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abstract

A simple self–contained theory is proposed for describing life cycles of convective

systems as a discharge–recharge process.

A closed description is derived for the dynamics of an ensemble of convective plumes

based on an energy cycle. The system consists of prognostic equations for the cloud work

function and the convective kinetic energy. The system can be closed by introducing a

functional relationship between the convective kinetic energy and the cloud–base mass

flux.

The behaviour of this system is considered under a bulk simplification. Previous

cloud–resolving modelling as well as bulk statistical theories for ensemble convective sys-

tems suggest that a plausible relationship would be to assume that the convective kinetic

energy is linearly proportional to the cloud–base mass flux.

As a result, the system reduces to a nonlinear dynamical system with two dependent

variables, the cloud–base mass flux and the cloud work function. The fully nonlinear

solution of this system always represents a periodic cycle regardless of the initial condition

under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this

model does not in itself lead the system to an equilibrium.
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1. Introduction

Convective cloud systems in the atmosphere undergo life cycles, and it is physically in-

tuitive to consider that a convective system follows a cycle of discharge and recharge. Once

a convective event is over (“discharge”), the atmosphere has been stabilized against fur-

ther moist convection and a break period follows (“recharge”). This break period continues

until sufficient potential energy is “recharged”. Once the potential energy has reached a

threshold, convection triggers, and the accumulated potential energy is again “discharged”

as a result. To the best of our knowledge, the terminology “discharge–recharge” was orig-

inally introduced by Bladé and Hartmann (1993) in order to interpret their experiments

of tropical instraseaonal variability with a simple nonlinear model. The present paper, in

turn, interprets this concept more generally for describing the life cycle of any convective

system of any scale.

Although this discharge–recharge mechanism has been invoked in the consideration of

various tropical convection problems, especially for the Madden–Julian oscillation (MJO:

Benedict and Randall 2007, Thayer–Calder and Randall 2009), no self–contained theory

has been proposed. The purpose of the present paper is to present a simple self–contained

theory suitable for describing convective discharge–recharge processes.

Our finding stems from our investigations of the time evolution of ensemble convec-

tive systems as described by a mass–flux convection parameterization. The mass–flux

convection parameterization problem, as originally formulated by Arakawa and Schubert

(1974), is followed by the majority of current operational parameterizations (e.g., Tiet-

dke 1989, Emanuel 1991, Bechtold et al. 2001). In spite of the theoretical nature of the

present study, it therefore contains serious implications for improving mass–flux convection

parameterization.

The Arakawa and Schubert (1974) system is well defined in its formulation in so far

as dependent physical variables (e.g., moist static energy, total water) are conserved along

a parcel movement. Unfortunately, once explicit microphysical processes become an issue,
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the conservation law breaks down, and the problem is no longer well formulated. Extra

complications arise due to the need to introduce an explicit description of the convective

vertical velocity, as emphasized by Donner (1993).

However, in so far as only conserved variables are considered, there are only two

problems to be resolved in order to make the formulation complete. The first problem is the

determination of a rule for specifying entrainment and detrainment rates. There have been

extensive debates on this issue (e.g., Raymond and Blyth 1986, Blyth 1993) which persist

to this day (cf., Yano and Bechtold 2009). The second problem, called “closure”, is to

define the mass flux at cloud base. As emphasized by Arakawa and Schubert (1974), “The

real conceptual difficulty in parameterizing cumulus convection starts from this point”.

Although extensive progress has been made since that time (e.g., Arakawa and Chen 1987,

Xu 1994), the statement is still valid, even today (cf., Arakawa 2004, Yano et al. 2005a).

In order to address the closure problem, Arakawa and Schubert (1974) pursued the

idea of constructing an energy cycle for a convective system. In Arakawa and Schubert’s

point of view, this cycle is chiefly described by two equations. The first is the budget

equation for convective kinetic energy, as given by their Eq. (132). This equation shows

that the rate of generation of convective kinetic energy is proportional to a quantity named

the “cloud work function” by Arakawa and Schubert. Thus, they proposed to use also the

tendency equation for cloud work function as the second of this pair, as given by their

Eq. (142). The latter equation shows that the cloud work function is consumed at a rate

proportional to the cloud–base mass flux.

