Development of a stochastic convection scheme

R. J. Keane, R. S. Plant, N. E. Bowler, W. J. Tennant

Mini-ensemble of rainfall forecasts

Outline

- Overview of stochastic parameterisation.
- How the Plant Craig stochastic convective parameterisation scheme works and the 3D idealised setup.
- Results: rainfall statistics.
- A look at the Plant Craig scheme in a mesoscale run.
- Conclusions and future work.

Ensemble Forecasting & Stochastic Paramterisation

Single Deterministic Forecast:

$$\dot{\mathbf{E}}_0(\mathbf{X}, t) = \mathbf{A}(\mathbf{E}_0, \mathbf{X}, t) + \mathbf{P}(\mathbf{E}_0);$$

 $\mathbf{E}_0(\mathbf{X}, 0) = \mathbf{I}(\mathbf{X})$

Ensemble of Deterministic Forecasts:

$$\dot{\mathbf{E}}_{j}(\mathbf{X}, t) = \mathbf{A}(\mathbf{E}_{j}, \mathbf{X}, t) + \mathbf{P}(\mathbf{E}_{j});
\mathbf{E}_{j}(\mathbf{X}, 0) = \mathbf{I}(\mathbf{X}) + \mathbf{D}_{j}(\mathbf{X})$$

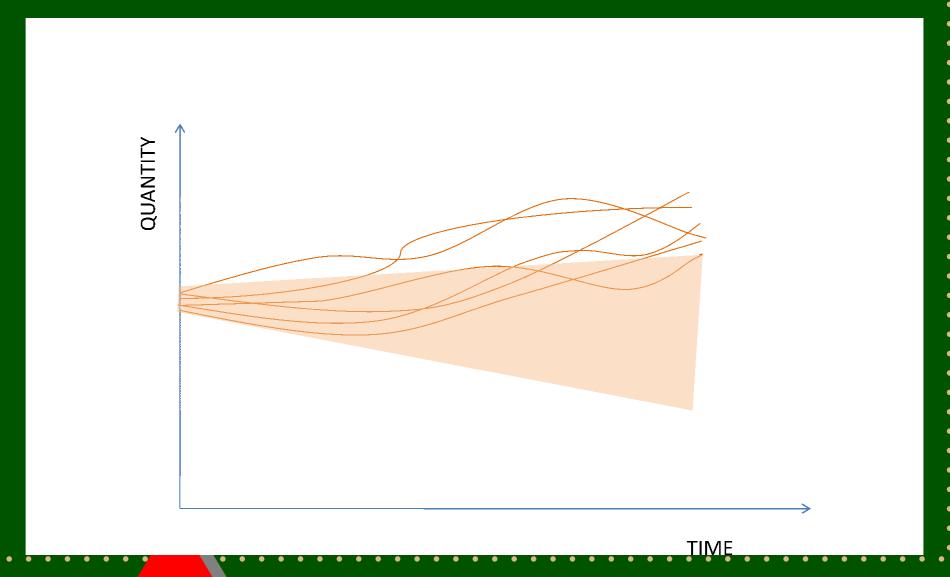
Ensemble of Stochastic Forecasts:

$$\dot{\mathbf{E}}_{j}(\mathbf{X},t) = \mathbf{A}(\mathbf{E}_{j},\mathbf{X},t) + \mathbf{P}_{j}(\mathbf{E}_{j},t);$$

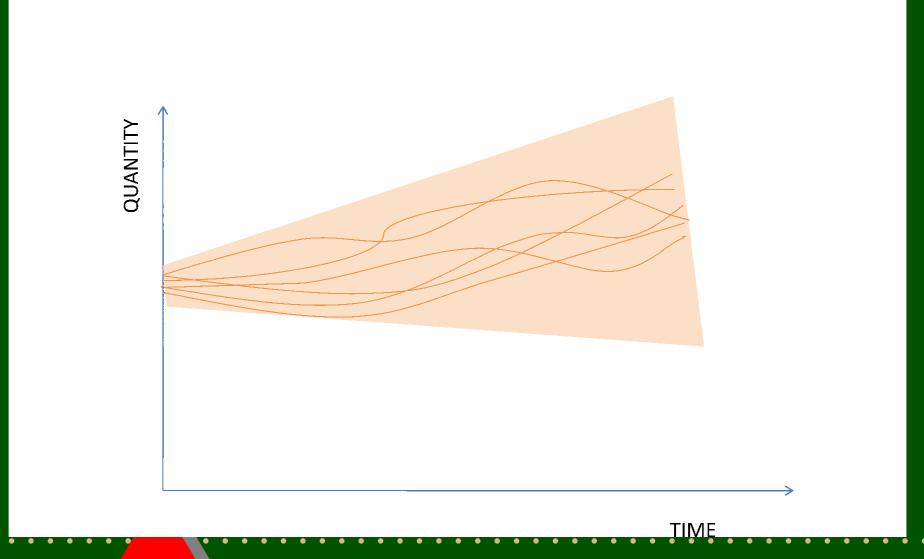
 $\mathbf{E}_{j}(\mathbf{X},0) = \mathbf{I}(\mathbf{X}) + \mathbf{D}_{j}(\mathbf{X})$

