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Abstract

Interactions between different convection modes can be investigated under

the framework of an energy–cycle description. The present paper systemat-

ically investigates this system by taking a limit of two modes: shallow and

deep convection. Shallow convection destabilizes itself as well as the other

convective modes by moistening and cooling the environment, whereas deep

convection stabilizes itself as well as the other modes by drying and warming

the environment. As a result, shallow convection leads to a runaway growth

process in its stand–alone mode, whereas deep convection simply damps out.

Interaction between these two convective modes become a rich problem, even

when it is limited to the case with no large–scale forcing, because of these

opposing tendencies. Only if the two modes are coupled at an proper level

can a self–sustaining system arise, exhibiting a periodic cycle. The main

purpose of the present study is to establish the precise conditions for self–

sustaining periodic solutions. It carefully documents the behaviour of the
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two mode system in order to facilitate the interpretation of global model be-

haviours when this energy–cycle is implemented as a closure into a convection

parameterization in future.

Keywords: Parameterization, Closure, Convective–convective interactions,

Transformation of shallow to deep convection

1. Introduction

The energy–cycle description of a convective system provides a basis for

studying various dynamical behaviours of convective ensembles. The most

formal manner for developing a convection parameterization is, in turn, to

introduce a spectrum of convective types with various characteristic depths,

as considered by Arakawa and Schubert (1974). Such a spectrum of con-

vection types, and the interactions between the types, can best be described

under the energy cycle framework.

Indeed, an energy cycle description for mass–flux convection parameteri-

zation was introduced in the seminal work by Arakawa and Schubert (1974),

as presented by their Eqs. (132) and (142). Although the quasi–equilibrium

situation has received much attention (Yano and Plant 2012c), relatively lit-

tle attention has been paid to the full dynamical system so far, apart from

a brief attempt by Randall and Pan (1993), Pan and Randall (1998) for

taking this system as a basis of a prognostic parameterization closure. Re-

cently, Yano and Plant (2012a, b) took up this system and showed that it

can explain various basic convective processes in a rather lucid manner.

More precisely, Yano and Plant (2012a) showed that the basic mechanism

driving a life cycle of discharge and recharge can be understood by a single

2



mode version (i.e., deep convection only) of this system. Yano and Plant

(2012b) demonstrated that such cycles could also occur in a two–mode system

consisting of shallow and deep convection. The present study extends the

latter, and performs a more comprehensive investigation of the two–mode

system.

The chief aim of the present paper is, by presenting a systematic anal-

ysis, to more emphatically argue for the importance and possible impacts

of explicitly considering the mutual interactions between shallow and deep

convection in operational convection parameterization, which we previously

merely suggested (Yano and Plant 2012b).

1.1. Types of convection: Background

Understanding the interactions between various types of convection is a

basic motivation of the present study. As was emphasized in a review by

Stevens (2005), “moist convection is not one, but many things”. According

to this review, atmospheric moist convection can be classified into three ma-

jor categories. In order of increasing vertical extent these are stratocumulus,

trade–wind cumulus, and deep precipitating cumulus convection. These ma-

jor categories may also be considered as a series of transformations of the

dominant mode of convection with an increasing supply of moisture from

the surface under a horizontally homogeneous environment. Phenomenolog-

ically, such transformations are found as we move from the mid-latitudes to

the warmer tropical oceans.

Here, by “horizontally homogeneous environment” we mean an idealized

situation in which horizontal advection effects can be neglected. This is a

useful idealization because convection is a process primarily concerned with
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vertical transports. In the present study, such an idealization is adopted

under the framework of a zero–spatial–dimension model.

Under this idealization, when moisture supply from the surface is totally

absent, a constant heat supply from the surface (the sensible heat flux) tends

to produce a well-mixed convective boundary layer. As surface moisture

supply is increasingly supplied to such a system, above a threshold cloud is

formed at the top of the boundary layer. Such cloud is typically stratiform,

and the associated convection is called stratocumulus convection (cf., Moeng

1998). As the surface moisture supply is further increased, there is a regime

transition from stratiform clouds into “shallow” cumulus convective towers.

This regime is called trade–cumulus convection (cf., Riehl 1951, Betts 1997),

because it is typically found over the trade–wind region in the sub-tropics.

As the surface moisture supply increases still further (as we approach closer

the equator), then a final regime transition occurs in which deep cumulus

convection is realized, which may reach as high as the tropopause (cf., Riehl

and Malkus 1958, Houze and Betts 1981, Redelsperger 1997). This last

transition from shallow to deep convection is considered relatively sharp,

although the existence of middle–level clouds called “cumulus congestus”

has been emphasized more recently (Johnson et al. 1999, Tung et al. 1999).

A major challenge in global atmospheric modelling is to represent these

rich varieties of moist convection, and the transitions between them, by

means of parameterizations. Currently no single unified parameterization

exists, but rather each different type of convection is dealt using a different

parameterization scheme. Typically, convection parameterization schemes

are distinguished into shallow and deep versions in order to deal with trade

4



and deep cumulus convection separately (e.g., Tiedtke, 1989). Stratocumu-

lus clouds are often dealt with by a boundary–layer parameterization (e.g.,

Holtslag and Boville 1993, Lock 1998, Lock et al. 2000), often also in combina-

tion with microphysics and stratiform cloud schemes (cf., Wyant et al. 2007).

The combination of these independently–developed schemes often causes a

problem in simulating stratocumulus convection (cf., Köller et al. 2011) and

shallow/deep transitions (e.g., Bechtold et al. 2004, Guichard et al. 2004,

Grabowski et al. 2006).

A recent trend has seen some attempts to use a combination of eddy diffu-

sion and mass flux approaches (e.g., Neggers et al. 2009, Köller et al. 2011),

especially for dealing with stratiform convection consistently with the other

types of convection. Other significant recent efforts include attempts to gen-

eralize shallow–convection mass–flux parameterizations for deep convection

(Hohenegger and Bretherton 2011, Mapes and Meale 2011).

The main claim of the present paper is that the energy–cycle description

of convection can provide a lucid framework for representing those various

types of convection in a more unified manner.

1.2. Truncation into two modes

The present study is based on the energy–cycle description for a spectrum

of convection types under a mass–flux formulation. The spectral approach,

originally developed by Arakawa and Schubert (1974), treats different con-

vection types by different prescribed vertical structures. Although Arakawa

and Schubert (1974) more specifically assumed an ensemble of entraining

plumes in defining their vertical structures, we do not consider this as an

essential feature of their formulation because other models for defining the

5



vertical mass flux structure could straightforwardly be incorporated into the

general framework, as discussed in Yano and Plant (2012c).

Note that these various types of convection can loosely be categorized

into two major types: “non-precipitating” shallow convection and precipi-

tating deep convection. In doing so, we effectively consider stratocumulus

and trade–cumulus convection together as being the first major type. Thus,

in the present paper, we truncate a spectral representation of convection into

only two modes: shallow and deep convection. The main reason for such a

severe truncation is in order to elucidate the interactions between types in

the simplest possible setting.

In the above, we added quotation marks to “non-precipitating” because

shallow convection is rarely non-precipitating in a strict sense, although the

precipitation is much weaker than that typical of deep convection. In fact,

from the energy-cycle perspective, the fundamental separation between the

two types is not whether the clouds are shallow or deep, but rather whether

or not the precipiation is strong enough to alter the character of the ther-

modynamic budget. The key aspect is that the budgets for the two major

convective types are qualitatively different.

In the shallow–convection regime, the main effects of convection on its

environment are cooling and moistening. These tendencies are usually bal-

anced by large–scale subsidence that warms and dries the environment. It

is important to recognize that in the absence of such subsidence then the

shallow–convective regime is self–destabilizing. Shallow convection moist-

ens the environment because it is either non-precipitating or only weakly

precipitating, and thus the condensed water must ultimately return to the
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environment. The condensed water typically evaporates as soon as it detrains

into the environment, leading to cooling as a result.

On the other hand, in the deep–convective regime, the main effects of

convection on its environment are warming and drying. These tendencies

are usually balanced by a large–scale ascent that cools and moistens the

environment. It is important to recognize that in the absence of such ascent

the deep–convective regime is self–stabilizing. Deep convection dries the

environment because condensation within deep convection acts as a sink for

moisture, which mostly returns to the surface by precipitation. The detrained

dry air from deep convection must descend towards the surface as a return

flow, associated with adiabatic warming.

1.3. Goals of the present paper

First, we will show that these two qualitatively different behaviours of

convection can be easily incorporated and well described using an energy

cycle. Second, we will show that the energy–cycle formulation can describe

the interactions between shallow and deep convection. We emphasize that

the latter aspect is somewhat neglected in current operational modelling

configurations. Here we systematically investigate the behaviour of the cou-

pled shallow–deep convective system, pointing out the importance of these

interactions for operational modelling contexts. Note that an earlier imple-

mentation by Randall and Pan (1993), and Pan and Randall (1998) does not

take account of these interaction effects.

Clearly our next major goal is to implement this fully–interactive system

into an operational convection parameterization as a closure. In order to

achieve this, the basic behaviour of the two–mode interacting system must
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be carefully documented theoretically, in order to facilitate proper interpre-

tations of the obtained behaviours under a global model implementation.

A key feature of the two–mode system is that it self–sustains with a per-

petual periodic cycle if the opposing tendencies of shallow and deep convec-

tion are carefully balanced. The major effort of the present paper is spent on

establishing the precise conditions for achieving this periodicity. Much of the

following investigation assumes no large–scale forcing. As it turns out, even

under such a drastic simplification, the system represents rich behaviours,

which we systematically investigate.

1.4. Outline

The paper is organized as follows. The rationale for adopting the energy

cycle is established in the next section by reviewing Arakawa and Schubert

(1974). The formulation of the system is presented in Sec. 3. As it turns

out, a major freedom of the present formulation is in choosing an exponent

p introduced in Eq. (5) below. The cases with p = 2 and p = 1 are of

particular physical interest and are systematically investigated in Secs. 4

and 5, respectively. The paper is concluded in Sec. 6.

2. Rationale

This section recalls some key ideas behind the energy–cycle formulation

for the convective system, originally introduced by Arakawa and Schubert

(1974), and carefully reproduced in Yano and Plant (2012a). The reader

should bear in mind that although in the following we often call a convective

type a plume for convenience, the convective types need not necessarily be

defined by any particular plume model, but rather the types are distinguished
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by vertical profiles fixed with time, whatever rule is invoked to determine the

profiles.

Consider a system of N plume types and let the subscripts refer to the

plume types. The convective kinetic energy Ki for type i evolves according

to the following equation (Eq. 132, Arakawa and Schubert 1974):

dKi

dt
= AiMbi − Di. (2.0.1)

Thus, kinetic energy is generated from potential energy at a rate AiMbi, and

lost at a rate Di. The generation rate is proportional to the cloud-base mass

flux Mbi and to the cloud work function Ai, which itself evolves as

dAi

dt
= Fi +

∑

j

KijMbj (2.0.2)

(Eq. 142, Arakawa and Schubert 1974). Here Fi is the large-scale forcing (ra-

diative or advective tropospheric cooling, surface fluxes, etc) for convection.

The action of convection itself on the cloud work function is described by the

matrix Kij.

The two dominant physical processes described by the matrix Kij are

discussed in two paragraphs following Eq.(144) of Arakawa and Schubert

(1974). The first process (see their Fig. 11) is adiabatic warming due to the

compensative descent, −Mj , induced by a given convective plume j. This

process reduces the cloud work function of all plume types. Mathematically

speaking, this means that the interaction matrix cannot be treated as sparse:

all cloud types influence all other cloud types. The second major process

(see their Fig. 12) is cooling of the environment due to re–evaporation of

detrained condensed (cloudy) air. This process increases the cloud work
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function due to its destabilizing tendency, but it affects only the plumes of

the same type or those reaching higher heights, because the effect occurs only

at the detrainment level and so is not felt by shallower clouds.

Arakawa and Schubert (1974) argue that the second process (destabi-

lization tendency) is always weaker than the first (stabilization). This ar-

gument is also consistent with arguments for convective damping put forth

by Emanuel et al. (1994). However, our preliminary analysis based on Jor-

dan’s sounding suggests otherwise: elements of the K matrix can be positive

(i.e., destabilizing) when the precipitation efficiency of the convective cloud

is weak. In that case, the cooling by re-evaporation of detrained cloud wa-

ter is so strong that the given convective type self-enhances with time. It

furthermore promotes the enhancement of convective plumes taller than the

type in question.

The process is likely to contribute to tropospheric moistening after a

dry intrusion, as observed, for example, during the TOGA-COARE period

(Parsons et al. 2000). Shallow convective clouds are self-enhanced by destabi-

lization of their environment through evaporative cooling of detrained cloud

water. Thus the process assists the recovery from dry state to a more normal

moist state.

Once deep convection begins to develop, it tends to stabilize the envi-

ronmental state, and that contributes to suppression of shallower convective

plumes. In this manner, this system described by a K-matrix appears to re-

produce a typical life cycle of the tropical convective system associated with

the MJO. Benedict and Randall (2007) emphasize the importance of “lo-

calized destabilization via low-level warming and moistening” for the MJO.
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Such a discharge–recharge cycle is analytically described by Yano and Plant

(2012a) with the energy–cycle system.

3. Defining the system

3.1. System of equations

For a two-mode system the equations for the cloud work function, Eq. 2.0.2,

read as follows (cf., Yano and Plant 2012b):

dAd

dt
= Fd − γdMd + βsMs

dAs

dt
= Fs + γsMs − βdMd . (3.1.1)

Here the subscripts s and d label shallow and deep convection, respectively.