Arakawa and Schubert closed the problem by seeking a steady solution to the cloud-

work function equation, assuming a balance between cloud-work function generation by

large–scale forcing and consumption by convection. Such a condition is called convective

quasi–equilibrium. Mathematically speaking, the problem reduces to that of matrix in-

version for finding a solution of the cloud–base mass flux. It turns out that this matrix

inversion problem is not straightfoward in practice, and various approaches have been

3
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proposed (e.g., Lord 1982, Lord et al. 1982, Hack et al. 1984, Moorthi and Suarez 1992).

Randall and Pan (1993) and Pan and Randall (1998) recognized that the problem can

more easily be closed in a prognostic manner. Note that the pair equation system consid-

ered by Arakawa and Schubert (1974: their Eqs. 132 and 142) contains three dependent

variables: convective kinetic energy, cloud work function, and the cloud–base mass flux.

It seems reasonable to expect that there is a certain functional relationship between the

convective kinetic energy and the cloud–base mass flux. More specifically, those authors

assumed the convective kinetic energy to be proportional to the square of the cloud–base

mass flux.

In the present paper, we note that this functional relationship can be generalized by

assuming a power law dependence of convective kinetic energy on cloud–base mass flux.

After reviewing cloud–resolving modelling (CRM) as well as statistical theories, we propose

an alternative assumption that the convective kinetic energy is proportional to the cloud–

base mass flux. The goal of the present paper is to investigate the basic behaviour of the

resulting energy–cycle description of convective systems under a bulk simplification (cf.,

Yanai et al. 1973, Plant 2010), i.e., in the case that only one convective mode is assumed.

Recall that a continuous spectrum of convective plumes is considered in Arakawa and

Schubert (1974). As it turns out, this nonlinear system produces a periodic cycle with a

process of discharge and recharge.

The paper is organized as follows. The formulation of the problem is presented in the

next section, which also includes a review of relevant CRM and theoretical studies. The

derived system is investigated in Sec. 3, implications are discussed in Sec. 4, and the paper

is concluded in Sec. 5.

2. Formulation of the Problem

a. Energy–cycle of the convective system

By following the idea of a bulk mass–flux convection parameterization, we consider a

system consisting only of a single type of convection. In Arakawa and Schubert’s original

4
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formulation, this corresponds to the case of a single type of entraining convective plume

with a given fractional entrainment rate. However, the problem can be generalized to

encompass any other description of the convective plume. In more general cases, the

computation of the cloud–work function consumption rate, γ to be introduced later, is

more involved than the one given in Appendix B of Arakawa and Schubert (1974). Only

the order of magnitude of γ is of concern in the present study. A more explicit formulation

for general cases is left for future study.

An important aspect of Arakawa and Schubert’s mass–flux parameterization is the

fact that convection is always considered in terms of an ensemble of plumes, in which

there are always a number of convective elements present belonging to each type. What is

considered is the evolution of each sub–ensemble, and the evolution of a single convective

plume is never in concern. As a result, the triggering of a single convective event, for

example, cannot be described under the present formulation: cf., Sec. 3.h.

Here we consider the evolution of an ensemble of convective elements, to be called

plumes, under a bulk simplification which assumes that every convective plume in the sys-

tem can be treated as having the same vertical convective mass–flux profile. We designate

the normalized vertical profile η(z), which is a function of height, z, only. The normaliza-

tion factor is mB,j , the mass flux at cloud base for the given plume, such that the mass

flux of a given plume j is

mj = mB,jη(z).

The total convective mass flux is given by

Mc = MBη(z) (1)

with the total cloud–base mass flux being given by

MB =
∑

j

mB,j

with the summation extending over all plumes within the area of interest (e.g., grid box).

5
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In the same manner, the other dependent variables of the problem, the convective

kinetic energy, K, and the cloud work function, A, are considered in the present study in

terms of the total for all the convective plumes. In other words, only the evolution of an

ensemble of plumes of a single type is considered, and no attention is paid to the evolution

of individual plumes. Note that by definition, the total cloud–base mass flux MB is a

function of time only.