How stochastic parameterisations may improve ensemble

forecasts: noise-induced drift

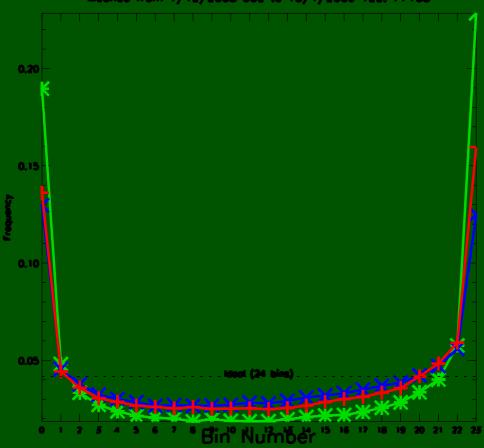


How stochastic parameterisations may improve ensemble forecasts: better forecast of variability



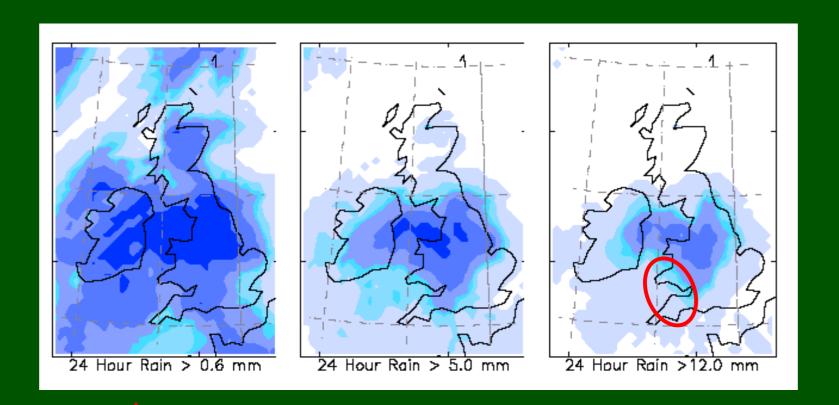
Rank Histograms of surface temperature

Rank Histogram
Temperature (Kelvin) at Station Height: Surface Obs
Reduced MOGREPS NAE Model area
Meaned from 1/12/2008 00Z to 15/1/2009 12Z; T+168



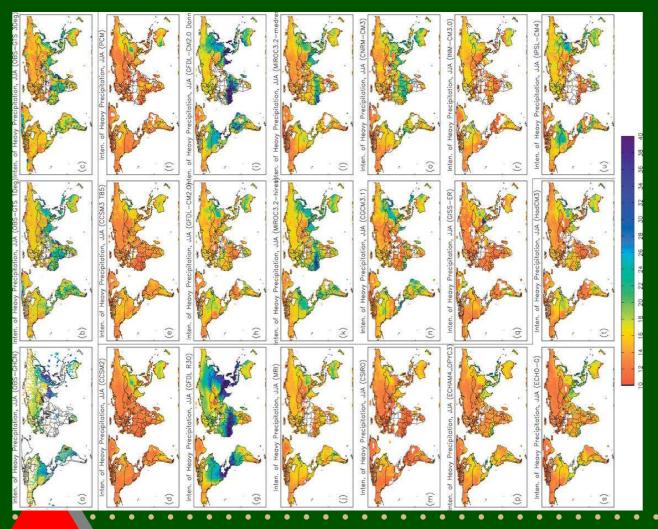
Heavy Rain Devon and South Wales 6th June 2009

Ken Mylne, 4th SRNWP workshop on Short Range Ensemble Prediction Systems, 2009.



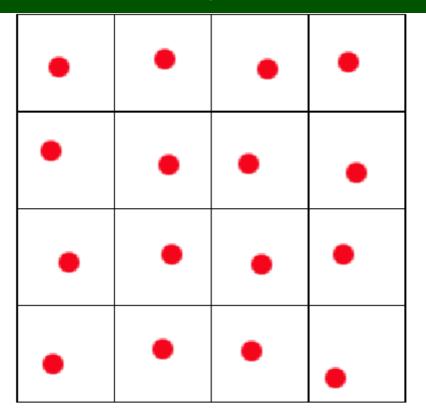
Climate modelling of heavy precipitation

Sun et. al. J. Clim. 2006



Conventional convective parameterisation

For a constant large-scale situation, a conventional parameterisaion models the convection independently of space:

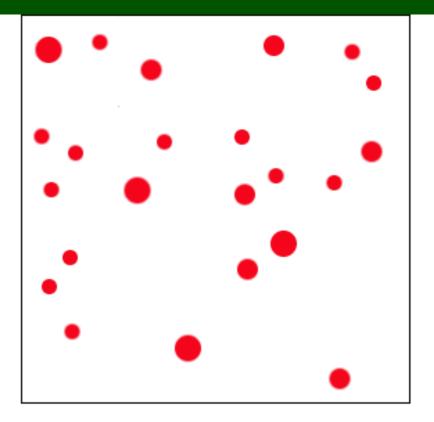


Conventional convective parameterisation

This leads to a uniform, mean value of convection whatever the grid box size:

Stochastic parameterisation

A stochastic scheme allows the number and strength of clouds to vary consistent with the large-scale situation:

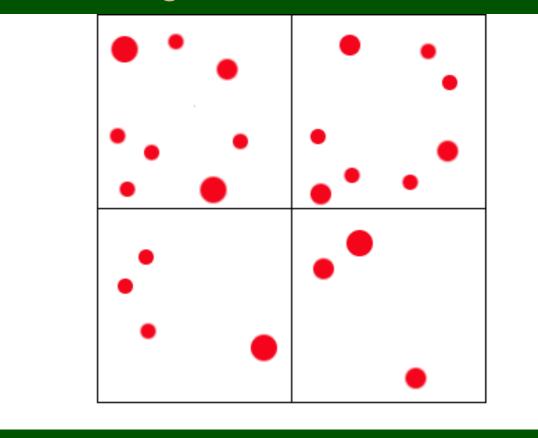


Effect of Paramterisation

Of course, this has no effect if the grid box is large enough:

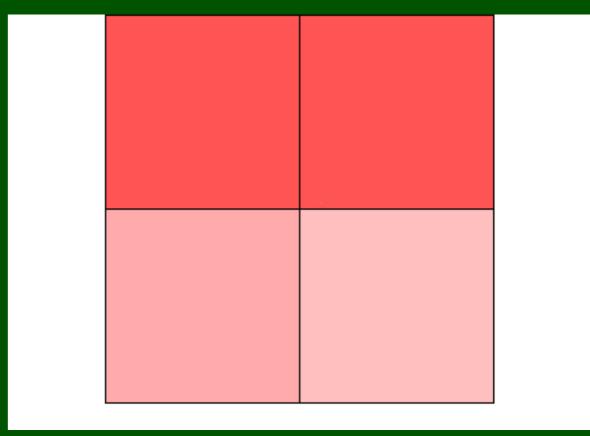
Stochastic Parameterisation

But for a smaller gridbox ...

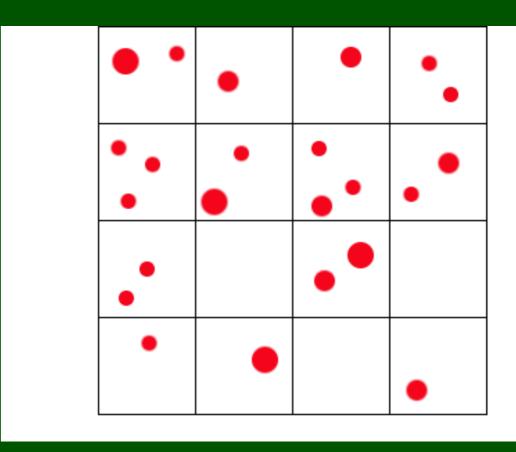


Effect of Paramterisation

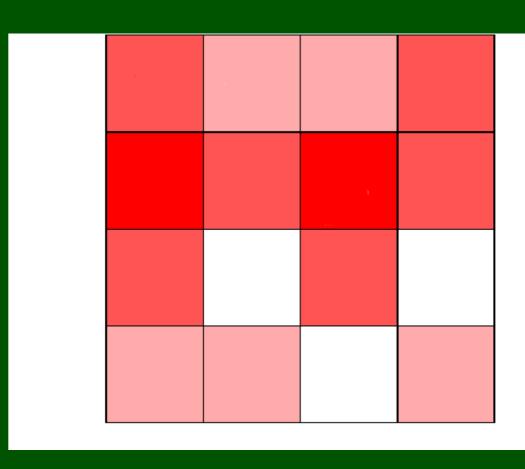
The scheme allows some convective variability:



Stochastic Parameterisation

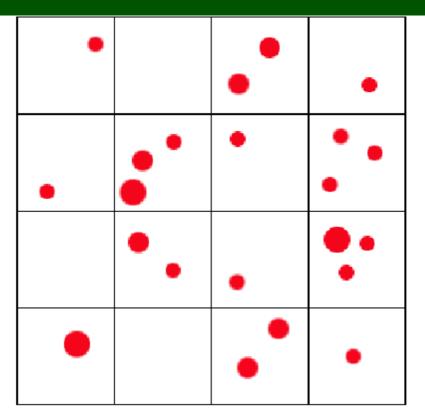


Effect of Paramterisation



The real world

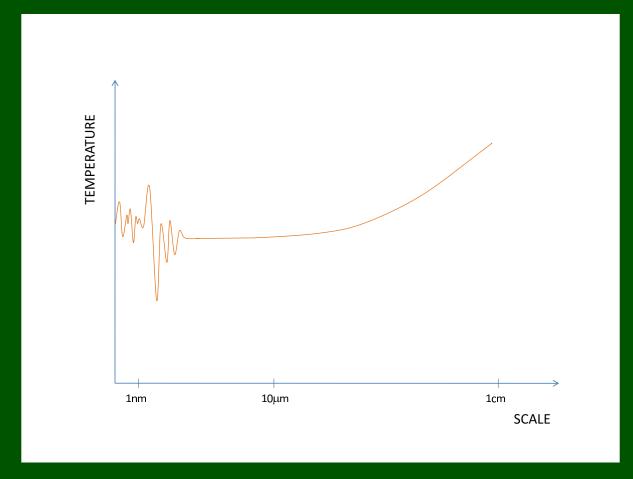
The distribution will be different in reality, but the variability will be similar.



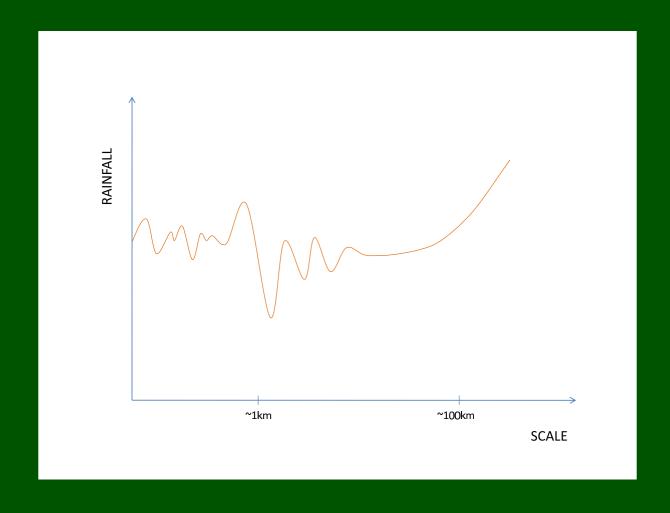
Satellite image example

NERC SRS, Dundee, 15/06/09 13:32.

