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A practical view

Near-grid scale in GCM and NWP models is not energetic
enough

Adding near-grid scale noise can correct that

Some very simple noise generators are beneficial
multiplicative or random-parameters noise in NWP ensembles

Are complex methods based on a rethought
parameterization strategy necessary or useful in practice?

i.e., what physical constraints should control the character
of the stochastic tendencies?
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Scales for parameterization

Three important scales to consider:

1. intrinsic scale of the process to be parameterized
(turbulent eddy sizes, cloud dimensions...)

2. a large-scale, sufficient to contain many instances of the
process
i.e., scale at which time average ≈ space average ≈
ensemble average

3. the model grid box size
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Parameterization strategy

Is a function of the grid scale
∆x

Spatial
scale

LargeIntrinsic

Determinstic parameterization

Good scale separation: fluctuations small on scale ∆x

Parameterized process is a function of current state of
grid box
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Parameterization strategy

Is a function of the grid scale
∆x

Spatial
scale

LargeIntrinsic

Stochastic parameterization

Parameterized process is a function of large-scale state

Grid-box state 6= large-scale state
space average over ∆x 6= ensemble average

Process as realized on grid-box scale is a sub-sampling of
the full ensemble so fluctuations important
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Plant and Craig parameterization

Deep convection scheme, explicitly designed to be
stochastic following this conceptual framework

Number of cumulus clouds 〈N〉 in GCM grid box need not
be large

Mass-flux formalism with spectrum of plumes of varying
sizes

Select a random sample of plumes

Stochastic part of ∂tX ∼
√

〈N〉

cf. multiplicative noise in which it ∼ 〈N〉
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Example pdf of mass flux
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scheme
theory p(M) produced by

Plant-Craig scheme,
over area (64km)2

3D simulation of
radiative-convective
equilibrium at
∆x = 32km

Agrees with theory and
CRM results
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Simple additive noise good enough
Convective scale NWP at ∆x = 1−4km

Perturbation at 2000 UTC, 8 km
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Raining in perturbed
Raining in control

Raining in both

Perturbations in boundary-layer θ alter triggering and
displace storms

Can produce ensemble rainfall spread similar to
ensembles representing parameter/structural uncertainty
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Framework of tests
Single-column tests for tropical west-Pacific warm pool, based
on TOGA-COARE

39-member ensembles used

includes small initial condition perturbations to
boundary-layer temperature

different random number seed for the stochastic method
in each run

vary the character of multiplicative noise, and compare
with Plant-Craig

Stochastic parameterization: is sophistication useful? – p.8/13



Multiplicative noise
Apply multiplicative noise to one scheme only
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Dotted: IC, Black: all, Red: radiation,

Green: boundary layer, Purple: con-

vection, Blue: large-scale cloud

Similar vertical profiles
of spread

Model propagates
uncertainty: perturbing
one scheme induces
noise in input to the
next

Spread from perturb-
ing any one scheme
∼ 70% spread from 4
schemes together
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T/q correlations
Decorrelate multiplicative noise to ∂tT and ∂tq

time / days

p
r
e

s
s
u

r
e

 
/
 
P

a

Ensemble spread in T for MN scheme in default mode
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Ensemble spread in T for MN scheme with T and q decorrelated
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Unphysical spread beyond 18th: stronger than with
quenched random numbers

Decorrelated noise violates energy conservation,
L∆q 6= Cp∆T when a cloud condenses/evaporates
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Sampling uncertainty
Spread in column-average T from Plant-Craig as function
of grid-box size

16 18 20 22 24 26
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time / days

TC
ES

 / 
K

Temperature TCES against time

 

 

RP noise
P+C (dx=100km)
P+C (dx=50km)

Similar to mult. noise or random parameters for ∆x = 50km
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Stochastic drift
Effect of noise on mean-state with Plant-Craig
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Ensemble mean temperature difference Plant and Craig (DX=50km) − Plant and Craig (deterministic) / K
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Ensemble mean T difference: Plant-Craig at ∆x = 50km
− Plant-Craig deterministic

Stochastic drift almost like having a different
parameterisation
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Conclusions
Simple additive or multiplicative noise source sufficient for
some purposes

i.e., can use generic method and may not be necessary to
address all sources of GCM uncertainty

But some physical constraints are necessary
e.g. L∆q = Cp∆T when cloud condenses/evaporates is useful to know

Parameterization strategy properly depends on intrinsic
scales and on ∆x

For deep convection, cloud-sampling uncertainty
becomes as important as the uncertainty in representing
a cloud at ∆x ∼ 50km

An explicitly stochastic parameterization scheme is then
required
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