The evolution of convective kinetic energy consists of a competition between the gen-

eration rate, G, from the buoyancy force and the dissipation, D:

dK

dt
= G − D. (2)

Here,

G =

∫ zT

zB

Mcbdz (3)

with the integral extending from cloud base, zB , to cloud top, zT , and b being the buoyancy,

defined in the case of Arakawa and Schubert (1974) by

b =
g

CpT̄
(svc − s̄v)

in terms of the acceleration due to gravity, g, the heat capacity at constant pressure, Cp,

the temperature, T , and the virtual static energy, sv = CpTv + gz, which is defined from

the virtual temperature, Tv. The overbar and the subscript, c, designate the area mean

and convective components, respectively.

By substituting Eq. (1) into Eq. (3), the kinetic–energy generation rate becomes

G = AMB (4)

with the cloud work function defined by

A =

∫ zT

zB

ηbdz. (5)

6
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Substitution of Eq. (4) into Eq. (2) then leads to

dK

dt
= AMB − D, (6)

which is equivalent to Eq. (132) of Arakawa and Schubert (1974) under the bulk simplifi-

cation.

The prognostic equation for the cloud work function is obtained directly, by taking a

time derivative of its defining equation, Eq. (5). After lengthy calculations, as outlined in

Appendix B of Arakawa and Schubert (1974), one can obtain an equation of the form

dA

dt
= −γMB + F, (7)

which is equivalent to Eq. (142) of Arakawa and Schubert (1974), again under the bulk

simplification. Note that the factor γ corresponds to a diagonal element of the integral

kernel, K(λ, λ′), defined in Arakawa and Schubert. We have changed the notation in order

to avoid any confusion with the convective kinetic energy, K, and have also flipped the

sign, expecting the first term on the right–hand side of Eq. (7) to be negative in general

due to convective damping (see below). A time–independent large–scale forcing, F , will

be assumed in the present study.

Eqs. (6) and (7) provide a qualitative description of the evolution of a bulk convective

ensemble: large–scale forcing generates the cloud work function with time by Eq. (7). The

cloud work function, in turn, generates more convective activity through Eq. (6). This

enhancement of convection is associated with an increase of cloud–base mass flux which in

turn damps the cloud work function with time through the first term on the right–hand

side of Eq. (7). By physical intuition, therefore, γ should be positive because convection

grows by consuming the cloud work function. This notion is called “convective damping”

by Emanuel et al. (1994).

A further intuition invoked by Arakawa and Schubert (1974) is that within a relatively

short time, the rate of consumption of cloud work function comes into balance with the

7
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generation rate by large–scale forcing, and thus we obtain:

−γMB + F = 0, (8)

which is the state of convective quasi–equilibrium.

The main goal of the present study is to examine the behaviour of the system under a

finite departure from convective quasi–equilibrium by explicitly integrating the pair system,

Eqs. (6) and (7). According to the original argument by Arakawa and Schubert (1974), just

summarised above, we would expect that the system approaches equilibrium with time. In

order to close this system, a certain functional relationship must be introduced between

the convective kinetic energy and the cloud–base mass flux. This issue is considered next.

b. Functional Relationship Assumption

We will assume a functional relationship of the form

K ∝ Mp
B (9)

between the convective kinetic energy, K, and the cloud–base mass flux, MB . Here, p is

an unspecified positive constant. In the present paper, we will use Eq. (9) with p = 1

in order to close the problem. This choice is made based on the following discussions.

However, note that various assumptions introduced in course of these discussions should

not be considered as crucial for the present model formulation. The choice of any value

for p must be regarded as somewhat arbitrary given our current state of knowledge and

ultimately the extent of the support for any functional relationship between K and MB

can only be fully established from extensive CRM analyses.

First of all, we must recognize that dimensional analysis between K and MB does not

give a unique answer to the power, p. In other words, we cannot make the proportional-

ity constant dimensionless regardless of the way we choose the power p. In this respect, p

remains an arbitrary constant of the problem. Eq. (9) may be considered a generalized sim-

ilarity theory between K and MB , that may be determined by observations or modelling,

8
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as we attempt in the subsequent subsections. Nonetheless, the following considerations

suggest that p = 1 and p = 2 are choices of particular physical interest.