Scale separation: thermodynamics



Scale separation: rainfall



Convection parameterisation schemes

- Trigger function
- Mass-flux plume model
- Closure
- Examples
 - Gregory Rowntree (UM standard)
 - Kain Fritsch
 - Plant Craig (based on Kain Fritsch)

Plant Craig scheme: Analogies

Statistical Mechanics

Convection

Particle

Cloud

Energy per particle

Mass flux per cloud m

Number of particles

Number of clouds N

Ensemble average energy

Ensemble average mass flux $\langle M
angle$

Temperature

Ensemble mean mass flux per cloud $\langle m
angle$

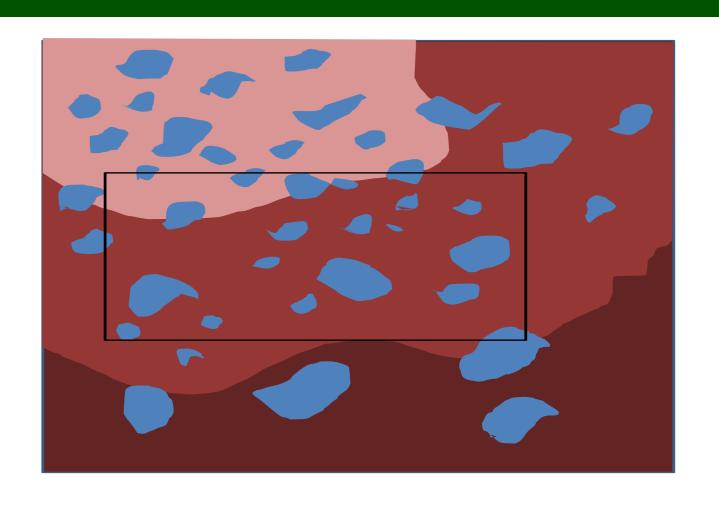
Entropy

Ensemble mean number of clouds $\langle N
angle$

Plant Craig scheme: Methodology

- Obtain the large-scale state by averaging resolved flow variables over both space and time.
- Obtain $\langle M \rangle$ from CAPE closure and define the equilibrium distribution of m (Cohen-Craig theory).
- Draw randomly from this distribution to obtain cumulus properties in each grid box.
- Compute tendencies of grid-scale variables from the cumulus properties.

Plant Craig scheme: Averaging area



Plant Craig scheme: Probability distribution

Assuming a statistical equilibrium leads to an exponential distribution of mass fluxes per cloud:

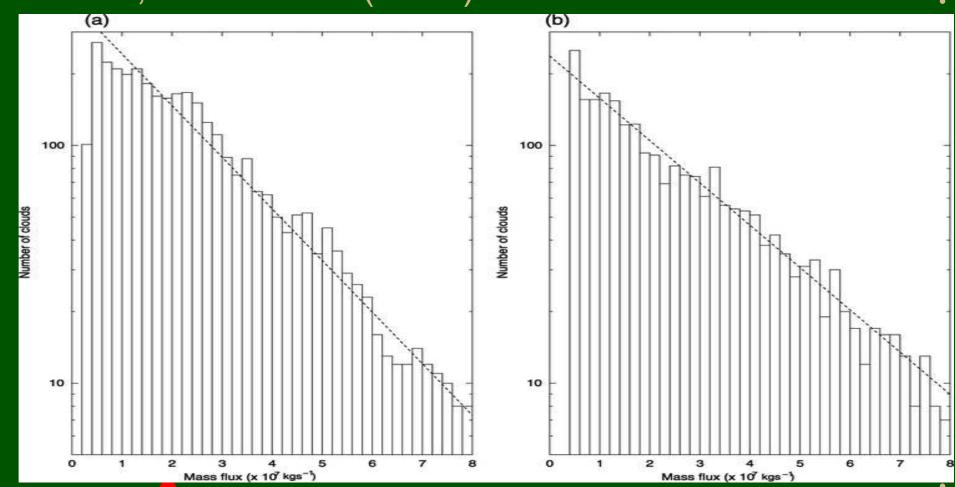
$$p(m)dm = \frac{1}{\langle m \rangle} \exp\left(\frac{-m}{\langle m \rangle}\right) dm.$$

So if $m \sim r^2$ then the probability of initiating a plume of radius r in a timestep $\mathrm{d}t$ is

$$\frac{\langle M \rangle 2r}{\langle m \rangle \langle r^2 \rangle} \exp\left(\frac{-r^2}{\langle r^2 \rangle}\right) dr \frac{dt}{T}.$$

Exponential distribution in a CRM

Cohen, PhD thesis (2001)



Ensemble Forecasting & Stochastic Paramterisation

Single Deterministic Forecast:

$$egin{aligned} \dot{\mathbf{E}}_0(\mathbf{X},t) &= \mathbf{A}(\mathbf{E}_0,\mathbf{X},t) + \mathbf{P}(\mathbf{E}_0); \\ \mathbf{E}_0(\mathbf{X},0) &= \mathbf{I}(\mathbf{X}) \end{aligned}$$