The β and γ parameters are elements of the K matrix, discussed in the

last section, and are defined such that γs,d denotes the effect of the labelled

type of convection on the cloud work function for convection of that same

type (i.e., the diagonal matrix entries), whereas βs,d denotes the effect of the

labelled type of convection on the cloud work function for convection of the

other type (i.e., the off-diagonal matrix entries). The equations have been

written with signs chosen such that γ and β are expected to be positive

from the physical arguments of the last section. Thus, we expect shallow

convection to destabilize both shallow and deep convection, and we expect

deep convection to stabilize both shallow and deep convection. Note also that

the notation for the mass fluxes has been slightly simplified from Eq. 2.0.2.

Henceforth we use M to denote the cloud–base values. Although Pan and

Randall (1998) considered a similar system, they neglected the interactions

between the convective modes by setting βs,d = 0.
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The equations for the convective kinetic energy, Eq. 2.0.1, read as follows

dKd

dt
= MdAd −

Kd

τd

dKs

dt
= MsAs −

Ks

τs
. (3.1.2)

Here we have assumed that the dissipation D for each mode can be charac-

terized in terms of τs,d, a constant dissipation time scale.

In order to close the energy cycle of the convective system defined by

Eqs. 3.1.1,3.1.2, we also introduce a functional relationship between the con-

vective kinetic energy and the mass flux. This is given by

Kd = αdM
p
d

Ks = αsM
p
s (3.1.3)

with constants αd, αs and p.

In the following, we consider the cases of p = 2 and p = 1 in that order.

Pan and Randall (1998) considered the case of p = 2, whereas Yano and

Plant (2012a) focussed on the case of p = 1. Although cloud–resolving model

studies as well as statistical theories (Emanuel and Bister 1996, Shutts and

Gray 1999, Parodi and Emanuel 2009) clearly favour the case with p = 1

as reviewed in Yano and Plant (2012a), it is fair to say that the evidence

is not overwhelming. Note that although the choice p = 1 may at first

sight be objected to on dimensional grounds, this objection is not in fact

substantiated, as discussed in Appendix A.

The two choices may be interpreted in terms of the assumed convective

response to variations in the strength of the large-scale forcing. The choice

p = 1 corresponds to an assumption that the response occurs mainly through
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variations in the fractional area of convection, whereas p = 2 corresponds to

an assumption that the response occurs mainly through variations of in-cloud

vertical velocity. The analysis by Plant (2012) further argues that p = 2 may

be appropriate if primary initiation mechanisms dominate whereas p = 1

may be appropriate if secondary initiation is important.

3.2. Estimate of physical parameters

An estimate for the cloud–work function consumption rate γd was pre-

sented by Yano and Plant (2012a). Specifically they argued that

γd ≈
∫ zt

zb

g
η2

ρT0

∂θ

∂z
dz ∼ h

g

ρBT0

∂θ

∂z
(3.2.1)

where zb and zt are cloud base and cloud top respectively, η is the vertical pro-

file of mass flux after normalization by the cloud-base value, ρ is the density,

T0 a reference temperature and θ the enviromental potential temperature.

The vertical extent of convection is denoted as h = zt − zb. This expression

assumes that the dominant contribution is warming induced by compensat-

ing descent, as discussed in Section 2. Yano and Plant (2012a) took the

numerical values of g ∼ 10 ms−2, h ∼ 104 m, ρ ∼ 1 kgm−3, T0 ∼ 300 K

and ∂θ/∂z ∼ 3 × 10−3 Km−1 to obtain an order of magnitude estimate of

1 Jm2 kg−2. They further state that an explicit evaluation of the integral

for an example profile suggested an additional factor of 2. We therefore take

γd = 2 Jm2 kg−2 here.

The effect of deep convection on the shallow convection work function is

assumed to be dominated by the same physical process, and this leads to the

estimate

βd ≈
∫ zt,s

zb

g
ηdηs

ρT0

∂θ

∂z
dz (3.2.2)
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where zt, s is the cloud top for shallow convection. The estimate is similar

to that in Eq. 3.2.1, but there are numerical differences in that h ∼ 103 m

is a more suitable value for the vertical extent of shallow convection, and

an explicit evaluation now suggests that a factor of ∼ 1 arises from the

normalized integral. Hence, we take βd = 0.1 Jm2 kg−2.

The effects of shallow convection are described by the parameters γs and

βs and are expected to be dominated by the evaporation of detraining cloud

condensate as argued in Section 2. Relevant expressions for this process are

given in Eq. (B37) of Arakawa and Schubert (1974) but in their formulation

is clearly rather sensitive to the value of the entrainment rate, and a detailed

cloud model for shallow convection would be required in order to compute

these parameters reliably. Some direct evaluations of the K matrix have been

performed by JIY using a very simple cloud model similar to the entraining

plume model of Arakawa and Schubert (1974). These evaluations suggest

that γs ∼ βd and βs ∼ γd might be reasonable but it must be recognized that

any estimates for γs and βs are necessarily rather uncertain and possibly the

parameters have an important case-to-case dependency. Motivated also by

the fact that cases of particular physical interest arise for γs/βs = βd/γd (as

will be explained in the analysis below, in Section 4.4 especially), we take

γs = 0.1 Jm2 kg−2 and βs = 2 Jm2 kg−2 as being our default parameter

choices.

There is little other information available in the literature on typical

values for elements of K. An exception is a very brief remark on p142 of

Randall and Pan (1993) which states that a typical value for γs is of order

10 times smaller than that for γd. The estimates used here are certainly
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consistent with that remark.

A typical value for the convective kinetic energy dissipation rate is also

not well constrained theoretically (cf., Yano and Plant, 2012a). However re-

cent analysis of cloud–resolving modelling data by Cathy Hohenegger (2011,

personal communication) suggests τs ∼ τd ∼ 103 s. Note that this estimate is

not able to distinguish between shallow and deep convection, unfortunately.

The above parameters are required independently of the choice of p. In

the next two subsections we discuss estimates of further parameters that are

more specific to the cases of p = 2 and p = 1, respectively.

3.2.1. Estimate of physical parameters for the p = 2 case

In this case, the proportionality constant α appearing in Eq. 3.1.3 (with

subscripts d and s to be added as required) is defined by

α =

∫ zt

zb

η2

2ρσc
dz (3.2.3)

(cf., Yano and Plant, 2012a). The notation has been already defined with

the exception of σc, the fractional convective cloud area.

For the purposes of estimating an order of magnitude, we can write

α ∼ h

ρσc
(3.2.4)

Taking h and ρ as estimated previously and σc ∼ 10−1 for both modes, we

obtain αd ∼ 105 m4 kg−1 and αs ∼ 104 m4 kg−1.

3.2.2. Estimate of physical parameters for the p = 1 case

In this case, the proportionality constant α appearing in Eq. 3.1.3 is

defined by

α = wb

∫ zt

zb

η2ρbσb

2ρσc

dz (3.2.5)
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(Yano and Plant, 2012a). Here a subscript b has been introduced in order

to denote quantities evaluated at cloud base. The α parameter may be

estimated as

α ∼ hwb (3.2.6)

again with subscripts d and s to be added appropriately. Taking the same

values for h as above, along with wb ∼ 1 ms−1 for both modes, we obtain

αd ∼ 104 m2 s−1 and αs ∼ 103 m2 s−1.

It is worth noting at this point that for the p = 1 case, stationary values

for the cloud work functions can be determined directly from Eq. 3.1.2 using

the parameters that have been presented. Denoting these stationary values

with a subscript 0, they are

Ad0 =
αd

τd
∼ 104

103
∼ 10 Jkg−1

As0 =
αs

τs
∼ 103

103
∼ 1 Jkg−1. (3.2.7)

4. Analysis of the system: the p = 2 case

We consider the case of p = 2 first in this section, because the system

becomes linear in this case as seen by Eqs. 4.0.8 and 4.0.9 below. This is in

marked contrast to the nonlinear case of p = 1 to be considered in Section 5.

Although we believe that p = 1 is more realistic than p = 2 (Section 3.1), it

is nonetheless of interest to examine the two-mode system with p = 2. The

linearity greatly facilitates the analysis while leaving the overall behaviour

of the two-mode system qualitatively simliar. Thus, the analysis of the case

with p = 2 provides some useful insights also for the case with p = 1.
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Substitution of Eq. 3.1.3 with p = 2 into Eq. 3.1.2 gives

Ṁd =
Ad

2αd
− Md

2τd

Ṁs =
As

2αs
− Ms

2τs
(4.0.8)

while Eq. 3.1.1 is restated here as

Ȧd = −γdMd + βsMs + Fd

Ȧs = γsMs − βdMd + Fs (4.0.9)

We have introduced a dot in order to denote the time derivative. Eqs. 4.0.8

and 4.0.9 define the system with p = 2 as a set of four linear differential

equations with constant coefficients.

In order to develop a feel for the coupled system, we first consider shallow

and deep convection separately in Sections 4.1 and 4.2 respectively. We then

turn to a special case of the coupled system in Section 4.3 in order to show

some simplified examples of analytical solutions and numerical demonstra-

tions. A more general analysis of the system is then presented in Sections 4.4

and 4.5. We continue in Section 4.6 with perturbation expansions about some

limiting cases followed by an analysis of the conditions needed for a periodic

solution in Section 4.7 and a summary of the p = 2 system in Section 4.8.

4.1. Shallow convection only

The equations for the shallow mode only are

Ṁs =
As

2αs
− Ms

2τs

Ȧs = Fs + γsMs (4.1.1)
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and we neglect any large-scale forcing of shallow convection by setting Fs = 0.

Cloudy air is detrained from the top of shallow convection and re–evaporates

as soon as it is detrained. This induces evaporative cooling, which further

destabilizes the atmosphere. The re–evaporative cooling tendency dominates

over the effects of diabatic warming by compensative descent for shallow

convection, because it is only weakly precipitating. This is expressed by a

positive value for γs, so that shallow convection increases the cloud work

function, As. That increase in turn tends to increase the shallow convective

mass flux, Ms, through the first term on the right hand side of the mass flux

evolution equation.

Substituting a solution Ms = Ms(0)eσt and As = As(0)eσt, we obtain

σ2 +
σ

2τs
− γs

2αs
= 0 (4.1.2)

so that

σ = − 1

4τs
± 1

4τs

(

1 +
8τs

τAs

)1/2

(4.1.3)

where

τAs = (αs/γs)
1/2 ∼ 105/2 ∼ 300 s (4.1.4)

can be interpreted as a characteristic timescale associated with the shallow

cloud work function.

Owing to the solution from the positive sign of the square root above, the

shallow system is exponentially growing with time, regardless of the mass–

flux damping timescale, τs. Thus the shallow-only system is self-destabilizing.

An example integration is shown in Fig. 1.

With the inclusion of forcing it is straightforward to confirm that the
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Figure 1: Example solution for the unforced shallow mode alone in the p = 2 system. The

parameters are the default set described in Section 3.2. On the left and right respectively

are shown the time series of the cloud work function and the mass flux.

eigenvalues are unaltered and the solution is shifted to

Ms = Ms(0)eσt − Fs

γs
(1 − eσt) (4.1.5a)

As = As(0)eσt − αsFs

γsτs

(1 − eσt) (4.1.5b)

thereby changing the details of the solution but not its basic character.

4.2. Deep convection only

The equations for the deep mode only are

Ṁd =
Ad

2αd
− Md

2τd

Ȧd = Fd − γdMd (4.2.1)

again neglecting the large–scale forcing, Fd = 0.

Deep convection grows at a rate proportional to the cloud work func-

tion. However, the generated deep–convective mass flux consumes the cloud
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work function, leading to the notion of convective damping (cf., Emanuel

et al. 1994).

Substituting a solution Md = Md(0)eσt and Ad = Ad(0)eσt, we obtain

σ2 +
σ

2τd

+
γd

2αd

= 0 (4.2.2)

so that

σ = − 1

4τd

± 1

4τd

(

1 − 8τd

τAd

)1/2

(4.2.3)

where

τAd = (αd/γd)
1/2 ∼ (5 × 104)1/2 ∼ 200 s. (4.2.4)

The unforced deep convective system is always damping, regardless of the

parameter choices. For τAd > 8τd there are two purely damping modes, whilst

for τAd < 8τd, the system exhibits a damping oscillations with a period of

8πτd(8τd/τAd−1)−1/2. An example of a strongly damped oscillation is shown

in Fig. 2, using the default parameters.

4.3. A special case: Mass flux equilibrates more quickly than work function

Henceforth we consider the full system in which shallow and deep convec-

tion are coupled. In the following Section 4.4 we consider the general case for

any parameter set. Before doing so, it is instructive to consider a particular

limit which provides some insight into how the coupled system can behave.

Specifically, the present subsection considers a regime in which the mass flux

evolution equations, Eq. 4.0.8, come into an equilibrium much more quickly

than the cloud work function equations, Eq. 4.0.9. Such a situation arises

when the kinetic energy dissipation timescales are much shorter than the

cloud–work function timescales: i.e., if

τs ∼ τd ≪ τAs ∼ τAd. (4.3.1)
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Figure 2: Example solution for the unforced deep mode alone in the p = 2 system. The

parameters are the default set described in Section 3.2. From left to right are shown: the

time series of the cloud work function, the time series of mass flux, and the trajectory in

the phase space of the cloud work function (horizontal axis) and mass flux (vertical axis).

Taking the estimates from Sections 4.1 and 4.2, τAd ∼ 200 s and τAs ∼ 300 s,

which is comparable with the default dissipation timescales τs = τd = 103 s.

Thus the limit is unlikely to be a good approximation for most situations of

physical interest, but it is nonetheless convenient for a conceptual demon-

stration.

Under this limit, Eq. 4.0.8 provides an approximate functional relation-

ship between the cloud work functions and the mass fluxes,

Ad ≈ αd

τd
Md

As ≈ αs

τs
Ms. (4.3.2)

Substitution of these relationships into Eq. 4.0.9 yields the relatively slow
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evolution of the unforced cloud work functions as:

Ȧd = −γ̂dAd + β̂sAs

Ȧs = γ̂sAs − β̂dAd (4.3.3)

where we have introduced the notation

γ̂d =
γdτd

αd
, β̂d =

βdτd

αd
,

γ̂s =
γsτs

αs
, β̂s =

βsτs

αs
. (4.3.4)

Note that γ̂d = τd/τ
2
Ad and γ̂s = τs/τ

2
As are the slow rates at which the cloud

work functions evolve.