Recall that the cloud–base mass flux is more precisely defined by

MB = ρBσBwB , (10)

where ρ is the density, σ the fractional area occupied by convective plumes, and w the

convective vertical velocity. The subscript B indicates cloud base values. Similarly, the

convective kinetic energy may be defined by

K =

∫ zT

zB

σ
ρ

2
w2dz. (11)

A precise assumption of the form of the convective kinetic energy is not given in

Arakawa and Schubert (1974), but for now let us assume solely for the sake of convenience

that the convective kinetic energy only includes the vertical velocity. A restriction of K to

the vertical component makes its link with the cloud–base mass flux more direct, and all

the discussions in Sec. 2c (together with the evidence from Emanuel and Bister (1996) in

Sec. 2d) are valid with or without this restriction.

We should stress that the restriction of our definition of convective kinetic energy to the

vertical component is fully self–consistent regardless of whether the horizontal component

of kinetic energy is negligible or not. For example, the simulations of Xu et al. (1992)

and Xu (1993) suggest that the horizontal component of eddy kinetic energy is an order of

magnitude larger than the vertical component. However, this does not necessarily oblige

us to include the horizontal component in the definition of K.

A simple energy integral analysis shows that the term proportional to the cloud work

function more directly generates the vertical component of convective kinetic energy, as

is carefully discussed in Yano et al. (2005b). The horizontal component is generated only

indirectly by conversion from the vertical component via pressure forcing (e.g., Khairout-

dinov and Randall 2002). When the horizontal component is neglected, we can choose to

9
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include the conversion rate of the vertical component into the horizontal component as a

part of an energy dissipation rate, D. This interpretation is legitimate because vertical

kinetic energy is lost in lieu of horizontal kinetic energy.

Alternatively, when the horizontal component is included in the definition of convective

kinetic energy, the following analysis can still be reproduced simply by assuming that the

horizontal component is always proportional to the vertical component1). It should also be

emphasized that the following short analysis is merely for the sake of obtaining a feeling

about a possible choice for the exponent p. The functional relationship of Eq. (9) can be

introduced without requiring an explicit definition for K. That will be the point of view

adopted throughout the remainder of the paper. However, let us now proceed to consider

the implications of taking the defintion of Eq. (11).

By taking an anelastic approximation, we may assume that the density ρ is a function

of height only. On the other hand, both σ and w will depend on both time and height.

We may separate the dependencies by writing these two variables as

σ = σB(t)σ̂(z), (12a)

w = wB(t)ŵ(z). (12b)

Substitution of Eq. (12a, b) into Eq. (11) leads to

K = σBw2
BK̂, (13)

where K̂ is a constant, independent of time.

Further substitution of Eqs. (10) and (13) into Eq. (9) leads to a relation

σp−1
B wp−2

B ∼ const.

This relationship indicates that the actual power p is dependent on the relative “strength”

of the time dependence of σB and wB .

1) Table 3 of Khairoutdinov and Randall (2002) would provide some support for such an

assumption, at least in a time-mean sense.
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Cases of particular interest arise from assuming either σB or wB alone to control

the time dependence. Arguably the more intuitive case is to assume that only wB is

time dependent and σB is totally time independent, so that p = 2. This is the case

considered by Randall and Pan (1993), and Pan and Randall (1998). For constant large-

scale forcing that system leads to a damped harmonic oscillator, although we note that

Davies et al. (2009) found more complex behaviour for a rapidly–varying on/off forcing.

An alternative possibility is to assume that only σB depends on time, and that the cloud–

base convective vertical velocity, wB, is independent of time. In this case, we have p = 1,

the choice which we investigate in the present paper.

c. Equilibrium solution

In Sec. 2.d we will review the extent of support for the two possibilities of p = 1 or

2 from both CRM results and statistical theories. As a pre–requisite, we first derive the

equilibrium solution under the general similarity relation of Eq. (9), and then examine the

expected consequences when p = 1 and 2. Note that the discussion of this subject is solely

based on seeking a steady solution for the system of Eqs. (6) and (7), without invoking

any of the further assumptions introduced in the latter part of the previous subsection.

