodynamic profiles from the equilibrium state of the CRM, along with the

departures from that state that occur in various SCM experiments. The equilibrium states from the

SCM are somewhat moister within the boundary layer and lowertroposphere and somewhat drier

and cooler above. Departures of this size, however, are consistent with expectations for a change of

modelling famework: the corresponding radiative-convective equilibrium profiles obtained from a

different CRM (Roadnight 2001) exhibit differences of similar size to those between the SCM and

CRM states6.

[Figure 5 about here.]

The time-averaged equilibrium state in the SCM is not significantly modified by the larger

fluctuations that occur at individual timesteps when running over smaller areas. For model levels

below12km, the RMS differences between equilbrium states when running over areas of(400km)2

and(64km)2 are0.23K and0.11g kg−1 for potential temperature and water vapor respectively. In

comparison, the RMS differences in states between SCM runs at (400km)2 using RMS radii of450

and600m (as in Figure 5) are0.49K and0.31g kg−1.

The stochastic parameterization contains a root-mean-square (RMS) radius parameter
√

〈r2〉

which governs the proportions of small and large plumes. Preliminary tests suggested that a good

balance is obtained for
√

〈r2〉 ∼ 450m, and we have adopted this as a default value (Table 1).

Results for other choices of the parameter are shown in Figures 5 and 6. The changes are modest.

With an increased weighting for small clouds, it is necessary for the plumes to be more penetrative:

this is achieved by weakening the inversion, with a cooler mid- to upper-troposphere and a slightly

6See also, for example, Guichard et al. (2004) for a comparison of CRMs and SCMs in simulations of the diurnal
cycle of deep convection.

22



warmer boundary layer. A consequence is that the lower-tropospheric peak in the updraft mass

flux profile is raised for a smaller RMS radius (Figure 6). Otherwise the mass flux profile is rather

insensitive to the RMS radius, and effects on the heating budget are likewise minor (not shown).

[Figure 6 about here.]

5c. Tests of individual plume properties

Let us now consider the behavior of individual plumes withinthe SCM equilibrium state. Running

plume model offline for various updraft radii produces the mass flux profiles shown in Figure 7.

The profiles are highly sensitive to radius, as recognized byKain and Fritsch (1993). The unmod-

ified KF parameterization uses a radius of1km and this produces a deep-convective profile that

is in marked contrast7 to that found in the CRM (Figure 6). A reasonable balance between deep

and shallow convection can be achieved when using the KF parameterization in the SCM (Fig-

ure 6), but only by generating artificial variations in time between deep, shallow and no convection

(Figure 4(b)). Allowing a spectrum of plumes leads to a weighted sum over cloud types without

requiring artificial fluctuations of a model sounding.

[Figure 7 about here.]

Plumes that entrain very strongly (i.e., with small updraftradii) are unable to rise even a single

model level. These are simply ignored by the stochastic parameterization. For the SCM runs

discussed here, the spectral truncation typically resultsin losses of∼ 1% of the total mass flux and

∼ 3% of the cloud number. Experiments with several “correction”methods to restore the missing

7Although mass fluxes from a CRM and a convective parameterization are not directly comparable, gross deviations
in the basic shape of the profiles can nonetheless be regardedas significant.

23



mass flux and cloud number confirm that the truncation has no significant effect for any of the tests

in this paper.

The distributions of plume mass fluxes in the SCM equilibriumstate provide an important test

of the physical basis for our parameterization. Recall fromSection 2a that theory predicts an expo-

nential distribution for any fixed height in the atmosphere.Although an exponential distribution is

imposed at the LCL, other distributions may be established at other levels. It is therefore encour-

aging that an exponential distribution is indeed obtained at all heights, as shown for an example

level in Figure 8(a).

[Figure 8 about here.]