Considering a solution of the form ∼ eσt results in the eigenfrequency

equation

σ2 + (γ̂d − γ̂s)σ − γ̂sγ̂d + β̂sβ̂d = 0, (4.3.5)

with solution

σ =
1

2

{

γ̂s − γ̂d ±
[

(γ̂s − γ̂d)
2 − 4(β̂sβ̂d − γ̂sγ̂d)

]1/2
}

. (4.3.6)

Thus, we can have three types of solution:

(i) if γ̂s > γ̂d then the solution grows (possibly a growing oscillation or

possibly pure exponential growth);

(ii) if γ̂s = γ̂d then the solution will be neutral if β̂sβ̂d = γ̂sγ̂d, growing if

β̂sβ̂d < γ̂sγ̂d, or purely oscillatory if β̂sβ̂d > γ̂sγ̂d;

(iii) if γ̂s < γ̂d then the solution is damping with an oscillation if the ar-

gument of the square root is negative, pure damping if the argument

of the square root is positive and if β̂sβ̂d > γ̂sγ̂d, and growing if the

argument of the square root is positive and if β̂sβ̂d < γ̂sγ̂d.
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Figs. 3, 4 and 5 give examples respectively of numerical solutions for a grow-

ing set of parameters with case (i), an oscillatory set of parameters with case

(ii) and a damping set of parameters with case (iii). As noted above, the lim-

iting case considered in this subsection is primarily of conceptual interest. To

produce these figures we chose parameter values considerably removed from

the default set of Section 3.2 in order to respect the limiting approximation.

A consequence of the choices is that the cloud work functions and mass fluxes

sometimes take negative values during the resulting evolution. Note also that

each example exhibits a rapidly decaying transient for the mass flux over the

first 2 hr before the longer time behaviour becomes apparent.

In physical terms, these limiting analytical results show that the system

may be growing or damping depending on whether self–growing shallow con-

vection (γ̂s) or self–damping deep convection (γ̂d) dominates respectively.

However, if the destabilization and stabilization tendencies can be balanced

then we can obtain a neutral state.

4.4. General case

We now proceed to consider the general case of the coupled p = 2 system,

Eqs. 4.0.8 and 4.0.9, without approximation.

As a linear system of ordinary differential equations with constant coef-

ficients it has a solution of the form eσt for each of the dependent variables,

and a quartic eigenfrequency equation for σ is easily derived. However, the

obtained equation is not physically illuminating and not stated here.

The analysis of the special case in Section 4.3 reveals that the overall

behaviour of the unforced coupled system is determined by a competition

between the growing tendency of shallow convection and the damping ten-
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Figure 3: Example solution for the unforced p = 2 system with parameters chosen to

illustrate case (i) of Section 4.3. Blue is for the deep mode and green for the shallow

mode. The parameters are γd = 1, γs = 2, βd = βs = 1 Jm2 kg−2, αd = αs = 5 × 108 m4

kg−1 and τd = τs = 103 s, giving values of τAs = 1.6× 105 s and τAd = 2.2× 105 s. Shown

in the same format as in Fig. 1.
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Figure 4: Example solution for the unforced p = 2 system with parameters chosen to

illustrate case (ii) of Section 4.3. Blue is for the deep mode and green for the shallow

mode. The parameters are γd = γs = 1, βd = βs = 5 Jm2 kg−2, αd = αs = 5 × 108 m4

kg−1 and τd = τs = 103 s, giving values of τAs = τAd = 2.2 × 105 s. Shown in the same

format as in Fig. 2.
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Figure 5: Example solution for the unforced p = 2 system with parameters chosen to

illustrate case (iii) of Section 4.3. Blue is for the deep mode and green for the shallow

mode. The parameters are γd = 2, γs = 0.25, βd = βs = 1 Jm2 kg−2, αd = αs = 5×108 m4

kg−1 and τd = τs = 103 s, giving values of τAs = 1.6× 105 s and τAd = 4.5× 105 s. Shown

in the same format as in Fig. 2.

dency of deep convection. For most parameter choices, one of those ten-

dencies is dominant and convection either explodes or dies out. However,

there may be parameter settings that allow a balance to be realized between

these two tendencies (e.g., Fig. 4). A natural question to ask is under what

conditions can we obtain such a balanced solution. It turns out that many

of the same considerations arise for the nonlinear coupled system with p = 1

(Section 5.3).

4.4.1. The vanishing determinant

Consider the cloud work function tendency equations, Eq. 4.0.9, and look

for a solution which is non-trivial in the absence of forcing. By non-trivial

we mean a solution in which both Ms and Md neither tend to zero nor tend

to infinity, even for very long times. This is clearly a strong constraint on the

problem. It is not physically reasonable to imagine that all of the environ-
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mental parameters of a convective system (such as the K matrix elements)

stay fixed in perpetuity, and so in practice we may be interested in cases

where the coupled system does decay or grow, so long as that occurs rela-

tively slowly. Nonetheless we will pursue this strict constraint, while bearing

in mind that it is likely to lead us to overly restrictive constraints on the

parameters.

A non-trivial solution in the above sense can be achieved if the solution

becomes periodic so that As and Ad vary over time but they do so in such

a way that their time-averaged variation vanishes over some finite period T .

Setting the forcing to zero in Eq. 4.0.9 and denoting by an overbar the time

average over period T then the solutions of interest occur for

−γdMd + βsMs = 0

γsMs − βdMd = 0 (4.4.1)

so that

βdβs = γdγs. (4.4.2)

In other words, the determinant of the K matrix must vanish for a non-trivial

solution in the absence of forcing. For the remainder of Section 4 we will

assume that this condition is indeed satisfied and examine the consequences.

There are several important remarks that should be made about this

condition. First, note that the argument is easily extended to any number

of convective modes. Second, note that the argument depends on the cloud

work function tendency equations only. As such, the condition is entirely

independent of the assumed functional form of the kinetic energy dissipation

in Eq. 3.1.2 and of the assumed functional relationship between convective
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kinetic energy and cloud base mass flux. In particular, it is independent

of the choice of p. Third, we note that the set of default parameter choices

discussed in Section 3.2 satisfies the condition. As alluded to earlier, this last

point is not accidental, but it nonetheless does illustrate that the condition

may be satisfied for physically–plausible parameter settings.

4.4.2. Linking the cloud work functions

We are now in a position to simplify the cloud work function tendency

equations, Eq. 4.0.9. Expressing the unforced equation for shallow convection

as

Ȧs =
γs

βs

(

βsMs −
βdβs

γs
Md

)

(4.4.3)

and using Eq. 4.4.2 for the vanishing determinant, we have

Ȧs =
γs

βs
(βsMs − γdMd) . (4.4.4)

Next we substitute for the term in brackets on the right-hand-side by using

the tendency equation for the evolution of the deep cloud work function.

This produces

Ȧs =
γs

βs
Ȧd. (4.4.5)

Hence (in the absence of forcing) the cloud work function tendencies are

proportional for shallow and deep convection.

We can integrate the above equation to relate the two work functions

directly,

As − As(0) =
γs

βs
(Ad − Ad(0)) . (4.4.6)

This relationship is a simple consequence of the vanishing determinant and

so applies with all the generality discussed in the previous subsection.

27



As a short aside on the forcing, note that if forcing were to be retained

then the two work functions would be related by

As − As(0) =
γs

βs
(Ad − Ad(0)) +

(

Fs −
γs

βs
Fd

)

t (4.4.7)

The term proportional to t clearly prevents a closed orbit solution in phase

space. However, that term would vanish if

Fs =
γs

βs
Fd. (4.4.8)

This includes the case of zero forcing, but it is also interesting that forcing

could be incorporated into all of the following analysis, if it were related by

Eq. 4.4.8 for the two modes of convection.

4.5. The p = 2 equations with vanishing determinant: General considerations

Here we consider the unforced p = 2 system with a vanishing determinant

but with no other constraints or approximations. Using Eq. 4.4.6 we can

eliminate As in the prognostic equation 4.0.8 for Ms to yield:

Ṁs =
As(0)

2αs

− γsAd(0)

2αsβs

+
γs

2αsβs

Ad −
Ms

τs

(4.5.1)

The above equation should be considered alongside those for the deep mode

(Eqs. 4.0.8 and 4.0.9) which are restated here for convenience

Ṁd =
Ad

2αd

− Md

2τd

(4.5.2)

Ȧd = Fd − γdMd + βsMs. (4.5.3)

We try a solution of the following form

Ad = Ad(0)eσt + a0(1 − eσt)

Md = Md(0)eσt + d0(1 − eσt)

Ms = Ms(0)eσt + s0(1 − eσt) , (4.5.4)
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where the coefficients a0, d0 and s0 can be obtained by substituting in the

trial solution and then comparing the constant terms to give

τda0 = αdd0 (4.5.5a)

βss0 = γdd0 (4.5.5b)

s0

τs

=
γs

αsβs

d0 +
As(0)

αs

− γsAd(0)

αsβs

. (4.5.5c)

The solution for a0 is easily obtained,

a0 = [βsAs(0) − γsAd(0)]

[

αsγdτd

αdτs
− γs

]

−1

, (4.5.6)

whilst d0 and s0 are simply proportional to this, as given in Eqs. 4.5.5a

and 4.5.5b respectively.

Comparing coefficients of the exponential terms that occur in the trial

solution gives three equations in terms of a0, d0, s0 and σ. These reduce to

the eigenfrequency equation

σ3 +
σ2

2

(

1

τd

+
1

τs

)

+
σ

4

[

1

τdτs

+ 2

(

γ̂d

τd

− γ̂s

τs

)]

+
1

4τdτs

(γ̂d − γ̂s) = 0 (4.5.7)

which we have rewritten in terms of the rescaled self–interaction coefficients

introduced in Eq. 4.3.4. Note that in terms of these rescaled coefficients the

vanishing determinant condition reads

β̂dβ̂s = γ̂dγ̂s. (4.5.8)

An explicit formal solution can be written for the above eigenequation,

but is not very illuminating. Nonetheless, we can offer some useful remarks.

A cubic equation may have three real roots, or else one real root with one

complex–conjugate pair. In order for the solution not to explode, we require
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that any real roots are negative or zero, whereas any complex conjugate roots

must have a negative real part. In either case, the product of the three roots

must be negative or zero1. Since the product of the roots is given by minus

the constant term in Eq. 4.5.7 it follows that to avoid an exploding solution

γ̂d ≥ γ̂s (4.5.9)

Physically this requirement is for the damping rate of the deep cloud work

function, γ̂d, to exceed the generation rate of the shallow cloud work function,

γ̂s.

A non-exploding case with three negative real roots will decay towards

an equilibrium state with Ad = a0, Md = d0, Ms = s0, whilst a case with

complex roots may be more interesting as pure imaginary roots decay towards

a purely oscillating solution. It is possible to write down an explicit inequality

in order for a cubic equation to have non-real roots, but again that is not

physically illuminating and we cannot say from that whether those roots are

explosive.

We close this subsection by remarking that the eigenequation 4.5.7 does

not include β̂s or β̂d. Thus, provided that these interaction coefficients are

such as to produce a vanishing determiant their value does not otherwise

affect the character of the solution.

1Moreover, the sum of roots must be negative. However, this is guaranteed since the

coefficient of the quadratic term in Eq. 4.5.7 is positive definite.
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4.6. The p = 2 equations with vanishing determinant: Perturbation ap-

proaches

In the previous subsection, we derived the cubic eigenequation 4.5.7 for

the general case of the unforced p = 2 system with vanishing determinant.

However, we noted that a formal solution to this equation is not physically

instructive. Therefore, in the following subsections we specialize to situations

where τs ≈ τd (Sections 4.6.1 and 4.6.2), where τs ≪ τd (Section 4.6.3)

and where τs ≫ τd (Section 4.6.4), in order to illustrate the behaviour of

the system in a more useful way. First we consider the case of τs = τd in

Section 4.6.1, and then in Section 4.6.2 we consider small departures from

equality of the dissipation time scales, by means of a perturbation expansion.

The starting point for these analyses is to express the eigenequation in

terms of the new variables

ξs = σ(2στs + 1)

ξd = σ(2στd + 1) (4.6.1)

in terms of which it reads

ξsξd + γ̂dξs − γ̂sξd + (β̂sβ̂d − γ̂sγ̂d) = 0. (4.6.2)

This is the full quartic equation, which can easily be seen to reduce to a

cubic if the term in brackets vanishes, as occurs for the vanishing determinant

condition of Eq. 4.5.8.

4.6.1. The case of τs = τd

Assuming a vanishing determinant, and specializing also to the case of

τs = τd then we can work in terms of the variable ξ = ξs = ξd = σ(2στ + 1)
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where τ = τs = τd. This variable satisfies the equation

ξ2 + (γ̂d − γ̂s)ξ = 0 (4.6.3)

leading to

ξ = 0 or ξ = γ̂s − γ̂d. (4.6.4)

By solving the definition of ξ to obtain σ, we find that

σ = − 1

4τ
±
[

(

1

4τ

)2

+
ξ

2τ

]1/2

(4.6.5)

so that the eigenfrequencies are:

σ = − 1

2τ
(4.6.6a)

σ = − 1

4τ
±
[

(

1

4τ

)2

+
1

2τ
(γ̂s − γ̂d)

]1/2

(4.6.6b)

Thus the characteristics of the system are determined by γ̂s − γ̂d. If γ̂d <

γ̂s and shallow convection dominates then then there is a growing solution

without oscillation (the square root term produces a positive eigenfrequency

when the square root is taken with a plus). If γ̂s + 1/(8τ) > γ̂d > γ̂s then

deep convection is weakly dominant and there is a damping solution (the

square root term is real but is not large enough in magnitude to be able to

change the sign of σ). If γ̂d > γ̂s + 1/(8τ) then deep convection is more

strongly dominant and there is a damping solution with an oscillation (the

square root is imaginary).