The equilibrium solution, M0, for cloud–base mass flux is obtained directly by solving

Eq. (8) under stationary conditions:

M0 =
F

γ
. (14)

Thus, the equilibrium cloud–base mass flux should increase linearly with increasing large–

scale forcing, regardless of the value of p.

The equilibrium solution for the cloud work function is obtained by solving the steady

problem for Eq. (6):

A0 =
D

M0
.

In order to arrive at a closed expression, we need a specific form for the energy

dissipation rate, for which we follow Lord and Arakawa (1980) and others by assuming a

11
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relaxation:

D =
K

τD
, (15)

where τD is a constant dissipation time scale. It may be emphasized that this is hardly

a unique choice for the energy dissipation rate but it is introduced merely as the simplest

case. An alternative form for the convective kinetic energy dissipation would be D ∼ K2/3

as is typically assumed in boundary-layer turbulence theories (cf., Grant and Brown 1999).

Another alternative would be D ∼ MB as suggested2) by Arakawa (1993) and Arakawa

and Cheng (1993).

Substitution of Eqs. (9) and (15) into the equilibrium solution for A above leads to

A0 ∝ Mp−1
0 . (16)

Thus, if p = 2, A0 ∝ M0 ∝ F and the cloud work function increases linearly with increasing

large–scale forcing. On the other hand, if p = 1, we see that the cloud work function at

equilibrium becomes independent of the cloud–base mass flux and hence also independent

of large–scale forcing.

These contrasting results are tested against CRM results given in the literature. In the

comparison, we focus our attention on idealized CRM experiments under constant large–

scale forcing, and especially on studies where the strength of the forcing is varied across

otherwise similar experiments. By restricting our attention to a particular class of experi-

ments, the equilibrium solution obtained in the present subsection can be unambiguously

compared with “true” CRM equilibrium solutions. In order to consider a finite departure

from quasi–equilibrium in the subsequent analysis, agreement with the dependencies at

equilibrium are deemed to be a necessary pre-condition. Our focus is further restricted

2) Apparently on the basis that it leads to an equilibrium value of the cloud work function

that is independent of forcing strength, a property that would hold regardless of the value

of p.

12

Page 13 of 39 Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

to simulations without background shear flow in order to avoid the influence of mesoscale

organization, which the present model does not take into account.

d. Evidence from cloud–resolving modelling

Various results from CRM studies support the choice p = 1 rather than p = 2. The

first piece of evidence is from Fig. 2 of Emanuel and Bister (1996). This result from a

CRM simulation (dashed curve) shows that CAPE (convective available potential energy:

the non–entraining limit of the cloud work function) is approximately invariant with the

large–scale forcing, being consistent with the scaling p = 1.

Another item of evidence is from Fig. 8 of Parodi and Emanuel (2009). That figure

shows the dependence of the convective updraft velocity on the prescribed precipitating

terminal velocity. This dependence itself is not our interest here. However, an important

point is that the curve for the convective updraft velocity does not change much by changing

the prescribed radiative cooling rate (large–scale forcing) from 2 Kday−1 to 6 Kday−1.

Table 1 of Shutts and Gray (1999) obtained by their CRM experiments also shows

that the convective vertical velocity is approximately invariant with large–scale forcing.

The statistical theories of both Emanuel and Bister (1996) and Shutts and Gray (1999)

also make this prediction. These results suggest therefore that the convective vertical

velocity is rather invariant, and so it is the fractional area of convection that increases

with increasing large–scale forcing, being consistent with the choice p = 1 if either the

convective kinetic energy is restricted to the vertical component, or else if the horizontal

component can be assumed to be proportional to the vertical component.

A major exception in the literature pointing to p = 2 is Xu (1993). However, the evi-

dence shown by his Fig. 22.15 supports this Ansatz only for an active phase of convection.