The value of〈m〉, obtained by fitting to the exponential distribution, is shown as a function of

height in Figure 8(b). As for the convective updrafts in the CRM, the ensemble-mean mass flux

derived from the SCM varies little with height over much of the troposphere. Values in the lower-

to-mid troposphere compare reasonably well to those in the CRM. Taken in conjunction with the

mass flux profiles of Figure 6, this means that the SCM has fewershallow clouds, but that there are

a similar number of clouds at mid-levels. This difference inthe number of shallow clouds explains

the difference in the total number of clouds seen in Table 2. The SCM also contains fewer clouds

in the upper troposphere, but because the mass flux for each islarger (Figure 8(b)) the total mass

flux there agrees well with the CRM (Figure 6). This upper-level behavior of〈m〉 may reflect the

tendency of plume models to over-estimate mass fluxes at the level of zero buoyancy, as discussed

by Kuang and Bretherton (2006). Moreover, the parameterization does not include downdrafts

near cloud top, making it impossible to reproduce the overturning in convective anvils that occurs

in the CRM.
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5d. Tests of statistical fluctuations

In this subsection, we consider fluctuations about the time-mean equilibrium SCM state, which

arise from the quantization of convection into discrete plumes. A related issue is the steadiness

of the forcing 〈M〉 provided by the CAPE closure, since the closure is not a physical source

of fluctuations. To investigate these issues, we compare thepdf of total mass flux from SCM

experiments to the expected distribution, Eq. 2.

Some preliminary tests were conducted with an imposed closure; that is, with the ensemble-

mean total mass flux〈M〉 specified as a fixed value at a fixed reference level. With a steady forcing

imposed, the expected distribution should hold exactly andwas indeed accurately reproduced (not

shown).

We wish to check that any timestep-to-timestep variabilityin the closure calculated by the

parameterization does not affect the convective statistics in an undesirable way. There are two

aspects of the closure calculations to be considered: the closure timescaleTc (Section 4), and the

profile averaging (step 1 of the algorithm in Section 2b). Restrictions on the closure timescale

arise independently of the averaging, limiting the choice of k (Eq. 5). If Tc is too short, then the

parameterization will over-stabilize the atmosphere. This will provoke the closure to reduce the

forcing at future timesteps, and may result in undesirable on-off behavior. It is also important that

Tc not be too long, not least because the parameterization mustbe capable of responding to genuine,

physical changes in the large-scale forcing. Our choice ofk necessarily represents a compromise

and experimentation with the SCM indicates thatk = 0.3sm−1 (as in Table 1) provides a reasonable

value. This corresponds to a closure timescale of a little over two hours in our SCM runs (Table 2),

which is consistent with relaxation timescales used in other parameterizations (Betts and Miller

1986, for example).
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In an SCM, the only profile averaging available to provide a representation of the large-scale en-

vironment (Section 2b) is time-averaging. Thus, a completedefinition of profile-averaging for the

stochastic parameterization must be deferred to future research and testing in a three-dimensional

model. However, it is both possible and important to establish whether the sampling required to

define a suitable large-scale environment8 is acceptable for practical use. The degree of sampling

of individual profiles in order to compute a steady forcing must be compatible with the scales

characterizing genuine variations in large-scale forcing.

Consider for example a typical global forecast model (or perhaps a high-resolution climate

model) with a gridlength of64km. A practical number of profiles available for space-time av-

eraging would be 150, corresponding to an averaging area of side ∼ 320km (the neighboring

and next-to-neighboring grid boxes) and the 6 previous model timesteps (2hr with a20min step).

Running the SCM over an area of(64km)2, and averaging the input profiles for the closure calacu-

lations over the previous 150 timestepsis sufficient to produce the steady forcing required. Indeed

Figure 9(a) indicates that a smaller sample size of 100 wouldalso be acceptable.

[Figure 9 about here.]

Figure 9(b) shows results for a larger gridlength of96km. Using the same space-time averaging

scales as above, and assuming a longer model timestep of30min, the corresponding number of

individual profiles is reduced to 44 (or to 30 if using 100 samples on the64km grid). This remains

a sufficient number because of the smaller variability between profiles. We have also explicitly

tested the profile averaging for smaller grid lengths, more typical of an NWP model. The variability

between individual profiles is then relatively large, but the increased number of profiles for the

same space-time averaging appears to provide than adequatecompensation.