Ensemble of Deterministic Forecasts:

$$\dot{\mathbf{E}}_{j}(\mathbf{X}, t) = \mathbf{A}(\mathbf{E}_{j}, \mathbf{X}, t) + \mathbf{P}(\mathbf{E}_{j});
\mathbf{E}_{j}(\mathbf{X}, 0) = \mathbf{I}(\mathbf{X}) + \mathbf{D}_{j}(\mathbf{X})$$

Ensemble of Stochastic Forecasts:

$$\dot{\mathbf{E}}_{j}(\mathbf{X},t) = \mathbf{A}(\mathbf{E}_{j},\mathbf{X},t) + \mathbf{P}_{j}(\mathbf{E}_{j},t);$$

 $\mathbf{E}_{j}(\mathbf{X},0) = \mathbf{I}(\mathbf{X}) + \mathbf{D}_{j}(\mathbf{X})$

PDF of total mass flux

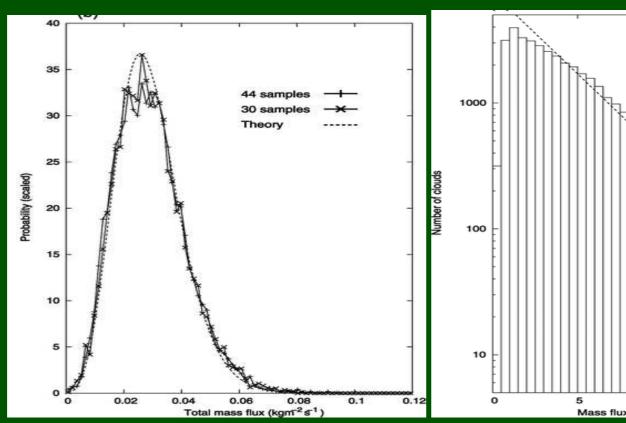
Assuming that clouds are non-interacting, p(m) can be combined with a Poisson distribution for cloud number,

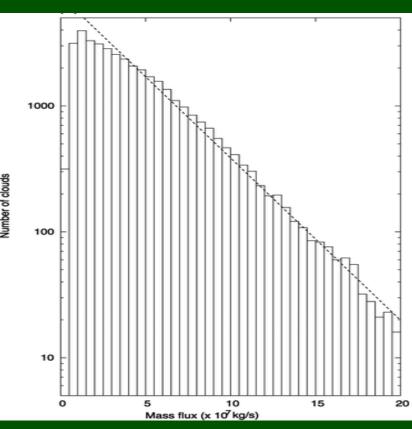
$$p(N) = \frac{\langle N \rangle^N e^{-\langle N \rangle}}{N!},$$

leading to the following distribution for total mass flux:

$$p(M) = \left(\frac{\langle N \rangle}{\langle m \rangle}\right)^{1/2} e^{-(\langle N \rangle + M/\langle m \rangle)} M^{-1/2} I_1 \left(2\sqrt{\frac{\langle N \rangle}{\langle m \rangle}} M\right) \vdots$$