We can of course solve the cubic eigenequation 4.5.7 numerically. Fig. 6

shows the phase diagram produced, which is easily checked to be consistent

with the analysis just presented.
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Figure 6: Numerically–generated phase diagram for the p = 2 system with vanishing

determinant. The default parameters described in Section 3.2 are used for αs and αd,

while a parameter choice for βs and βd is not required. The values for γs and γd have

been varied to produce the diagram. The parameters τs and τd have been set to 102 s here

rather than their default values of 103 s, in order to clarify the presence of region II, which

is much thinner with the default values. Region I produces exploding cases (γs > γd),

region II has pure decay cases (γ̂s + 1/(8τ) > γ̂d > γ̂s) and region III has decay–with–

oscillation cases (γ̂d > γ̂s + 1/(8τ)). The regions are separated by plotting two contours

for the eigenvalue with the largest real part. The contour where that real part is zero

separates regions I and II. The contour where the imaginary part of that same eigenvalue

is zero separates regions II and III.

It should be noticed there is no possibility for a purely imaginary (i.e.,

perpetually and stably periodic) solution. This is because any solution with

an imaginary eigenvalue also has a negative real part for that eigenvalue. Or,

in other words, because there is no imaginary part to the eigenvalue. There

is no point of contact between regions I and III in the phase diagram.

To illustrate some particular cases taken from Fig. 6, Figs. 7, 8 and 9

give examples respectively of numerical solutions in regions: (I) a growing

solution; (II) pure decay to constant values; and, (III) decay–with–oscillation.
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Figure 7: Example solution for the unforced p = 2 system with parameters chosen to

illustrate region I of Fig. 6. Blue is for the deep mode and green for the shallow mode.

The parameters are γd = 2, γs = 0.4, βd = 0.2, βs = 4 Jm2 kg−2 and τd = τs = 102 s,

together with the default choices for αs and αd described in Section 3.2. These choices

give γ̂s = 4× 10−3 s−1 and γ̂d = 2× 10−3 s−1, so that γ̂s > γ̂d. Shown in the same format

as in Fig. 1.
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Figure 8: Example solution for the unforced p = 2 system with parameters chosen to

illustrate region II of Fig. 6. Blue is for the deep mode and green for the shallow mode.

The parameters are τd = τs = 102 s, together with the default choices for α, β and γ

described in Section 3.2. These choices give γ̂s = 10−3 s−1 and γ̂d = 2× 10−3 s−1, so that

γ̂s + 1/8τs > γ̂d > γ̂s. Shown in the same format as in Fig. 2.
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Figure 9: Example solution for the unforced p = 2 system with parameters chosen to

illustrate region III of Fig. 6. Blue is for the deep mode and green for the shallow mode.

The parameters are γd = 8, γs = 0.1, βd = 0.2, βs = 4 Jm2 kg−2 and τd = τs = 102 s,

together with the default choices for αs and αd described in Section 3.2. These choices

give γ̂s = 10−3 s−1 and γ̂d = 8 × 10−3 s−1, so that γ̂d > γ̂s + 1/8τs. Shown in the same

format as in Fig. 2.

4.6.2. With a slight deviation from τs = τd

We now consider unequal τ but with the shallow and deep time scales

being close together. The question is whether a distinction between the time

scales is able to alter the phase diagram in such a way as to be able to produce

a periodic solution.

We introduce the notation

∆ξ ≡ (ξs − ξd)/2 (4.6.7)

with

ξd = ξ − ∆ξ

ξs = ξ + ∆ξ . (4.6.8)
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We furthermore introduce

τ0 ≡ (τs + τd)/2

∆τ ≡ τs − τd (4.6.9)

so that the relation

∆ξ = σ2(τs − τd) = σ2∆τ. (4.6.10)

follows immediately from the definition of terms. The assumption that the

two time scales are close together means that we can take ξ ≫ |∆ξ| or

τ ≫ |∆τ | below.

The eigenfrequency equation for any values of τ was stated as Eq. 4.6.2

above. In the limit of equal shallow and deep time scales it reduces to

Eq. 4.6.3 giving us the zeroth–order solution ξ ≡ ξ0 = 0 or γ̂s − γ̂d just

as in Eq. 4.6.4, with corresponding eigenfrequencies as given in Eq. 4.6.5.

With the subscript zero denoting a zeroth–order quantity, these are

σ0 = − 1

4τ0
±
[

(

1

4τ0

)2

+
ξ0

2τ0

]1/2

. (4.6.11)

To obtain the leading corrections to these results for a difference in time

scales, we write ξ = ξ0 + ξ1 and expand the eigenfrequency equation 4.6.2 to

include first order terms in ∆ξ and ξ1. We first note that

ξsξd = (ξ0 + ξ1 + ∆ξ)(ξ0 + ξ1 −∆ξ) = (ξ0 + ξ1)
2 −∆ξ2 ≃ ξ2

0 + 2ξ1ξ0 (4.6.12)

so that ∆ξ does not enter into this expression. As a result, at first order

Eq. 4.6.2 is

2ξ0ξ1 + (γ̂d + γ̂s)∆ξ + (γ̂d − γ̂s)ξ1 = 0 (4.6.13)
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or

(2ξ0 + γ̂d − γ̂s)ξ1 + (γ̂d + γ̂s)∆ξ = 0 (4.6.14)

leading to

ξ1 = −(2ξ0 + γ̂d − γ̂s)
−1(γ̂d + γ̂s)∆ξ. (4.6.15)

For the case of ξ0 = 0 we have σ0 = 0 or σ0 = −1/(2τ0). The first of

these possibilities gives ∆ξ = 0 at leading order and so ξ1 = 0. The second

possibility gives

ξ1 = −
(

γ̂d + γ̂s

γ̂d − γ̂s

)

τs − τd

4τ 2
0

= −λ1∆ξ (4.6.16)

where we have defined

λ1 ≡
γ̂d + γ̂s

γ̂d − γ̂s
(4.6.17)

For the case of ξ0 = γ̂s − γ̂d we have

ξ1 = λ1∆ξ. (4.6.18)

Eqs. 4.6.16 and 4.6.18 are the first order corrections to each of the solu-

tions to ξ. However, we wish to translate these corrections into the corre-

sponding corrections to the eigenfrequencies σ. In order to make this trans-

lation we write σ = σ0 +σ1, substitute this form into the definition for either

of ξs or ξd (Eq. 4.6.1) and expand all variables to first order in the time scale

difference. The result is that

σ1 =
ξ1

4σ0τ0 + 1
. (4.6.19)

So for the non-trivial case with ξ0 = 0 we have

σ0 = − 1

2τ0
σ1 = −ξ1 = λ1∆ξ (4.6.20)
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so that

σ = − 1

2τ0
+

(

γ̂d + γ̂s

γ̂d − γ̂s

)

τs − τd

4τ 2
0

+ O(τs − τd)
2 (4.6.21)

which is a real correction to a real eigenvalue.

For the case of ξ0 = γ̂s − γ̂d we have

σ0 = − 1

4τ0
± λ0 σ1 = ±λ1

λ0

∆ξ

4τ0
= ±λ1

λ0
σ2

0

∆τ

4τ0
(4.6.22)

where

λ0 =
1

4τ0
[1 + 8τ0(γ̂s − γ̂d)]

1/2 . (4.6.23)

By further using the relation

σ2
0 =

1

(4τ0)2
+ λ2

0 ∓
λ0

2τ0

(4.6.24)

we obtain the following expression for the correction term

σ1 = ±λ1

λ0

(τs − τd)

4τ0

[

1

(4τ0)2
+ λ2

0 ∓
λ0

2τ0

]

. (4.6.25)

In total we obtain

σ = − 1

4τ0

± λ0

{

1 + λ1
(τs − τd)

4τ0

[

1 +
1

(4τ0λ0)2
∓ 1

2τ0λ0

]}

. (4.6.26)

Since λ1 is real, the eigenvalue as a whole must be real unless λ0 is imaginary.

Simple inspection of Eq. 4.6.23 shows that this requires γ̂d > γ̂s + (1/8τ0)

as was already derived for the case of equal time scales in the previous sub-

section. Assuming that λ0 is indeed imaginary, the next question to ask

is whether there are circumstances in which the real part of the eigenvalue

vanishes. If so then a periodic solution can indeed be obtained.

The real part of the eigenvalue in this case is

− 1

4τ0

− λ0

{

λ1
(τs − τd)

4τ0

1

2τ0λ0

}

= − 1

4τ0

[

1 + λ1(τs − τd)
1

2τ0

]

(4.6.27)
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which will vanish if

τd − τs =
2τ0

λ1
= 2τ0

(

γ̂d + γ̂s

γ̂d − γ̂s

)

. (4.6.28)

Given that γ̂d and γ̂s are positive, the factor in brackets in the above equation

can have a modulus that is no smaller than unity. Thus, in order for the real

part to vanish the difference between the shallow and deep time scales must

be larger than twice the mean time scale. Since this contradicts our original

assumption that the time scale difference can be treated as a perturbation,

the conclusion must be that a periodic solution cannot be obtained for a

small time scale difference.

We have checked this analysis numerically by solving the full eigenvalue

equation for cases where τs is 10% larger than τd and vice versa. The resulting

phase diagrams are shown in Fig. 10 and may be compared with Fig. 6. The

lines separating regions I/II and II/III have different slopes for τs 6= τd and

so tend towards each other in a part of phase space. In summary then,

the analysis of this subsection does raise the possibility that the system can

produce a periodic solution, but demonstrates that this will not occur in

practice unless there is a substantial difference between the shallow and deep

time scales.

4.6.3. When τs ≪ τd

Having established that a periodic solution does not occur for τs = τd

(Section 4.6.1) or for τs ≈ τd (Section 4.6.2), the natural next step in the

analysis is to consider the behaviour of the system when these two time

scales are well separated. In the present subsection we consider τs ≪ τd, and

in the following subsection we will consider τs ≫ τd.
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Figure 10: As in Fig. 6 but plotted for τs = 110 s (left) and for τd = 110 s (right), all

other parameters remaining unchanged.

Starting from the eigenvalue equation as expressed by Eqs. 4.6.1 and 4.6.2,

the limit of τs ≪ τd can be considered by setting ξs ≃ σ while retaining the

full formula defining ξd. As a result, Eq. 4.6.2 reduces to

σ2(2στd + 1) + γ̂dσ − γ̂sσ(2στd + 1) ≃ 0 (4.6.29)

or

σ2 +
1

2τd

(1 − 2τdγ̂s)σ +
1

2τd

(γ̂d − γ̂s) ≃ 0 (4.6.30)

which has the solution

4τdσ ≃ −(1 − 2τdγ̂s) ± [(1 + τdγ̂s)
2 − 8τdγ̂d]

1/2. (4.6.31)

The solution is oscillatory when 8τdγ̂d > (1 + τdγ̂s)
2, and it becomes purely

oscillatory when τdγ̂s = 1/2. Substituting the latter condition into the former

we find that the conditions for a pure oscillation can be written as

τdγ̂s = 1/2 and γ̂d < (9/16)γ̂s. (4.6.32)
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Hence, the self–amplification rate, γ̂s, of shallow convection must balance

with the self–dissipation rate, τ−1
d , of deep convection in order to obtain a

purely oscillatory solution. Moreover, the self–dampening of deep convection

through γ̂d should not be too strong.

4.6.4. When τs ≫ τd

Now we briefly consider the opposite limit of τs ≫ τd, repeating a similar

procedure as in Section 4.6.3. The eigenvalue equation in this limit is

σ2 +
1

2τs
(1 + 2τsγ̂d)σ +

1

2τs
(γ̂d − γ̂s) ≃ 0 (4.6.33)

which has the solution

4τsσ ≃ −(1 + 2τsγ̂d) ± [(1 − τsγ̂d)
2 + 8τsγ̂s]

1/2 (4.6.34)

In this limit the eigenvalues are real for any choice of parameters.

4.7. The p = 2 equations with vanishing determinant: Periodic solution

In Section 4.6 we considered various special or approximate cases of the

unforced coupled p = 2 system. A periodic solution can arise in which

the growing and dampening tendencies of the system are offset against each

other. This can only be achieved for a careful choice of the parameters and,

in particular, it does not occur for our default set described in Section 3.2

since that has τs = τd. Here we consider what constraints on the parameters

must be satisfied for a periodic solution. Unlike the previous subsection, we

do not seek to understand the behaviour of the system in any limiting regime,

but rather consider the general constraints.
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Assuming a periodic solution, we can write σ = iω where ω is real.

Substituting this form into the eigenvalue equation 4.5.7, and examining

its real and imaginary parts produces

−ω2

2

(

1

τd
+

1

τs

)

+
1

4τdτs
(γ̂d − γ̂s) = 0

or

ω2 =
γ̂d − γ̂s

2(τd + τs)
(4.7.1)

for the real part, and

−ω3 +
ω

4

[

1

τdτs

+ 2

(

γ̂d

τd

− γ̂s

τs

)]

= 0

or

ω2 =
1

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

(4.7.2)

for the imaginary part. Both equations for ω must be satisfied simultaneously

to realize a periodic solution, which produces the following constraint on the

parameters.
γ̂d − γ̂s

2(τd + τs)
=

1

4

[

1

τdτs
+ 2

(

γ̂d

τd
− γ̂s

τs

)]

(4.7.3)

This can be rearranged to read

τ 2
d γ̂s − τ 2

s γ̂d =
τd + τs

2
(4.7.4)

This is a necessary but not sufficient condition since it must be checked that

the resulting ω is indeed real. From Eq. 4.7.1 this requires that γ̂d > γ̂s. An

interesting consequence of these conditions can immediately be recognized.