A more serious problem with quoting the result is that, as is clearly emphasized in the

original article, the mesoscale convective organization dominates the eddy “convective”

kinetic energy defined therein, whereas here we consider the situation without mesoscale

organization.
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Another piece of unfavourable evidence is found in Fig. 4 of Jones and Randall (2011).

This shows that the cloud fraction is rather invariant with a change of large–scale forcing in

their constant forcing experiments. This clearly favours p = 2 rather than p = 1 according

to the analysis of the equation immediately after Eq. (13). However, caution is required in

interpreting that result for the present context as Jones and Randall (2011) were concerned

with the total cloud fraction as defined through a condensate threshold rather than the

convective cloud fraction directly associated with updraft cores which is the concern here.

Taken as a whole, we consider that the evidence supporting p = 1 is strongly suggestive

but hardly overwhelming. Perhaps surprisingly, the number of CRM studies comparing

the convection produced by different strengths of a constant large–scale forcing is rather

limited. Further investigation is clearly required. Moreover, any investigation into the

equilibrium state of potential energy convertibility (PEC), a CRM equivalent to the cloud

work function (Yano et al. 2005b), instead of CAPE, is yet to be performed to the best of

our knowledge. Nevertheless, the use of a simple proportionality hypothesis, p = 1, in the

functional relationship of Eq. (9) appears to be a very reasonable possibility to consider,

and no analysis published so far excludes this possibility in any clear sense.

3. Analysis

a. Governing equation system

Based on the review of CRM results in the previous subsection, we now set p = 1 in

Eq. (9):

K = βMB , (17)

where the time–independent constant, β, is defined by

β = wB

∫ zT

zB

(

ρB

ρ

)

η2

2σ̂
dz (18)

By substituting Eqs. (15) and (17) into Eqs. (6) and (7), we finally obtain a closed governing

equation system:

dMB

dt
=

MB

τD

(

A − A0

A0

)

, (19a)

14

Page 15 of 39 Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

dA

dt
= −γMB + F, (19b)

where

A0 =
β

τD
(20)

is the equilibrium solution for the cloud work function. We also recall that the equilibrium

solution for the cloud–base mass flux is as given in Eq. (14).

The obtained equation system is nonlinear due to the product of A and MB appearing

on the right–hand side of Eq. (19a): i.e., the generation rate of cloud–base mass flux

increases nonlinearly with increasing strength of convection. This nonlinearity leads to the

discharge–recharge mechanism to be shown below.

b. Nondimensionalization

In order to analyze the system (19) it is convenient to first nondimensionalize it by

setting:

MB = M0(1 + x), (21a)

A = A0(1 + y), (21b)

and also to nondimensionalize the time, t, by τD. We also designate the time derivative

by a dot in the following for economy of presentation.

As a result, the nondimensionalized governing equations read

ẋ = (1 + x)y, (22a)

ẏ = −f̃x. (22b)

Here,

f̃ =
F

β
τ2
D (23)

is the nondimensionalized large-scale forcing, and the sole nondimensional parameter of

the problem.
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Indeed, with a slightly more subtle rescaling we can further absorb this nondimen-

sional parameter, and so write down universal equations independent of f̃ . Thus, we

nondimensionalize the cloud work function by setting

A = A0(1 + f̃1/2y) (21c)

in place of Eq. (21b), and take f̃−1/2τD as a timescale for nondimensionalization in place

of τD. As result, Eqs. (22a, b) are transformed into the universal form:

ẋ = (1 + x)y, (24a)

ẏ = −x. (24b)

The renormalization of Eq. (21c) reveals that relative fluctuations, (A − A0)/A0, of

the cloud work function scale with f̃1/2: i.e., they increase with increasing nondimensional

forcing.

c. Estimate of parameters

After the rescaling of the previous subsection, the solution becomes universal inde-

pendent of the physical parameters of the problem. Nonetheless, in order to establish the

context, before we proceed with the rescaled system, we provide some estimates of typical

values of the physical parameters.