PDFs of mass flux in an SCM



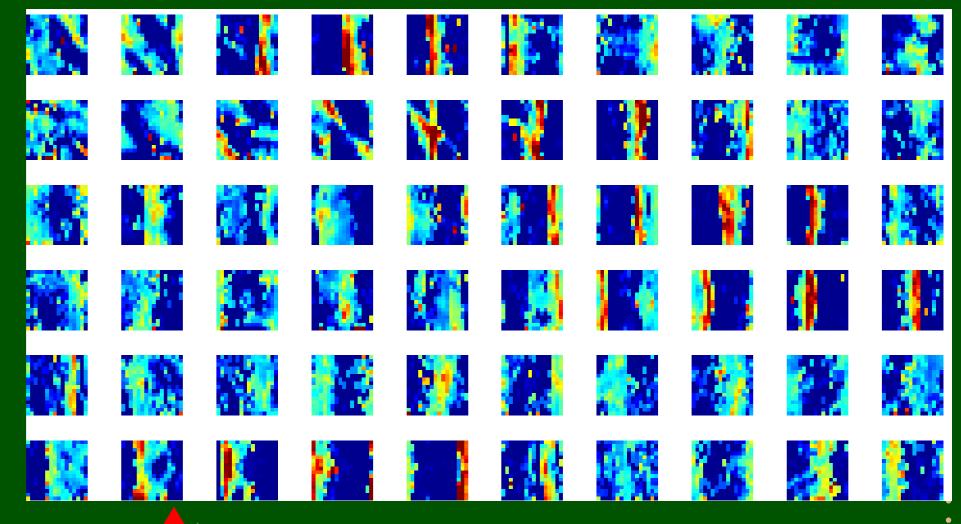


Plant & Craig, JAS, 2008

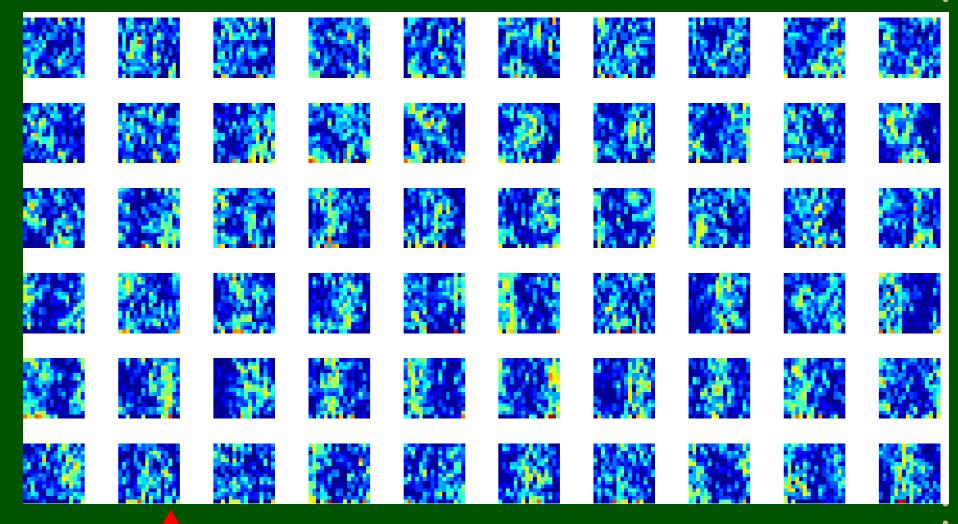
3D Idealised UM setup

- Radiation is represented by a uniform cooling.
- Convection, large scale precipitation and the boundary layer are parameterised.
- The domain is square, with bicyclic boundary conditions.
- The surface is flat and entirely ocean, with a constant surface temperature imposed.
- Targeted diffusion of moisture is applied.
- The grid size is 32 km.

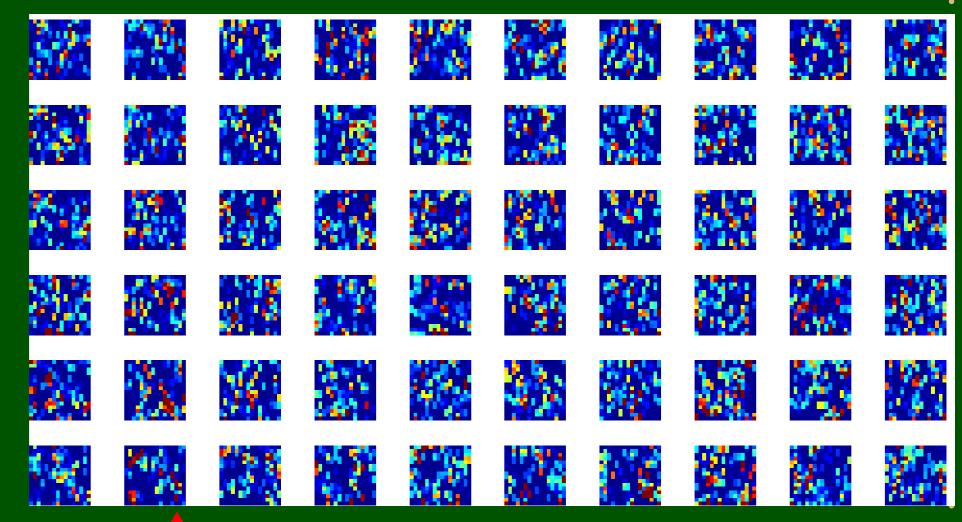
Rainfall snapshots: Gregory Rowntree scheme



Rainfall snapshots: Kain Fritsch scheme

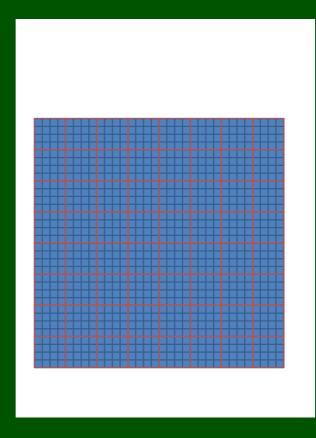


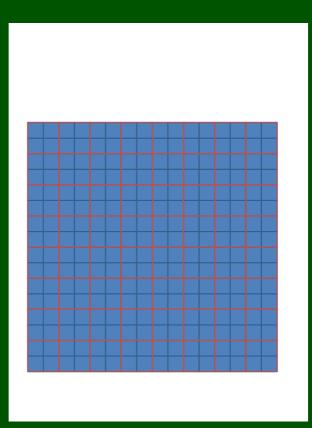
Rainfall snapshots: Plant Craig scheme



Model grid division

16km 32km

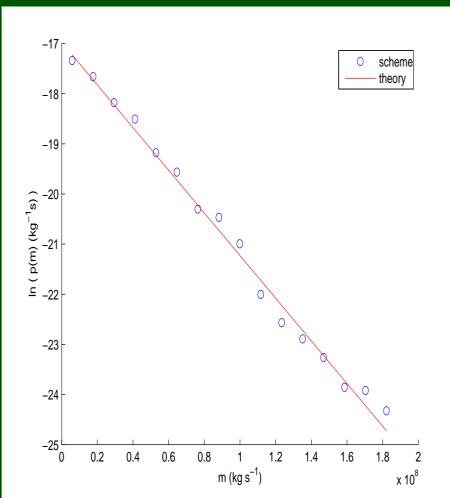


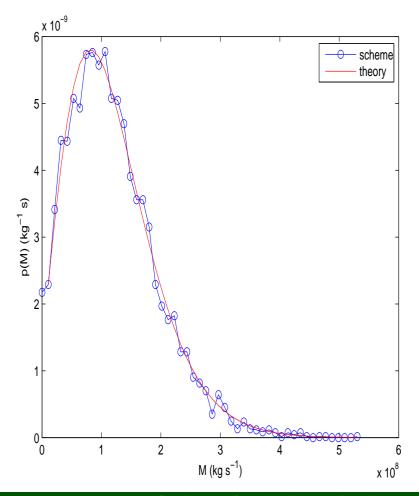


PDFs of m and M for maximum averaging

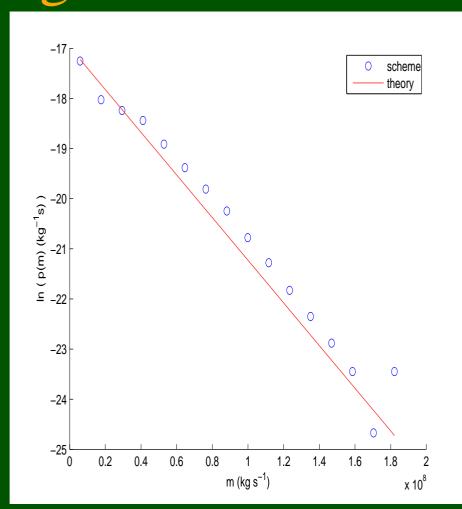
Averaging area: $480 \, \mathrm{km}$ square.