8In SCM tests using the instantaneous profiles as input to the closure calculations, the computed〈M〉 varied
strongly between timesteps and was the dominant source of convective fluctuations.
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6. Conclusions

There are strong theoretical and practical motivations forthe use of stochastic convective param-

eterizations in both NWP and climate models, but work is onlybeginning to determine an appro-

priate representation of the variability. This paper has described a scheme in which the variability

is designed to replicate the known fluctuations that occur about a state of radiative-convective

equilibrium above a uniform surface. The parameterizationis based on an ensemble of entrain-

ing/detraining plumes, with a conventional mass flux closure. A Poisson distribution is expected

for the occurrence of plumes, with the plume mass fluxes (at any fixed level) being drawn from an

exponential distribution (Craig and Cohen 2006). The variability arises in a natural way from the

limited random sampling of the plume ensemble in each grid box.

The particular closure assumption and plume model used are adapted from the Kain-Fritsch

(KF) parameterization. Note, however, that the various aspects of the stochastic parameterization

have some independence, so that one could derive new schemesof this general type (Section 2b)

by replacing, say, the pdf or the plume model used.

Single column tests have been carried out to establish that the parameterization is functioning

as designed. In particular, the following expected behaviors are present:

1. In the limit of a large grid box, when the plume ensemble is well sampled, convective vari-

ability becomes small, and the parameterization approximates a deterministic scheme.

2. Mean profiles of temperature and humidity are comparable to those obtained in companion

CRM simulations and to those in the SCM when a conventional parameterization (KF) is

used.

3. Consistent with CRM simulations, the plume ensemble in the SCM exhibits an exponential
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distribution of mass fluxes above cloud base, with a mean massflux that is approximately

constant with height.

4. The prescribed distribution of total mass flux (Eq. 2) is maintained in SCM experiments for

columns of varying sizes.

5. An appropriate mean state for the closure calculation is produced by time-averaging the

atmospheric profile. The averaging interval used in this study was chosen conservatively

in order to demonstrate the viability of the parameterization. A detailed examination of

profile averaging strategies is not possible in the SCM context since the the tradeoff between

temporal and spatial averaging cannot be explored.
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A. The Kain-Fritsch Parameterization

The Kain-Fritsch convective parameterization has a long history, starting with the Fritsch and

Chappell (1980) parameterization, significantly modified to produce the Kain and Fritsch (1990,

1993) parameterization and incrementally modified since. Kain (2004) recently discussed the ver-

sion used in a semi-operational configuration of the NCEP Etamodel. This version provided a

starting point for the plume model and CAPE-closure code used in the stochastic parameteriza-

tion. A brief description of it is presented here. It is suggested that the reader who requires a fuller
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description consult Sec. 2 of Kain et al. (2003) before studying some of the more technical material

in the original papers.

The KF parameterization is a mass-flux scheme which may be divided into three parts. First, a

decision is made as to whether convection will take place (the trigger). Second, the convection is

described in terms of mass flux profiles for a moist updraft, a moist downdraft and compensating

dry vertical motions. Third, the intensity of the convection must be determined (the closure).

The viability of convection is tested by constructing potential updraft source layers, each of

which has thermodynamic properties computed as a mass-weighted average over several model

levels. A parcel from the layer is assigned a temperature perturbation9 δT , and its buoyancy is

tested at the LCL. If buoyant, an initial vertical velocity is assigned10. The second part of the

scheme is then used to calculate the resulting updraft. The scheme searches for an updraft source

layer that will engender deep convection11. It considers first a layer based at the surface and if

necessary then the layer base is incremented in steps of one model level, up to300 mb above

the surface. Should no suitable source layer be found for deep convection, then the source layer

corresponding to the deepest cloud will nonetheless be usedas a source for shallow convection.

In the second and third parts of the parameterization, shallow convection differs in that: (i) the

detrainment profiles within the updraft are modified for consistency with LES results; (ii) it does

not support an associated downdraft; and, (iii) a differentclosure and lifetime is used. We retain

the two types of convection in our stochastic parameterization but do not make the distinction (iii).