Rewriting Eq. 4.7.4 as

γ̂d =

(

τd

τs

)2

γ̂s −
(

τd + τs

2τ 2
s

)

(4.7.5)
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it follows that a periodic solution requires τd > τs.

It is straightforward to check that the general constraints of Eq. 4.7.4 and

γ̂d > γ̂s are consistent with the constraints previously derived for particular

special cases and limits.

• For the case of τs = τd = τ as considered in Section 4.6.1, Eq. 4.7.4

gives γ̂s − γ̂d = τ−1 which violates the constraint γ̂d > γ̂s and so there

is no periodic solution.

• In the limit of τs ≪ τd as considered in Section 4.6.3, Eq. 4.7.4 imme-

diately gives τdγ̂s = 1/2 as derived previously.

• In the limit of τd ≪ τs as considered in Section 4.6.4, Eq. 4.7.4 imme-

diately gives τsγ̂d = −1/2 which cannot be satisfied and so there is no

periodic solution.

4.8. Summary of results for the coupled p = 2 system

The system of Eqs. 4.0.8 and 4.0.9 arises from Arakawa and Schubert’s

(1974) energy cycle description for a system with two types of convection,

along with Pan and Randall’s (1998) assumption for the relationship between

convective kinetic energy and cloud–base mass flux. All of the parameters in

those equations are assumed to be positive in accordance with the arguments

presented in Section 2.

The main results arising from our analysis of the system are that:

• The unforced shallow system is unstable in isolation (Section 4.1) whereas

the unforced deep system in isolation has vanishing convective activity

(Section 4.2).
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• The coupled system may be unstable, damping or neutral according to

the parameter settings. It may also exhibit periodicity. These possi-

bilities were simply demonstrated for a limiting case where the mass

fluxes equilibriate much more quickly than the cloud work function

(Section 4.3).

• Solutions of particular interest are those for which the destabilizing

and stabilizing tendencies of shallow and deep convection respectively

are balanced. A necessary condition for such a solution is that the

determinant of the interaction matrix K should vanish (Section 4.4.1;

Eq. 4.4.2).

• Assuming a vanishing determinant:

– The solution takes the form of Eq. 4.5.4, with formulae for the

coefficients being given in Section 4.5 and the cubic eigenfrequency

equation being given in Eq. 4.5.7.

– A necessary condition to avoid an exploding solution is that γ̂d ≥
γ̂s (Section 4.5; Eq. 4.5.9). If the solution does not explode, it will

either decay towards an equilibrium configuration (possibly an

oscillatory decay), or else it may produce persistent oscillations.

– Persistent oscillations require the parameters to satisfy a further

constraint, Eq. 4.7.4. They will not occur for τs = τd (Sec-

tion 4.6.1) or for τs ≈ τd (Section 4.6.2), but can only occur if

τd > τs (Sections 4.6.3, 4.6.4 and 4.7).
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5. Analysis of the system: the p = 1 case

In Section 4 we have investigated the energy-cycle system arising from the

use of p = 2 in Eq. 3.1.3. As discussed in Section 3.1, an alternative choice of

p = 1 is also an attractive possibility with a distinct physical interpretation.

Setting p = 1 in Eq. 3.1.3 and substituting into Eqs. 3.1.1 and 3.1.2, the

energy-cycle equations read

Ṁd =
Md

τd

(

Ad − Ad0

Ad0

)

Ṁs =
Ms

τs

(

As − As0

As0

)

(5.0.1)

Ȧd = βsMs − γdMd + Fd

Ȧs = γsMs − βdMd + Fs (5.0.2)

where

Ad0 =
αd

τd

As0 =
αs

τs
. (5.0.3)

The analysis of the nonlinear p = 1 case in this section proceeds along similar

lines as for the linear p = 2 case in the previous section. Thus, we begin by

considering shallow and deep convection separately in Sections 5.1 and 5.2 re-

spectively. The coupled system is considered in general terms in Sections 5.3

to 5.5 and its behaviour is exemplified by some useful linearizations presented

in Sections 5.6 and 5.7. A summary of the results obtained is provided in

Section 5.8.

Since the p = 1 system is nonlinear, it is convenient to describe it in terms

of nondimensional parameters from the outset, as seen below. We introduce
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nondimensional couplings by

γ̂d =
γdτsτdMd0

αd
=

γdτsMd0

Ad0
, β̂d =

βdτ
2
s Md0

αs
=

βdτsMd0

As0

γ̂s =
γsτ

2
s Ms0

αs
=

γsτsMs0

As0
, β̂s =

βsτsτdMs0

αd
=

βsτsMs0

Ad0
.(5.0.4)

The reader should note that these rescaled coupling parameters are defined

differently from Eq. 4.3.4 which introduced notation convenient for analysis

of the p = 2 system. Since the p = 2 and p = 1 systems are analysed in

separate sections of this article there can be no scope for confusion. Here

we have introduced arbitrary constants Md0 and Ms0 to describe typical

values of the mass fluxes for deep and shallow convection respectively. Rather

than choosing values for these parameters, it is convenient to choose instead

particular values for the nondimensional parameters γ̂s and γ̂d and then to use

the definition of those parameters in order to set Ms0 and Md0. Specifically

we take

γ̂s = 1, γ̂d = 1 (5.0.5)

so that

Md0 =
αd

γdτsτd

Ms0 =
αs

γsτ 2
s

(5.0.6)

and

β̂d =
αdβdτs

αsγdτd

β̂s =
αsβsτd

αdγsτs
. (5.0.7)
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It is also convenient to define a parameter for the ratio of shallow and

deep time scales,

µ =
τs

τd
. (5.0.8)

Using the default parameter set discussed in Section 3.2 the parameters

introduced in the present section take the values Ms0 = 10−2 kgm−2s−1,

Md0 = 5 × 10−3 kgm−2s−1, β̂s = 2, β̂d = 1/2 and µ = 1. These mass flux

scalings are consistent with typical values, as estimated for example by Yano

and Plant (2012b).

5.1. Shallow convection only

The equations for the shallow mode only are (with dimensional variables)

Ṁs =
Ms

τs

(

As − As0

As0

)

Ȧs = Fs + γsMs. (5.1.1)

As before, we neglect any large-scale forcing of shallow convection so that

Fs = 0. We also non-dimensionalize this system in terms of the scaling

parameter for shallow mass flux, Ms0, that was introduced above, and the

stationary value, As0 for the shallow cloud work function. Specifically,

Ms = Ms0xs, As = As0(1 + ys) (5.1.2)

so that xs and ys are the nondimensionalized mass flux and cloud work

function respectively. We furthermore nondimensionalize time with τs to

obtain

ẋs = xsys

ẏs = γ̂sxs (5.1.3)
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using the nondimensional parameter γ̂s defined above. These equations are

further simplified by recalling that, without loss of generality, we set γ̂s = 1

above.

The shallow-only equations may be rewritten as

dxs

xsys
=

dys

xs
= dt (5.1.4)

from which the first equality gives

dxs = ysdys. (5.1.5)

This can be readily integrated to obtain the path of the system in phase

space:

xs =
1

2
(y2

s − ys(0)2) + xs(0). (5.1.6)

Substitution into the cloud work function equation leads to

ẏs =
1

2
(y2

s − ys(0)2) + xs(0) ≡ 1

2
(y2

s − r2
s). (5.1.7)

Thus, the behaviour of the solution depends on the combination r2
s ≡ ys(0)2−

2xs(0) from the initial conditions. For r2
s < 0 the cloud work function must

increase without limit, and likewise the mass flux will explode, as can be

readily seen from its tendency equation. For r2
s = 0, we have

ẏs =
1

2
y2

s (5.1.8)

which is easily integrated to give

ys =
2

2/ys(0) − t
. (5.1.9)

In this case the cloud work function (and the mass flux) explodes to infinity

at t = 2/ys(0) (recall that the nondimensional t is defined in units of τs) if

48



its initial value is larger than the equilibrium value (i.e., ys(0) > 0) or else

it approaches the equilibrium value (with vanishing mass flux) if the initial

value is smaller than this. For r2
s > 0, the solution for the cloud work function

is

ys = −rs

[(

ys(0) − rs

ys(0) + rs

)

erst + 1

] [(

ys(0) − rs

ys(0) + rs

)

erst − 1

]

−1

. (5.1.10)

In this case, the cloud work function tends to a stationary value of −rs as

t → ∞. In the final state, the mass flux vanishes. Examples of exploding and

decaying solutions of the unforced shallow equations are shown in Figs. 11

and 12 respectively.
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Figure 11: Example solution of an exploding case for the unforced shallow mode alone

in the p = 1 system. The parameters are the default set described in Section 3.2, giving

scaling factors of As0 = 1 Jkg−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The initial

conditions are xs(0) = 0.1, ys(0) = 0 so that r2

s = −0.2. On the left and right respec-

tively are shown the time series of the nondimensionalized cloud work function and of the

nondimensionalized mass flux.
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Figure 12: Example solution of a decaying case for the unforced shallow mode alone in the

p = 1 system. The parameters are the default set described in Section 3.2, giving scaling

factors of As0 = 1 Jkg−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The initial conditions are

xs(0) = 0.1, ys(0) = −0.5 so that r2

s = 0.05. From left to right are shown: the time series

of the nondimensionalized cloud work function, the time series of the nondimensionalized

mass flux, and the trajectory in the phase space of the nondimensionalized cloud work

function (horizontal axis) and the nondimensionalized mass flux (vertical axis).

5.2. Deep convection only

The equations for the deep mode only are (with dimensional variables)

Ṁd =
Md

τd

(

Ad − Ad0

Ad0

)

Ȧd = Fd − γdMd (5.2.1)

As before, we neglect any large-scale forcing of deep convection, Fd = 0.

We also non-dimensionalize this system in terms of the scaling parameter for

deep mass flux, Md0, and the stationary value, Ad0 for the deep cloud work

function. Specifically,

Md = Md0xd, Ad = Ad0(1 + yd) (5.2.2)
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so that xd and yd are the nondimensionalized mass flux and cloud work

function respectively. Anticipating later analysis of the coupled system we

furthermore nondimensionalize the time by using τs rather than τd, to obtain

ẋd = µxdyd

ẏd = −γ̂dxd (5.2.3)

using the nondimensional parameters defined above. These equations are

further simplified by recalling that, without loss of generality, we set γ̂d = 1

above.

The deep-only equations may rewritten as

dxd

µxdyd
= −dyd

xd
= dt (5.2.4)

As for the isolated shallow–convection system, the first equality can be readily

integrated to give a phase–space solution,

xd = −µ

2
(y2

d − yd(0)2) + xd(0). (5.2.5)

Substitution of the orbit equation into the cloud work function equation leads

to

ẏd = −µ

2
(y2

d − yd(0)2) + xd(0) ≡ −µ

2
(y2

d − r2
d). (5.2.6)

Thus, the behaviour of the solution depends on the combination r2
d ≡ yd(0)2+

(2/µ)xd(0) from the initial conditions. This combination is guaranteed to be

positive and the resulting cloud work function evolution is given by

yd = −rd

[

1 +

(

yd(0) − rd

yd(0) + rd

)

e−µrdt

] [

1 −
(

yd(0) − rd

yd(0) + rd

)

e−µrdt

]

−1

. (5.2.7)

The cloud work function approaches −rd (and the mass flux vanishes) as

t → ∞. Examples solutions of the unforced deep equations are shown in
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Figs. 13 and 14 for cases of initial growth (yd(0) > 0) or decay (yd(0) < 0)

respectively.
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Figure 13: Example solution for the unforced deep mode alone in the p = 1 system: a case

with a single episode. The parameters are the default set described in Section 3.2, giving

scaling factors of Ad0 = 10 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1 and τs = 103 s. The initial

conditions are xd(0) = 0.2, yd(0) = 5. Shown in the same format as in Fig. 12.

5.3. General case

We now proceed to discuss the coupled p = 1 system. The relevant

dimensional equations are given in Eqs. 5.0.1 and 5.0.2, and the forcings will

again be set to zero. In terms of the dimensionless parameters and variables

introduced by Eqs. 5.0.4–5.0.8, 5.1.2 and 5.2.2 these equations read

ẋs = xsys (5.3.1a)

ẋd = µxdyd (5.3.1b)

ẏs = xs − β̂dxd (5.3.1c)

ẏd = −xd + β̂sxs. (5.3.1d)
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Figure 14: example solution for the unforced deep mode alone in the p = 1 system: a case

with simple decay. The parameters are the default set described in Section 3.2, giving

scaling factors of Ad0 = 10 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1 and τs = 103 s. The initial

conditions are xd(0) = 0.2, yd(0) = −0.5. Shown in the same format as in Fig. 12.

As with the coupled p = 2 system, our main interest is whether the

possible explosive growth of shallow convection and the damping of deep

convection can be coupled in such a way as to produce self–perpetuating

behaviour, with deep convection acting as a break on shallow convection and

shallow convection in turn providing a surrogate forcing for deep convection.