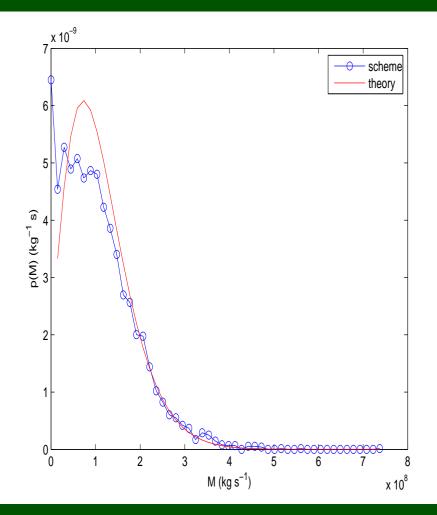
Averaging time: 1 hour.





PDFs of m and M for no averaging

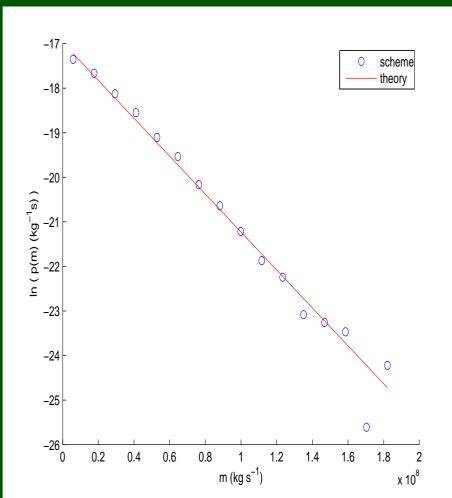


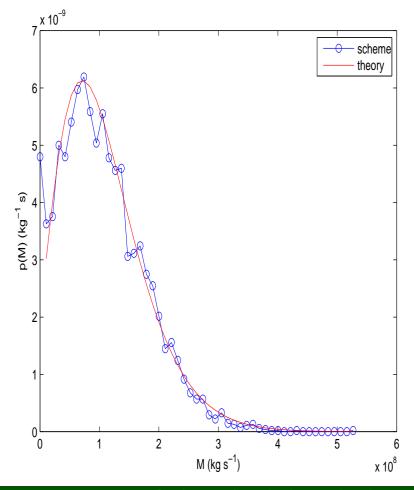


PDFs of m and M for intermediate averaging

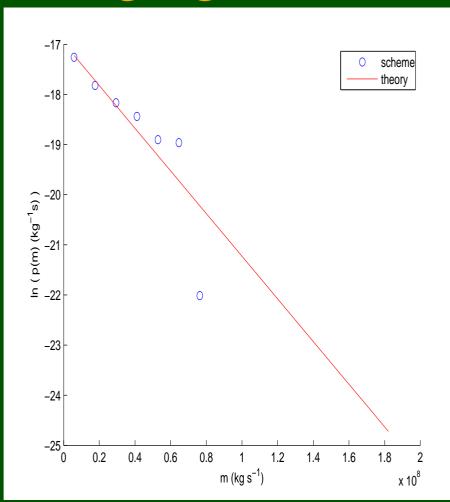
Averaging area: $160 \, \mathrm{km}$ square.

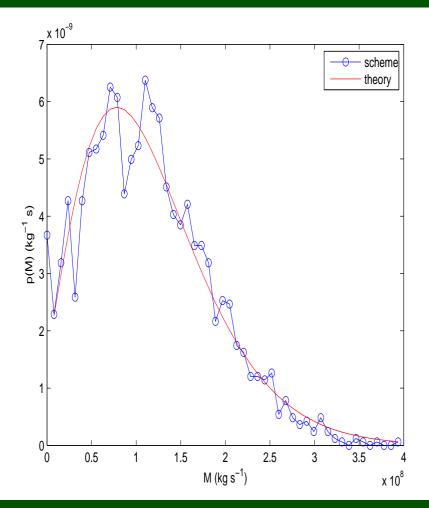
Averaging time: 1 hour.



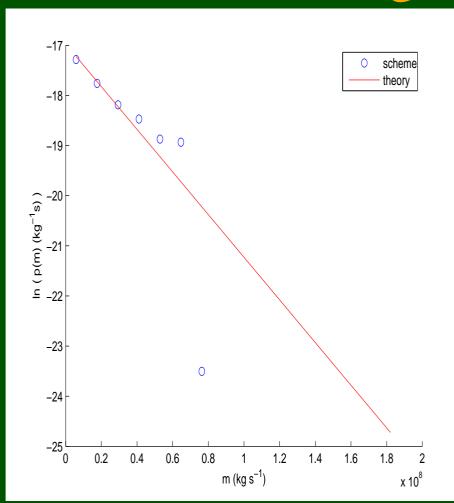


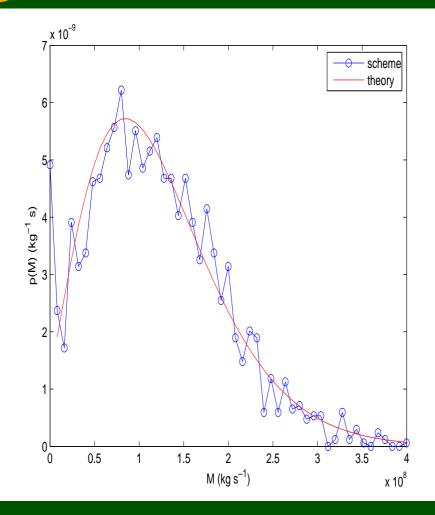
PDFs of m and M for 16 km (no averaging)





