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Why a stochastic representation?
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A much harder question is...

What makes you think you can get
away with using a deterministic

representation?
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Argument for Stochastic Approach

1. A deterministic scheme gives unique increments due to
convection for a given large-scale state

2. A major source of variability is that convective instability is
released in discrete events

3. The number of events in a GCM grid-box is not large
enough to produce a steady response to a steady forcing

4. Wide range of sub-grid states are possible, so aim to
calculate their ensemble mean effect

Fluctuating component of sub-grid motions may have important
interactions with large-scale
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Range of States
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Also Xu et al (1992);
Shutts and Palmer (2004)
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Practical Motivations

Stochastic parameterizations may resolve known problems with
current approaches:

NWP models have insufficient ensemble spread

Buizza et al (2005)
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Practical Motivations

Stochastic parameterizations may resolve known problems with
current approaches:

NWP models have insufficient ensemble spread
(improvement expected)

Low frequency variability (improvements likely)
Marginal predictability of some events which react strongly to

near-grid-scale noise (Zhang et al 2003)

GCMs have insufficient variability in tropics (impact on QBO)

Systematic model errors (hopeful of improvements)
eg, propagation of convection
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Not a magic wand - some problems
will not go away
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Existing Variability

Existing parameterizations do have variability, but it is:

unphysical (numerical)

uncontrolled

does not exhibit the correct dependencies
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Example of Artificial Variability
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No dependence on (for example) grid size.
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Some stochastic experiments
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Variability in Model Formulation

In ECMWF ensemble system, scale parameterization
tendencies,

Tendency = D+(1+ ε)P

Improves ensemble spread

Bright and Mullen (2002): stochastic perturbation to KF
trigger.
Increased skill and dispersion of short-range precipitation forecasts

Lin and Neelin (2002): add noise to CAPE closure of
Zhang/Macfarlane scheme in CCM3.
Increase variance of daily tropical precipitation

Khouider, Majda and Katsoulakis (2003). Spin-flip model.
Sites within each grid box that may or may not support deep convection.

Convective heating scales with fractional area. Stochastic Representation of Convection – p.12/30



Aim

To construct a stochastic scheme in which

the character and strength of the noise has a physical
basis

the physical basis is supported (or inspired) by CRM
studies

physical noise >> numerical noise from scheme

noise → 0 if there are very many clouds and in this limit
scheme behaves no worse than standard deterministic
schemes
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A Stochastic Scheme
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Basic Structure

Mass-flux formalism (based on Kain-Fritsch)...

No trigger function. Presence of convection dictated by
random subgrid variability.

Spectrum of possible plumes chosen from distribution of
mass fluxes. Each plume represents cloud of given mass
flux.

Clouds persist for finite lifetime 6= timestep.

CAPE closure to remove instability on a timescale that
depends on forcing. Calculations performed on an
averaged (non-local) sounding.
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Statistical Mechanics I

Craig and Cohen (2004)

Weakly-interacting, point-like convective cells in
equilibrium with large scale forcing have exponential
distribution of mass flux per cloud

p(m)dm =
1
〈m〉

exp

(

−m
〈m〉

)

dm

cf Boltzmann distribution of energies

Ensemble mean mass flux 〈M〉 and is mean mass flux per
cloud 〈m〉 functions of large-scale forcing only
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Example Distributions
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Statistical Mechanics II

Number of clouds in given region given by Poisson
distribution if clouds randomly distributed in space.

This gives pdf of the total mass flux

p(M)=
1

〈M〉

√

〈M〉

M
exp

(

−
M + 〈M〉

〈m〉

)

I1

(

2
〈m〉

√

〈M〉M

)

Deviations modest if a wind shear imposed
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〈m〉 ∼ constant at fixed level
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Implications for Parameterization

In each grid box, probability of finding cloud of given m
from exponential

〈m〉 taken as constant from CRM data

Behaviour of each cloud modelled based on 1D
Kain-Fritsch plume model

Exponential distribution imposed at LCL but distribution
free to evolve at other levels

Need closure for 〈M〉
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Closure I

CAPE closure based on full ensemble of clouds

CAPE removed with a closure timescale that varies with
forcing

τ = k〈cloud separation〉 = kδx

√

〈m〉

〈M〉

Tolerant of weak forcing

Acts aggressively to remove large instability
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Adjustment Timescale

Closure timescale
equivalent to
adjustment
timescale if forcing
removed

Rapid response
governed by gravity
wave propagation
between clouds

(Slower evolution of
moisture variables)

Time scaled by cloud separation
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Closure II

〈M〉 depends only the large-scale state

Local calculations appropriate only if no sub-grid
fluctuations

Leads to amplification of any artifical local fluctuations
in deterministic mass flux scheme

Averaging region should contain many clouds
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SCM Tests
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Tests of scheme

Met Office Unified Model – single column version

parameterizations for boundary layer transport, stratiform
cloud

forced as in CRM simulations (fixed tropospheric cooling)

CAPE closure based on sounding averaged over 100
timesteps

Aim is to replicate mean state and fluctuations of a companion
CRM simulation
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Physical not Numerical Noise

Does a steady forcing give a steady response (deterministic
limit of a large grid box)?
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Distribution of M

Is the desired distribution of M obtained for finite-sized grid
boxes?
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Realistic Mean State

Mean state temperature and humidity profiles sensible (not
worse than Kain-Fritsch)?

Differences between SCM states and the CRM state are
comparable to differences between CRMs.

Fluctuations do not shift mean state (shouldn’t in 1D!)
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Cloud Properties

Are properties of the individual clouds sensible?

〈m〉 ∼ constant with height, exponential distribution?
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Future Steps

1. Implementation in full UM (non-trivial as non-local)

2. Implementation in DWD Lokal Model (regional NWP
model)

3. Tests in COSMO-LEPS ensemble system, to include
cases from CSIP

4. Dependencies of cloud lifetime (size and forcing) from
tracking experiments in CRMs

5. Relax (or remove) equilibrium assumption?
(with Laura Davies and Steve Derbyshire)

6. Longer term ensemble tests

7. Aqua-planet global UM
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