Recalling Section 4.4.1, we note that a vanishing determinant for the K
matrix is a necessary condition for such behaviour, irrespective of the choice

of p. The corresponding constraint on the parameters is as stated in Eq. 4.4.2,

and in non-dimensional units, this takes the form

β̂sβ̂d = 1. (5.3.2)

Asssuming a vanishing determinant, the cloud work functions for shallow

and deep convection are linked together by Eq. 4.4.6, or in nondimensional
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units

ys − ys(0) = β̂d (yd − yd(0)) . (5.3.3)

5.4. The p = 1 equations with vanishing determinant: General considerations

Using Eq. 5.3.3 (relating the cloud work functions) in Eq. 5.3.1a (the

evolution equation for shallow mass flux) we find

ẋs = xsys(0) + β̂dxs (yd − yd(0)) . (5.4.1)

The deep cloud work function yd can then be eliminated by substituting from

Eq. 5.3.1b to produce

ẋs

xs

=
β̂d

µ

ẋd

xd

+ ys(0) − β̂dyd(0). (5.4.2)

Thus, in order to obtain a closed solution in phase space, an additional

constraint on the initial conditions is required. Specifically, the initial cloud

work functions must be related by

ys(0) = β̂dyd(0) (5.4.3)

because otherwise the integration of Eq. 5.4.2 will produce a term propor-

tional to time. We call this condition the initial periodicity condition. A

consequence is that the two nondimensionalized cloud work functions are

then proportional for all times, as can be seen from Eq. 5.3.3. Clearly the

condition is satisfied if both cloud work functions start from their equilibrium

values, ys(0) = yd(0) = 0.

A vanishing determinant and initial periodicity are necessary conditions

for the periodicity of a solution to the coupled system, but they are not suffi-

cient conditions. We investigate the coupled system further below assuming
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the initial periodicity to hold. For the remainder of this subsection, however,

we examine the character of the solutions when the initial periodicity condi-

tion is not met. In order to do so, it is convenient to introduce some further

notation, defining the dimensionless parameters

q =
β̂d

µ
=

βdαd

γdαs
(5.4.4)

and

rc = ys(0) − β̂dyd(0). (5.4.5)

The initial periodicity condition corresponds to rc = 0, while for the default

parameters described in Section 3.2 we have q = 1/2. In terms of these

parameters, Eq. 5.4.2 can be expressed as

ẋs

xs

= q
ẋd

xd

+ rc. (5.4.6)

Integration of the above equation gives

xs

xs(0)
=

(

xd

xd(0)

)q

erct. (5.4.7)

For rc > 0 then xs ≫ xd as t → ∞ so that deep convection becomes negligi-

ble and the system approaches the behaviour of the one-mode shallow-only

system. As discussed in Section 5.1, that system may either explode or decay

to zero activity. Likewise, for rc < 0 then xs ≪ xd as t → ∞ so that shallow

convection becomes negligible and the system approaches the behaviour of

the one-mode deep-only system. As discussed in Section 5.2 that system will

always decay to zero activity. Examples of numerical solutions to the coupled

equations for rc > 0 and rc < 0 are shown in Figs. 15 and 16 respectively.
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Figure 15: Example solution for the unforced p = 1 system with parameters chosen to

violate the initial periodicity condition, and with rc > 0. Blue is for the deep mode and

green for the shallow mode. The parameters are the default set described in Section 3.2,

giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1,

Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are xd(0) = 0.2,

xs(0) = 0.1, yd(0) = 0 and ys(0) = 1 so that rc = 1. Shown in the same format as in

Fig. 11.

5.5. Behaviour of the system with initial periodicity condition

We now consider the character of the solution assuming both a vanishing

determinant and the initial periodicity condition, rc = 0. The key issue is to

identify whether any additional conditions are required in order to obtain a

periodic solution.

When initial periodicity holds, the relationship between shallow and deep

mass flux in Eq. 5.4.7 reduces to

xs

xs(0)
=

(

xd

xd(0)

)q

(5.5.1)

The path of the solution in phase space can also be derived for the other

variables. For example, a solution in terms of the deep variables xd, yd can

56



0 2 4 6
−1.5

−1

−0.5

0

0.5

1

C
lo

u
d

 w
o

rk
 f
u

n
c
ti
o

n

Time
0 2 4 6

0

0.5

1

1.5

Time
M

a
s
s
 f
lu

x
−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

M
a

s
s
 f
lu

x

Cloud work function

Figure 16: Example solution for the unforced p = 1 system with parameters chosen to

violate the initial periodicity condition, and with rc < 0. Blue is for the deep mode and

green for the shallow mode. The parameters are the default set described in Section 3.2,

giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1, Md0 = 5 × 10−3 kgm−2s−1,

Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are xd(0) = 0.2,

xs(0) = 0.1, yd(0) = 1 and ys(0) = 0 so that rc = −0.5. Shown in the same format as in

Fig. 12.

be obtained by first substituting for xs from Eq. 5.5.1 into Eq. 5.3.1d to

obtain a differential equation containing xd and yd. Combining that with

Eq. 5.3.1b we can then eliminate the time to obtain a differential equation

connecting xd and yd. Integrating the resulting equation produces

µy2
d

2
+ xd −

β̂s

q
xs(0)

(

xd

xd(0)

)q

=
µyd(0)2

2
+ xd(0) − β̂s

q
xs(0). (5.5.2)

Similarly it is straightforward to find the solution path in the shallow part

of phase space to be

y2
s

2
− xs + β̂dqxd(0)

(

xs

xs(0)

)1/q

=
ys(0)2

2
− xs(0) + β̂dqxd(0). (5.5.3)

Together Eqs. 5.5.1, 5.5.2 and 5.5.3 describe the complete solution in
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phase space. In order to examine the form of that solution we consider

below the phase space of the deep variables. An analysis in terms of shallow

variables can be performed along very similar lines and is entirely consistent

with the conclusions reached below.

Let us first define a function

Xd(xd) = xd −
β̂s

q
xs(0)

(

xd

xd(0)

)q

(5.5.4)

and a constant

ud = µ
yd(0)2

2
+ xd(0) − β̂s

q
xs(0) (5.5.5)

so that Eq. 5.5.2 reads

µ
y2

d

2
+ Xd(xd) = ud. (5.5.6)

Note that Xd is bounded from above by ud. An extreme value for Xd occurs

at

xex
d =

(

xd(0)q

β̂sxs(0)

)1/(q−1)

(5.5.7)

at which point

Xd(x
ex
d ) =

(

1 − 1

q

)

[

xd(0)q

β̂sxs(0)

]1/(q−1)

. (5.5.8)

To see what kind of extreme value this is, we can look at the second derivative,

d2Xd

dx2
d

= −(q − 1)
β̂sxs(0)xq−2

d

xd(0)q
. (5.5.9)

Thus, the form of the solution depends on q, with three possibilities to be

considered in turn in the following three subsections (Fig. 17): q > 1 in which

case Xd has a maximum, q = 1 in which case Xd is unbounded, and q < 1 in

which case Xd has a minimum. From Eq. 5.5.6 we immediately notice that

for y2
d to be bounded then Xd must have a minimum. Thus, if q < 1 we
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ensure a solution that cannot explode. Examples and further discussions are

given below.

Figure 17: Sketch of the function Xd(xd) for (left) q > 1, (center) q = 1 and (right) q < 1.

5.5.1. Form of solution for q > 1

If q > 1 then Xd has a maximum at a positive value of Xd as sketched

in Fig. 17 (on the left). Consider the point P at which yd = 0 in the space

of (xd, Xd). Here Xd takes the largest value that could be obtained in an

actual solution of Eq. 5.5.6, with Xd(xd) = ud. This point could correspond

to the maximum possible value of the function Xd(xd) as determined above,

but more likely is that there are two possible solutions for Xd(xd) = ud on

either side of that maximum. We label those points as P1 and P2 on the left

and right of the maximum respectively. Which side of the Xd(xd) curve an

actual solution begins will depend upon the initial conditions.

Suppose that we are initially on the left-hand branch of the curve (i.e.,

if xd(0) < xex
d ). Any value of yd 6= 0 that occurs in the solution must

correspond to a smaller value of xd compared to that at P1. This means
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that the solution can only occupy the region between P1 and the origin, thus

including the possibilty of xd → 0 (and also xs → 0) so that all convective

activity dies out. Fig. 18 illustrates a numerical solution.
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Figure 18: Example solution for the unforced p = 1 system with q > 1, a damping case.

Blue is for the deep mode and green for the shallow mode. The parameters are the default

set described in Section 3.2 except for αd = 5 × 104 m2 s−1, giving scaling factors of

Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1

and τs = τd = 103 s. The parameter q = 2.5. The initial conditions are xd(0) = 0.08,

xs(0) = 0.1, yd(0) = 0 and ys(0) = 0 so that rc = 0. The maximum of Xd(xd) occurs for

xex

d
= 0.127. Shown in the same format as in Fig. 12.

Otherwise the initial state will be on the right-hand branch of the Xd(xd)

curve (i.e., with xd(0) > xex
d ). In that case any value of yd 6= 0 that occurs

in the solution must correspond to a larger value of xd compared to that at

P2. This means that the solution occupies a region between P2 and a point

where xd → ∞ (and also xs → ∞). Thus the system is able to explode.

Fig. 19 illustrates a numerical solution for this case.
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Figure 19: Example solution for the unforced p = 1 system with q > 1, an exploding

case. Blue is for the deep mode and green for the shallow mode. The parameters are the

default set described in Section 3.2 except for αd = 5 × 104 m2 s−1, giving scaling factors

of Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1

and τs = τd = 103 s. The parameter q = 2.5. The initial conditions are xd(0) = 0.04,

xs(0) = 0.1, yd(0) = 0 and ys(0) = 0 so that rc = 0. The maximum of Xd(xd) occurs for

xex

d
= 0.025. Shown in the same format as in Fig. 11.

5.5.2. Form of solution for q = 1

If q = 1 then Xd becomes simply proportional to xd and so the function

does not have any extreme values. A sketch of the situation can be seen in

Fig. 17 (in the centre). Specifically, we have

Xd = xd

[

1 − β̂s

q

xs(0)

xd(0)

]

(5.5.10)

According to the sign of the factor in square brackets, Xd is a straight line

through the origin with either positive or negative gradient.

Consider the case of a positive gradient (i.e., if qxd(0) > β̂sxs(0)) and a

point P1 in the space of (xd, Xd) at which yd = 0 and so Xd(xd) = ud. This

is the largest value of Xd that can be obtained in an actual solution and any
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other value of yd that occurs must therefore correspond to a smaller value

of xd compared to that at P1. This means that the solution can reach a

situation where xd → 0 (and also xs → 0) so that all convective activity dies

out. Fig. 20 illustrates this case numerically.
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Figure 20: Example solution for the unforced p = 1 system with q = 1, a damping case.

Blue is for the deep mode and green for the shallow mode. The parameters are the default

set described in Section 3.2 except for αd = 2 × 104 m2 s−1, giving scaling factors of

Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and

τs = τd = 103 s. The initial conditions are xd(0) = 0.2, xs(0) = 0.1, yd(0) = 0 and

ys(0) = 0 so that rc = 0, and the two cloud work functions are equal at all times. Shown

in the same format as in Fig. 12.

For the case of a negative gradient, we consider a point P2, again defined

by yd = 0 and Xd(xd) = ud. In this case any other value of yd that occurs

in the solution must make Xd more negative and must therefore correspond

to a larger value of xd compared to that at P2. Thus the system is able to

explode. Fig. 21 illustrates this case numerically.
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Figure 21: Example solution for the unforced p = 1 system with q = 1, an exploding

case. Blue is for the deep mode and green for the shallow mode. The parameters are

the default set described in Section 3.2 except for αd = 2 × 104 m2 s−1, giving scaling

factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1

and τs = τd = 103 s. The initial conditions are xd(0) = 0.1, xs(0) = 0.2, yd(0) = 0 and

ys(0) = 0 so that rc = 0, and the two cloud work functions are equal at all times. Shown

in the same format as in Fig. 11.

5.5.3. Form of solution for q < 1

If q < 1 then Xd has a minimum at a negative value of Xd. A sketch of

the situation can be seen in Fig. 17 (on the right). Once again we consider a

point P in the space of (xd, Xd) given by yd = 0 and hence Xd(xd) = ud. The

point could correspond to the minimum of the function Xd(xd) as derived

above, but more likely is that there are two possible solutions for P on either

side of that minimum. We label those points as P1 and P2 on the left and

right of the minimum respectively.

Suppose that the initial conditions place us on the left–hand branch of

the curve (i.e., if xd(0) < xex
d ). Any non-zero value of yd that occurs in the
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solution must correspond to a larger value of xd compared to that at P1.

This means that the solution is able to access the right–hand branch of the

curve although it cannot go beyond the point P2 itself because there are no

values of yd that could allow it. Similarly for initial conditions on the right–

hand branch of the curve, the solution is able to access the left–hand branch,

although of course we cannot go past the point P1. Fig. 22 illustrates the

periodic solution that is found numerically for q < 1.
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Figure 22: Example solution for the unforced p = 1 system with q < 1. Blue is for

the deep mode and green for the shallow mode. The parameters are the default set

described in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 = 1 Jkg−1, Md0 =

10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are

xd(0) = 0.2, xs(0) = 0.2, yd(0) = 0 and ys(0) = 0 so that rc = 0. The parameter q = 0.5.

Shown in the same format as in Fig. 12.

5.6. Linearization of the p = 1 system

The p = 1 system is fully nonlinear as emphasized by Yano and Plant

(2012a) for the one–mode case. It is nonetheless revealing to consider lin-

earized analyses in order to show the evolution in the vicinity of various
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situations of particular physical interest. Important questions concern the

behaviour of the system when it deviates slightly from the full set of con-

ditions for periodicity that were determined in Sections 5.3 to 5.5. After

presenting a linear formulation in Section 5.6.1 below, we then consider a

range of special cases in turn.