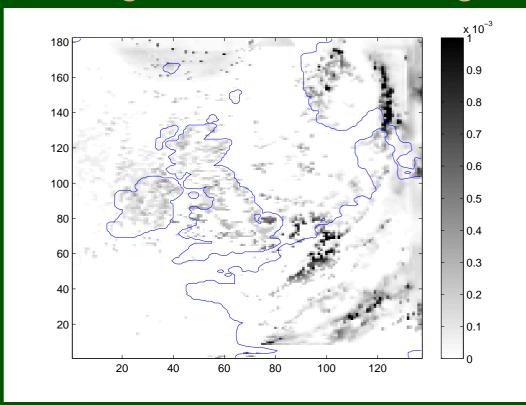
PDFs of m and M for 16 km (intermediate averaging)



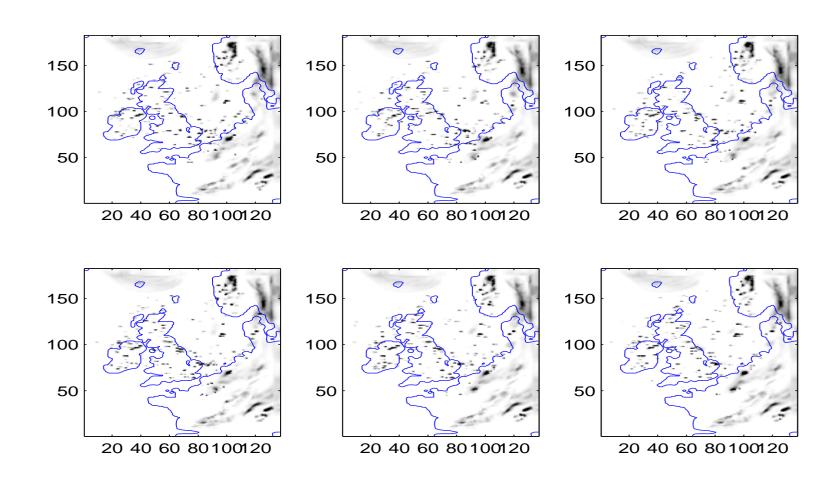


Case study: CSIP IOP18

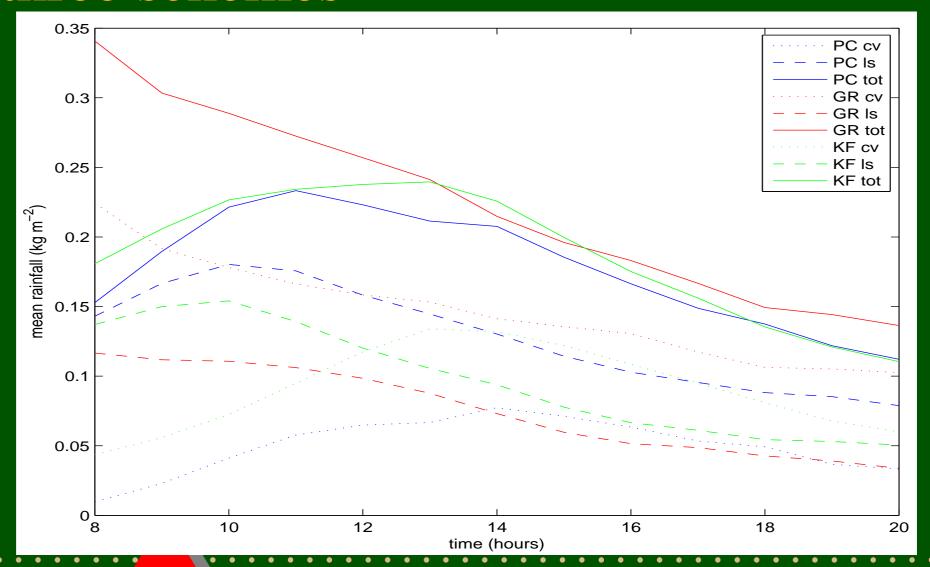
- Starts at 25th August 2005, 07:00.
- 12 km grid with 146×182 grid points.



Ensemble of 6 runs using RC scheme



Rainfall against time for each of three schemes



Future work

- Implement the PC scheme in MOGREPS, to determine its impact on variability.
- Run on NAE domain (~ 20 km), for one Summer month.
- Compare with existing GR run and deterministic version of PC.
- Look at the effect of the scheme, and its stochastic nature, on the variability of the ensemble and the spread-error relationship.

Conclusions

- The convective variability in the scheme is according to the Cohen Craig theory, and is not due to spurious noise from the large-scale.
- An averaging area of roughly 160 km is required to effect this.
- The statistical behaviour of the scheme is correct at different resolutions, although the amount of averaging required may vary.
- The scheme behaves sensibly in a mesoscale setup, and is ready to be implemented in an ensemble prediction system.