Neighbourhood-scale Urban Dispersion Modelling Using a Canopy Approach

Lewis Blunn

Collaborators: Dr Omduth Coceal (NCAS), Prof Bob Plant (UoR), Prof Janet Barlow (UoR), Dr Humphrey Lean (UK Met Office), Dr Sylvia Bohnenstengel (UK Met Office) and Dr Negin Nazarian (UNSW)

University of

Read

National Centre for Atmospheric Science

Introduction

- Buildings affect pollution dispersion and play a large role in determining concentration at street level
- We live at street level → important to predict concentrations accurately there
- Numerical weather prediction (NWP) is starting to resolve the "neighbourhood" scale (e.g. UK Met Office 300m model)
 - similar building geometry statistics
 - similar flow
 - improved modelling?

300 m		
		in in in it.
		F
		F
す 市 花 器 1 名		
		-Jeans

Beijing (Google Earth)

One "neighbourhood"

Outline

- Introduce a novel model for 1D velocity and pollution concentration profiles in the urban surface layer (profiles represent the horizontal average of the neighbourhood)
- Test model using three different parametrisations against a high-resolution model of the 3D flow and dispersion ("truth data")

Urban Surface Layer

Turbulence

Urban Surface Layer Model (USLM)

Form Drag

Emissions

Based in part on Harman and Finnigan, 2008 ⁽¹⁾

Turbulence (momentum flux)

Double averaged scalar equation -> Scalar concentration

Test three parametrisations of l_m , l_c in canopy:

Log-law
CB04 (Coceal and Belcher, 2004 ⁽²⁾)
Derived from LES ("truth data")

Large Eddy Simulation (LES) – "truth data"

• High resolution simulation of the 3D flow and dispersion in a staggered array of cubes (λ_p =0.25)

Reading

Velocity: USLM vs "truth"

Scalar Concentration: USLM vs "truth"

Conclusions

- Using a canopy approach in an USLM, it has been demonstrated that accurate prediction of velocity and (for the first time) scalar concentration can be made in the urban surface layer
- Improved velocity prediction with CB04 and LES derived compared to log-law which is used in most NWP
- Only LES derived accurately predicts scalar concentration \rightarrow Development of new l_m and l_c parametrisations required

Thank You

References:

- (1) Harman, I. N. and Finnigan, J. J. (2008), Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorology, 129: 1573-1472.
- (2) Coceal, O. and Belcher, S. E. (2004), A canopy model of mean winds through urban areas. Q.J.R. Meteorol. Soc., 130: 1349-1372.