5.6.1. General approach for linearization with vanishing determinant

Consider a linearization of the coupled p = 1 system about an arbitrary

reference state, which we denote with the subscript r. Using a prime to

denote a departure from the reference state the linearized form of Eqs. 5.3.1a

to 5.3.1d is:

ẋ′

s = xsry
′

s + ysrx
′

s (5.6.1a)

ẋ′

d = µ(xdry
′

d + ydrx
′

d) (5.6.1b)

ẏ′

s = xsr − β̂dxdr + x′

s − β̂dx
′

d (5.6.1c)

ẏ′

d = −xdr + β̂sxsr − x′

d + β̂sx
′

s. (5.6.1d)

We specialize to reference states that satisfy

xsr = β̂dxdr (5.6.2a)

xdr = β̂sxsr. (5.6.2b)

The combination of these two constraints means that β̂sβ̂d = 1 and so we are

dealing with a vanishing determinant as discussed in Section 5.3. This means

that the cloud–work functions are linked by Eq. 5.3.3, and by furthermore

taking the initial state to be the reference state this reads

y′

s = β̂dy
′

d. (5.6.3)
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Since the above relation must be satisfied at all times, this includes the initial

time, and so the reference state must itself satisfy the initial periodicity

condition,

ysr = β̂dydr. (5.6.4)

Although this constraint and Eq. 5.6.2a mean that reference state is not

arbitrary it should be recognized that there is still considerable freedom re-

maining in its choice. Using Eq. 5.6.3 to eliminate y′

d, Eqs. 5.6.1a to 5.6.1c

become

(

d

dt
− ysr

)

x′

s = xsry
′

s (5.6.5a)

(

d

dt
− ysr

q

)

x′

d =
xsr

µq2
y′

s (5.6.5b)

ẏ′

s = x′

s − µqx′

d (5.6.5c)

where we have also made use of Eqs. 5.6.2a and 5.6.3 to eliminate xdr and

ydr respectively and have expressed the final result using the parameter q

defined in Eq. 5.4.4. From the above equations we can now easily derive an

eigenvalue equation. Specifically, Eq. 5.6.5c gives

σy′

s = x′

s − µqx′

d (5.6.6)

using which we can eliminate y′

s in Eqs. 5.6.5a and 5.6.5b to produce

[σ(σ − ysr) − xsr] x
′

s + µqxsrx
′

d = 0 (5.6.7)

and
[

σ

(

σ − ysr

q

)

+
xsr

q

]

x′

d −
xsr

µq2
x′

s = 0 (5.6.8)
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respectively. Now by taking the determinant of the above two equations, we

obtain the eigenvalue equation

σ2 − ysr

q
(1 + q)σ +

1

q

(

xsr(1 − q) + y2
sr

)

= 0. (5.6.9)

This gives the eigenvalues for a linearization of the coupled p = 1 system

about an initial reference state for which the conditions 5.6.2a and 5.6.2b

hold. We consider two particular choices of reference state in the next two

subsections.

5.6.2. Reference state 1: Linearization about zero mass flux

For a linearization about zero mass flux we set xsr = xdr = 0 so that the

eigenvalue equation 5.6.9 becomes

σ2 − ysr

q
(1 + q)σ +

1

q
y2

sr = 0 (5.6.10)

with roots σ = ysr and ysr/q. Thus, convection will either grow or decay

according to the sign of the nondimensionalized cloud work function. The

result accords with the physical expectation that from an initial state of zero

mass flux then excess of cloud work function beyond its equilibrium value

will lead to the growth of convection, whereas a value below equilibrium will

produce decay of any linear fluctuation.

Figs. 23 and 24 show example results for this approximation with ysr

positive and negative respectively. The plots include the solution obtained

from the fully nonlinear equations as well as that from the linearized equation

set. The two solutions agree very well, up to t ∼ 3τs in the growing case and

at all times in the decaying case.
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Figure 23: Example solution for a linearized approximation of the unforced p = 1 system.

The linearization is about a state of zero mass flux and ysr is positive. The parameters

are the default set described in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1,

As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The

initial conditions are xd(0) = 2× 10−3, xs(0) = 10−3, yd(0) = 2 and ys(0) = 1. Blue is for

the deep mode and green for the shallow mode using the fully nonlinear equations. Red is

for the deep mode and cyan for the shallow mode using the linearized equations. Shown

in the same format as in Fig. 11.

5.6.3. Reference state 2: Linearization about cloud work function equilibrium

Equilibrium of the mass flux tendency equations, 5.3.1a and 5.3.1b, occurs

when the cloud work functions are ys = yd = 0. Linearizing about that state

reduces the eigenvalue equation 5.6.9 to

σ2 =

(

q − 1

q

)

xsr. (5.6.11)

Thus, a linear perturbation about the cloud work function equilibrium state

is exponentially growing for q > 1 and oscillatory for q < 1, consistent with

the nonlinear analysis of Section 5.5. Figs. 25 and 26 show example results

for this linear regime with q > 1 and q < 1 respectively.
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Figure 24: Example solution for a linearized approximation of the unforced p = 1 system.

The linearization is about a state of zero mass flux and ysr is negative. The parameters are

the default set described in Section 3.2, giving scaling factors of Ad0 = 20 Jkg−1, As0 =

1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s . The initial

conditions are xd(0) = 2 × 10−3, xs(0) = 10−3, yd(0) = −0.5 and ys(0) = −0.25. Blue is

for the deep mode and green for the shallow mode using the fully nonlinear equations. Red

is for the deep mode and with cyan for the shallow mode using the linearized equations.

Shown in the same format as in Fig. 12. Differences between the linear and nonlinear

solutions are almost imperceptible in this case as the linear solutions provide a very good

approximation.

An interesting point to notice is that the square of the oscillation fre-

quency (assuming q < 1) is proportional to the reference/initial state mass

flux, here written in terms of shallow convection. Thus, the period of os-

cillation could be arbitrarily increased by decreasing the initial amplitude

of convective activity. In principle, the oscillation period could even be ex-

tended to an MJO timescale.
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Figure 25: Example solution for a linearized approximation of the unforced p = 1 system.

The linearization is about a state of cloud work function equilibrium and q > 1. The

parameters are the default set described in Section 3.2, except for αd = 5 × 10−4m2s−1,

giving scaling factors of Ad0 = 50 Jkg−1, As0 = 1 Jkg−1, Md0 = 2.5 × 10−2 kgm−2s−1,

Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The parameter q = 2.5. The initial conditions

are xd(0) = 0.041, xs(0) = 0.101, yd(0) = 0 and ys(0) = 0. Blue is for the deep mode

and green for the shallow mode using the fully nonlinear equations. Red is for the deep

mode and cyan for the shallow mode using the linearized equations and a reference state

of xsr = 0.04, xdr = 0.1, ysr = ydr = 0. Shown in the same format as in Fig. 11.

5.6.4. Linearization with a timescale separation

The above numerical examples were for cases where τs = τd (µ = 1) and

showed that the linearized equations are able to give a good approximation

to the full system, at least for times t of order a few τs. However, it should be

noted that a linearization works less well if there is a timescale separation.

Suppose first that shallow convection is damped very slowly compared to

deep convection so that τs ≫ τd, or µ ≫ 1. In this limit shallow convection

dominates and the system quickly comes to resemble the shallow-only regime

which is markedly nonlinear. Longer integrations with q < 1 confirm that
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Figure 26: Example solution for a linearized approximation of the unforced p = 1 system.

The linearization is about a state of cloud work function equilibrium and q < 1. The

parameters are the default set described in Section 3.2, giving scaling factors of Ad0 =

20 Jkg−1, As0 = 1 Jkg−1, Md0 = 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd =

103 s. The parameter q = 0.5. The initial conditions are xd(0) = 0.201, xs(0) = 0.101,

yd(0) = 0 and ys(0) = 0. Blue is for the deep mode and green for the shallow mode using

the fully nonlinear equations. Red is for the deep mode and with cyan for the shallow mode

using the linearized equations and a reference state of xsr = 0.1, xdr = 0.2, ysr = ydr = 0.

Shown in the same format as in Fig. 12. Differences between the linear and nonlinear

solutions are almost imperceptible in this case as the linear solutions provide a very good

approximation.

deep convection can tame this growth tendency and produce the oscillating

solution expected but such behaviour is only apparent for the full nonlinear

system. Fig. 27 illustrates these points.

In the opposite limit of µ ≪ 1 shallow convection is rapidly damped

compared to deep convection. Here again, numerical tests of the linearized

system perform relatively poorly. Fig. 28 gives an illustration. In order

for linearity to be a good approximation we require the deep and shallow
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Figure 27: Example solution for a linearized approximation of the unforced p = 1 system,

with a timescale separation so that µ ≫ 1. The parameters are the default set described

in Section 3.2, except for τd = 100 s, giving scaling factors of Ad0 = 100 Jkg−1, As0 =

1 Jkg−1, Md0 = 5 × 10−2 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The

parameter q = 0.5. The initial conditions are xd(0) = 0.003, xs(0) = 0.101, yd(0) = 0.2

and ys(0) = 1. Blue is for the deep mode and green for the shallow mode using the fully

nonlinear equations. Red is for the deep mode and cyan for the shallow mode using the

linearized equations and a reference state of xsr = 0.1, xdr = 0.001, ysr = 1 and ydr = 0.2.

Shown in the same format as in Fig. 11.

modes to be well balanced at all times, while the fully nonlinear equation

set is needed to handle a situation where one of the modes dominates the

short–time but not long–time dynamics.

5.7. Linearization for the case of a non-zero determinant

We now return to the linearized equations 5.6.1a to 5.6.1d but develop

these in a different way. In Section 5.6.1 we specialized to reference states

satisfying Eqs. 5.6.2a and 5.6.2b, thereby requiring a vanishing determinant.

The purpose of the present subsection is to make a linear expansion for a non-
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Figure 28: Example solution for a linearized approximation of the unforced p = 1 system,

with a timescale separation so that µ ≪ 1. The parameters are the default set described in

Section 3.2, except for τd = 104 s, giving scaling factors of Ad0 = 1 Jkg−1, As0 = 1 Jkg−1,

Md0 = 5 × 10−4 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = 103 s. The parameter

q = 0.5. The initial conditions are xd(0) = 2.001, xs(0) = 0.101, yd(0) = −0.5 and

ys(0) = −0.025. Blue is for the deep mode and green for the shallow mode using the

fully nonlinear equations. Red is for the deep mode and cyan for the shallow mode using

the linearized equations and a reference state of xsr = 0.1, xdr = 2, ysr = −0.025 and

ydr = −0.5. Shown in the same format as in Fig. 11.

zero determinant. We do however constrain the reference states of interest

by linearizing about the equilibrium values of the cloud work function so that

ysr = ydr = 0.

The linearized equations for this situation read as follows.

ẋ′

s = xsry
′

s (5.7.1a)

ẋ′

d = µxdry
′

d (5.7.1b)

ẏ′

s = xsr − β̂dxdr + x′

s − β̂dx
′

d (5.7.1c)

ẏ′

d = −xdr + β̂sxsr − x′

d + β̂sx
′

s (5.7.1d)
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Taking a time derivative of Eqs. 5.7.1c, d and then using Eqs. 5.7.1a, b to

eliminate ẋ′

s and ẋ′

d we find that

ÿ′

s − xsry
′

s + β̂dµxdry
′

d = 0 (5.7.2a)

ÿ′

d + µxdry
′

d − β̂sxsry
′

s = 0. (5.7.2b)

It is then straightforward to obtain the eigenvalue equation

(σ2 − xsr)(σ
2 + µxdr) + µβ̂dβ̂sxsrxdr = 0

or

σ4 + (µxdr − xsr)σ
2 + (β̂sβ̂d − 1)µxsrxdr = 0. (5.7.3)

The solution may be written as

σ2 =
σ2

0

2

(

1 ± (1 − λ)1/2
)

(5.7.4)

where we have defined

σ2
0 = xsr − µxdr (5.7.5)

λ =
4(β̂sβ̂d − 1)µxsrxdr

σ4
0

. (5.7.6)

The behaviour depends on the initial mass flux difference between shallow

and deep convection, as measured by σ2
0, and on the departure from a van-

ishing determinant, as measured by λ.

If λ ≤ 1 then σ2 is purely real and is either positive or negative in ac-

cordance with the sign of σ2
0. Thus, there are purely oscillatory modes for

σ2
0 < 0 (deep convection dominates in the initial state) or both growing and

decaying modes for σ2
0 > 0 (shallow convection dominates in the initial state).

The other possibility is that λ > 1 and so σ2 is complex. In that case there

are both decaying and growing oscillatory modes regardless of the sign of σ2
0 .
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Most of these cases contain a growing mode indicating that most values

for the convective mass fluxes are unstable even when the system is started

from the cloud work function equilibrium. A numerical example is shown

in Fig. 29. The exception occurs for σ2
0 < 0 and λ ≤ 1 in which case the

solution is periodic in the linear regime, although this is no longer true in a

fully nonlinear regime. The numerical example in Fig. 30 illustrates such a

case, in which the linearized system is periodic but for which all convective

activity is damped out in the nonlinear regime. The linear approximation

breaks down relatively quickly for this case, at t ∼ 0.5τs.
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Figure 29: Example solution for a linearized approximation of the unforced p = 1 system

with finite determinant; here for a growing case in the linear regime with σ2
0 = 0.3 and

λ = 4.4. The parameters are the default set described in Section 3.2, except for βd =

0.2 Jm2kg−2, giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1, Md0 = 5 ×
10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions are

xd(0) = 0.201, xs(0) = 0.501, yd(0) = 0 and ys(0) = 0. Blue is for the deep mode and

green for the shallow mode using the fully nonlinear equations. Red is for the deep mode

and cyan for the shallow mode using the linearized equations and a reference state of

xsr = 0.5, xdr = 0.2, ysr = ydr = 0. Shown in the same format as in Fig. 11.
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Figure 30: Example solution for a linaerzied approximation of the unforced p = 1 system

with finite determinant; here for an oscillating case in the linear regime with σ2

0
= −3.5

and λ = 0.65. The parameters are the default set described in Section 3.2, excep for

βd = 0.2 Jm2kg−2, giving scaling factors of Ad0 = 10 Jkg−1, As0 = 1 Jkg−1, Md0 =

5 × 10−3 kgm−2s−1, Ms0 = 10−2 kgm−2s−1 and τs = τd = 103 s. The initial conditions

are xd(0) = 4.001, xs(0) = 0.501, yd(0) = 0 and ys(0) = 0. Blue is for the deep mode

and green for the shallow mode using the fully nonlinear equations. Red is for the deep

mode and cyan for the shallow mode using the linearized equations and a reference state

of xsr = 0.5, xdr = 4, ysr = ydr = 0. Shown in the same format as in Fig. 12.