Updrafts are computed with an entraining/detraining plumemodel which describes two-way

mass exchange between the updraft and its environment on each model level. Mixtures of up-

9Related to the grid-scale vertical velocity at the LCL (Kain2004, his Eq. 1).
10Related to the temperature perturbation (Kain 2004, his Eq.3).
11i.e., with a cloud depth exceeding a threshold value that is afunction of the LCL temperature (Kain 2004, his

Eq. 7)
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draft and environmental air are entrained or detrained according to whether they are positively or

negatively buoyant respectively. Such calculations require estimates of the maximum rate of en-

trainment12 and the distributions of environmental and updraft air in the mixtures (Kain and Fritsch

1990, their Sec. 2b). Conversion of condensate to precipitation within the updraft is determined by

an empirical formulation (Kain and Fritsch 1990, their Eq. 9). The downdraft is initiated150 mb

above the top of the updraft source layer. This is computed byassuming a fixed entrainment rate

of environmental air above the updraft source layer, and detrainment within and below. The down-

draft is saturated above cloud base, and dried by20% relative humidity km−1 below (Kain 2004,

p178). Compensating vertical motions within the column aredetermined from mass continuity

(Fritsch and Chappell 1980, their Eq. 10).

A starting point for the above mass flux calculations is the updraft mass flux at cloud base.

This is guessed. Closure of the scheme consists of rescalingthat guess (and all other mass fluxes

appropriately) in an iterative manner until the desired intensity of convection is achieved. The

intensity is defined by the requirement that the convection acts to remove at least90% of the dilute

CAPE within the closure timescale,Tc. Dilute CAPE is calculated for the entraining/detraining

plume rather than for undilute parcel ascent. Note that onceconvective activity is identified at a

grid box, it persists for multiple timesteps. Tendencies are applied to the grid box state over the

time Tc and the parameterization is not called again during this time. Tc is set from an estimate

of the transit time for a cloud to cross the grid box, subject to bounding values of30 and60 min

(Fritsch and Chappell 1980, p1724). In our stochastic parameterization, the concept of a plume

lifetime is retained (Sec. 3a) but convective activity doesnot preclude the generation of other

plumes during this time.

12The maximum entrainment rate is inversely proportional to the updraft radius (Kain and Fritsch 1990, their Eq. 1),
which is itself variable within the range1 to 2km (Kain 2004, his Eq. 6) accrording to the grid-scale vertical velocity
at the LCL.
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Table 1: Default parameter choices for the stochastic convective parameterization, as used in the
SCM runs of Section 5. In each case, the choice made is discussed in the Section referred to in the
final column. Ns denotes the number of soundings that are time-averaged to provide large-scale
profiles. All other symbols are defined in the main text.
Parameter Value Refer to Section
〈m〉 2×107kgs−1 2a
T 45min 3a
√

〈r2〉 450m 5b
k 0.3sm−1 5d
Ns 90 5d
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Table 2: Statistics of the SCM equilibrium state produced bythe stochastic convective parame-
terization. The SCM represented an area of (400km)2. “SCM mean” values are are calculated as
time averages between the 10th and 20th days. “Dilute” CAPE is that calculated for the plume
ensemble (Section 4). Also given (where appropriate) are corresponding values obtained from the
domain-averaged state of the companion CRM experiment. This was run over a domain of area
(128km)2 and so the number of clouds has been scaled-up by the ratio of SCM to CRM areas in
order to provide an appropriate comparison.
Quantity Mean SCM Standard deviationMean CRM
Closure timescale,Tc (min) 144 6 –
LCL (m) 1297 72 1839
Number of clouds,〈N〉 181 19 449
Forcing at LCL,〈M〉 (kgm−2s−1) 0.0243 0.0018 0.0634
Dilute CAPE (Jkg−1) 212 36 –
Surface heat flux (Wm−2) 102 2 102
Surface latent heat flux (Wm−2) 546 8 557
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