5.8. Summary of results for the p = 1 system

The system of Eqs. 5.0.1 and 5.0.2 arises from Arakawa and Schubert’s

(1974) energy cycle description for a system with two types of convection,

along with Yano and Plant’s (2012a) linear assumption for the relationship

between convective kinetic energy and cloud–base mass flux. All of the pa-

rameters in those equations are assumed to be positive in accordance with

the arguments presented in Section 2.

The main points arising from our analysis of the system are:

• The stability of the unforced shallow system in isolation depends on
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the initial conditions (Section 5.1), specifically the combination r2
s ≡

ys(0)2 − 2xs(0). For r2
s < 0 the system explodes, for r2

s = 0 it either

becomes infinite at the finite time t = 2τs/ys(0) (if ys(0) > 0) or else

all convection is damped out (if ys(0) < 0), and for r2
s > 0 then all

convection is always damped out. Thus, in contrast to the p = 2

system, isolated shallow convection is not necessarily explosive but may

decay if the initial mass flux is not too strong. This generalizes the

analysis of the Appendix B in Yano and Plant (2012b).

• The unforced deep system in isolation has vanishing convective activity

(Section 5.2), regardless of the initial conditions. Thus, it behaves

qualitatively like the p = 2 system.

• The coupled system may be unstable, damping or neutral according to

the parameter settings and the initial conditions. It may also exhibit

periodicity. As for the p = 2 system, solutions of particular interest are

those for which the destablizing and stabilizing tendencies of shallow

and deep convection respectively are balanced. A necessary condition

for such a solution is that the determinant of the interaction matrix K
should vanish (Section 4.4.1; Eq. 4.4.2).

• The nonlinear p = 1 system also has a further requirement on the initial

conditions (Section 5.4; Eq. 5.4.3), which we call the initial periodicity

condition. The requirement is that rc = ys(0) − β̂dyd(0) = 0. If the

determinant vanishes but rc 6= 0 then the coupled system aproaches a

single-mode system as t → ∞ with shallow (deep) convection dominant

for rc positive (negative).
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• Assuming a vanishing determinant and initial periodicity:

– The shallow and deep convective mass fluxes are linked through

a power relationship with power q = (βdαd)/(γdαs) as given in

Eq. 5.5.1 of Section 5.5. The qualitative behaviour of the two–

mode system is controlled by this power q,

∗ For q > 1 (Section 5.5.1) either all activity dies out or else the

system explodes. Which of these possibilities occurs can be

determined from the initial mass flux, which must be smaller

than a threshold value for decay (Eq. 5.5.7).

∗ For q = 1 (Section 5.5.2), the deep and shallow mass fluxes

are proportional and again either all activity dies out or else

the system explodes. Which of these possibilities occurs can

be determined by comparing the initial values of mass flux for

deep and shallow convection. Decay occurs if the deep con-

vective mass flux is sufficiently strong that xd(0) > β̂sxs(0).

∗ For q < 1 (Section 5.5.3), the solution is periodic regardless

of any further considerations of the initial conditions.

– We considered a linearization of the equations in order to consider

the system with vanishing determinant but with a small departure

from initial periodicity. Specifically, we expanded about a refer-

ence state that respects initial periodicity (Section 5.6.1).

∗ Departures from a reference state of zero mass flux produce

growth if the reference cloud work functions are larger than

their equilibrium values and decay otherwise (Section 5.6.2).

78



∗ Departures from the equilibrium values of the cloud work

functions grow for q > 1 and are oscillatory for q < 1 (Sec-

tion 5.6.3).

∗ Numerically the linearized solutions provide a good descrip-

tion for µ ∼ 1 but perform poorly for µ ≫ 1 and µ ≪ 1

(Section 5.6.4) in which one mode dominates and non-linear

effects are important.

– We also considered a linearization of the equations in order to

explore the case of a non-vanishing determinant with a small de-

parture from equilibrium values of the cloud work functions (Sec-

tion 5.7). In that case most parameter settings and initial condi-

tions lead to a growing mode increasing the linear departure from

the cloud work function equilibrium. However, the departure may

be neutral, producing a periodic solution of the linearized equa-

tions, if σ2
0 < 0 and λ ≤ 1 where σ0 and λ are defined by Eqs. 5.7.5

and 5.7.6 respectively.

To summarize the above, for most configurations of the p = 1 system

convection will either decay or explode and the rules above enable us to

determine which of these will occur for any given parameter settings and

initial conditions. However, the system also supports a bounded periodic

solution under the following conditions:

1. The matrix determinant must vanish, βdβs = γdγs.

2. The forcing must satisfy Fs = γs

βs
Fd which of course includes the case

of no forcing.
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3. The initial conditions for the cloud work function must satisfy As(0)−
As0 = γs

βs
(Ad(0) − Ad0)

4. The other parameters of the problem must respect the inequality q < 1.

6. Conclusions : Perspectives for Future Studies

The closure of convection parameterization is a long-standing and con-

tentious problem (Yano and Plant, 2012c; Yano et al 2012). The convective

energy cycle is an attractive framework for the closure of a mass–flux pa-

rameterization, as already attempted by Randall and Pan (1993) and Pan

and Randall (1998). Our recent work (Yano and Plant 2012a, b) has pro-

posed modifications to their formulation. Yano and Plant (2012a) proposed

to assume that the convective kinetic energy is proportional to the cloud–

base mass flux (i.e., p = 1 in Eq. 3.1.3) rather than to its square (p = 2

in Eq. 3.1.3) as assumed by Randall and Pan (1993) and Pan and Randall

(1998). Yano and Plant (2012b), in turn, point out the importance of includ-

ing the off-diagonal terms of the energy–conversion kernel (i.e., Ki,j 6= 0 for

i 6= j) that are neglected by Randall and Pan (1993) and Pan and Randall

(1998), in order to account for the interactions between different convective

modes.

These modifications have advantages over the earlier formulation in ex-

plaining basic convective processes. A modified functional relationship (mod-

ification from p = 2 to p = 1 in Eq. 3.1.3) leads to a nonlinear term in the

coupled ordinary differential equations that makes it possible to explain, un-

der constant large–scale forcing, a life cycle of convective ensembles consist-

ing of discharge and recharge (Yano and Plant 2012a). The introduction of
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interactions between different convective modes enables us to explain trans-

formations from shallow to deep convection in a very simple manner (Yano

and Plant 2012b).

Our next major goal is to implement this modified energy–cycle formula-

tion into a convection parameterization as a closure that couples both shallow

and deep convection schemes. However, in order to make such an imple-

mentation and subsequent testing smooth, the stand–alone behaviour of the

two-mode energy–cycle system must be well understood. This has been the

purpose of the present paper. For this reason, investigations have been per-

formed in a fairly systematic manner for the cases of both p = 1 and 2 in

Eq. 3.1.3.

The focus has been placed on the two mode case, partly as a reflection of

current formulations of convective parameterizations, and partly because two

modes are sufficient to produce a rich variety of behaviours. A particular in-

terest here has been conditions for obtaining a perpetual periodic–cycle state

under interactions between shallow and deep convection: slow growth of shal-

low convection triggers deep convection due to its destabilization tendency,

and then deep convection suppresses both itself and shallow convection by

its stabilization tendency to continue the cycle.

The conditions for such perpetual periodic solutions are carefully sought

both for p = 1 and 2, because this behaviour is expected to be also important

in interpreting global–model behaviours under a practical implementation.

A perfect periodic solution is realizable only under a relatively narrow pa-

rameter range. However, over a much wider parameter range, the system

permits a damped periodic solution under interactions of shallow and deep
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modes (see, for example, Figs. 9 and 29). This suggests that the notion of the

self–sustaining shallow–deep convection coupled system elucidated by Yano

and Plant (2012b) has a wider applicability in practice. We anticipate that

various external forcings, which are almost totally neglected in the present

study, can induce other cyclic behaviours.

An intriguing feature for the case with p = 1 is that the square of the

oscillation frequency becomes proportional to a degree of the deviation of the

cloud–base mass flux from an equilibrium state. Such freedom for the system

to exhibit a periodicity determined by the initial amplitude arises from its

nonlinearity. Potentially, even intraseasonal variability may be explained

under this framework.

Probably, one more last step before this energy–cycle framework can be

introduced as a parameterization closure is to investigate the system under

interactions with linear large–scale dynamics. This may even be limited to a

horizontally one–dimensional configuration for ease of analysis. Such analysis

would provide a more solid understanding of the interactions and implica-

tions of the convective energy cycle for tropical dynamics issues, including

intraseasonal variability.

Another important extension of the present study is to the case with many

convective modes so that the complex mutual interactions of atmospheric

moist convection can fully be investigated. Under this extension, the analytic

treatment of a small number of coupled ordinary differential equations is no

longer sufficient and other approaches to the analysis must be developed,

possibly in analogy with those used for statistical mechanics. Thus, the

extension opens a way for a new approach to atmospheric convection studies:
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statistical cumulus dynamics. This direction has long since been suggested

by Arakawa and Schubert (1974) as an ultimate answer for the convection

closure problem. The time is now mature for launching full investigations

from this perspective.

Appendix A. Dimensional analysis and the functional relation,

Eq. 3.1.3

The general functional relation of Eq. 3.1.3 with p 6= 2 may at first sight

be objected to on dimensional grounds. Dimensional analysis states that the

kinetic energy density, k (Jkg−1), can be linked to a characteristic velocity

scale, wchar, through

k =
1

2
w2

char. (A.1)

The purpose of this appendix is to show that this standard expression of

dimensional analysis does not contradict with Eq. 3.1.3.

The convective kinetic energy, K (Jm−2) appearing in Eq. 2.0.1, is given

by

K =

∫ zT

zB

σc
ρ

2
w2dz (A.2)

where w is the vertical velocity in the convective updraft and where attention

has been restricted to the vertical component of velocity only, as in Yano and

Plant (2012a). All other notation is as defined in the main text. This quantity

K is to be compared with the cloud–base mass flux, which is defined by

Mb = ρbσbwb. (A.3)

In order to relate the vertically–integrated convective kinetic energy, K,

with the convective kinetic energy density, k, we normalize the former using
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cloud–base values, σb and ρb, we normalize the updraft velocity with the

characteristic velocity scaling for k, and we measure the vertical scale of

convection by h = zT − zB. As a result,

K = 2ρbσbhk

∫ 1

0

σ

σb

ρ

ρb

(

w

wchar

)2

d(z/h). (A.4)

The integral now depends on dimensionless vertical profiles only and we can

denote its value as ζ , which is assumed to take a fixed value for some suitable

choice of wchar.

Hence, with the use of Eqs. A.1 and A.3, we can write

K = ζ
w2

charhMB

wb
. (A.5)

Now we must address the issue of the characteristic velocity scale wchar. It is

immediately clear that the choice of this scale, and its dependence (if any) on

the cloud-base mass flux will determine a suitable choice for p in Eq. 3.1.3.

In other words p = 2 is not demanded by a dimensional analysis. Rather a

choice for p indicated by dimensional analysis can only be discussed after one

has introduced and justified physical assumptions to obtain the scale wchar.

Some specific examples are discussed below.

1. As a trivial example we could set wchar ∼ L
1/2
v where Lv is the latent

heat of vaporization. It must be stressed that we do not believe this

scaling to be physically appropriate but clearly Lv is a relevant quan-

tity for moist convection and on dimensional grounds alone the scaling

cannot be held objectionable. In this case we might then choose p = 1

if we believe that h/wb can be treated as constant, or p = 0 if we believe

that hρbσb can be treated as constant.
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2. A more reasonable possibility is to choose wchar ∼ wb so that wb is

the only velocity scale involved. In that case K ∼ ρbhσbw
2
b . This is

consistent with p = 2 in Eq. 3.1.3 if h/ρbσb can be treated as constant

for a given convection type. However, we argued in Plant and Yano

(2012a) that this cannot be strictly true, because numerical results

show that σb does indeed change with a change of Mb. In particular,

if changes of Mb are dominated by those in σb rather than those in wb

(which we argued was a better interpretation of the numerical results),

then we may set p = 1 by treating hwb/ρb as constant. Thus, we

see that the apparent inconsistency of Eq. 3.1.3 with the dimensional

analysis stems from the fact that nondimensional variables such as σb

may play a leading role.

3. Other velocity scales for moist convection have been proposed. For

example, Grant and Brown (1999); Grant and Lock (2004) considered

a velocity scale based on CAPE,

wcp =
√

CAPE, (A.6)

and a convective velocity scale w∗ defined by

w∗ =

(

CAPE
Mb

ρb

h

)1/3

. (A.7)

This latter scale is obtained by equating the generation and dissipation

rates of turbulent kinetic energy and scaling these as CAPE Mb and

ρbw
∗3/h respectively. Grant and Brown (1999) in their Figure 4 showed

results for scaling the convective-core contribution to kinetic energy

from their simulations for shallow convection. The results show that

both scales are effective at collapsing the curves, although the latter is
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perhaps somewhat better and is the one that is consistent with their

physical arguments.

If we take wchar ∼ wcp this would suggest taking p = 1 if CAPE h/wb is

treated as constant or else p = 0 if CAPE hρbσb is treated as constant.

On the other hand, if we take wchar ∼ w∗ then this would suggest

taking p = 5/3 if (CAPE /ρb)
2/3(h5/3/wb) can be treated as constant or

p = 2/3 if CAPE2/3h5/3ρ
1/3
b σb can be treated as constant. Of course, it

must be remembered that the velocity scale w∗ is based on a different

assumption by Grant and Brown (1999) for the form of the dissipation

rate compared to that in the main text.
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