A typical value for β, defined by Eq. (18) is estimated as

β ∼ HwB ∼ 104m × 1ms−1 ∼ 104m2s−2

with H ∼ 104 m the tropospheric depth, and wB ∼ 1 ms−1. Here, we have assumed

the integrand to be of order unity. In practice, explicit evaluation of the integral using a

simple entraining plume model for deep convection in a typical tropical sounding produced
∫ zT

zB

(ρB/ρ)2ηdz ≃ 6H, and we may set σ̂ ≃ 1. Thus, the above estimate seems likely to be

an underestimate by a factor of a few.
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The large–scale forcing, F , is defined by Eq. (B33) in Arakawa and Schubert (1974).

A simple scale analysis suggests that the dominant contribution to the large–scale forcing

comes from the large–scale (LS) tendency, (∂s̄v/∂t)LS, of the virtual static energy. This

contribution can furthermore be approximated from the large–scale tendency of potential

temperature, θ, which mainly consists of the large–scale ascent, −w̄(∂θ̄/∂z), and the ra-

diative heating, QR. Both of these terms have a comparable magnitude, and are of order

3 Kday−1 in total. Thus, the large–scale forcing is approximately given by

F ≃ −

∫ zT

zB

g
η

CpT̄

(

∂s̄v

∂t

)

LS

dz ≃

∫ zT

zB

g
η

T̄

(

w̄
∂θ̄

∂z
− QR

)

dz

This then leads to the estimate:

F ∼
Hg

T0
|QR| ∼ 104m × 10 ms−2 × (300K)−1 × 3 × 10−5Ks−1 ∼ 10−2 Jkg−1s−1

Here T0 ∼ 300 K is the surface temperature, and 1 day ∼ 105 s.

Note that the above estimate of the large–scale forcing can be considered a median

value for wide range of possible values possible. The large–scale forcing may be much

larger under strong large–scale ascent, or much weaker (even negative) under large–scale

descent.

An estimation of the convective damping rate, γ, can be obtained from Eqs. (B36) and

(B37) of Arakawa and Schubert (1974). It can be shown that, so long as the precipitation

efficiency of convection is close to one, the dominant damping term is adiabatic warming

due to the environmental compensating descent (cf., Fig. 11 of Arakawa and Schubert

1974), which is approximately given by

γ ≃

∫ zT

zB

g
η2

ρCpT̄

∂s̄v

∂z
dz ≃

∫ zT

zB

g
η2

ρT̄

∂θ̄

∂z
dz ∼ g

H

ρBT0

∂θ̄

∂z

∼ 10ms−2 ×
104m

1kgm−3 × 300K
× 3 × 10−3Km−1 ∼ 1 Jm2kg−2.

An explicit evaluation of the actual integral produced
∫ zT

zB

η2/ρdz ≃ 2H. The factor of

two was neglected in the above estimate.
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As a consequence of the above estimates, a typical equilibrium mass flux is estimated

by

M0 =
F

γ
∼ 10−2kgm−2s−1

A suitable estimate for the kinetic energy dissipation timescale, τD, is less clear. The

suggestion of Randall and Pan (1993) and Pan and Randall (1998) was that τD ∼ 103 s,

while Khairoutdinov and Randall (2002) computed values in the range 4 to 8 hr for the

dissipation of a kinetic energy measure that included contributions from the horizontal

components of velocity and from mesoscale eddies. On the other hand, if we suppose that

the dissipation rate is primarily controlled by the convective entrainment rate, as suggested

by de Roode et al. (2000), then we obtain

τD ∼
σρB

λM0
∼ 105s ∼ 1 day

for σ ∼ 10−1, ρB ∼ 1 kgm−3, a fractional entrainment rate λ ∼ 10−4 m−1, and M0 ∼

10−2 kgm−2s−1. This is rather a long timescale.

As a result, the equilibrium cloud work function is estimated to be in the range

A0 =
β

τD
∼ 10−1to 10 Jkg−1

Such values are smaller than typically observed values for CAPE (∼ 103 Jkg−1), but are

not too dissimilar to observational estimates of the cloud work function for relatively low

clouds (with cloud–top heights less than ∼ 300 hPa) as given by Figs. 9–11 of Lord and

Arakawa (1980). Broadly similar values, much smaller than CAPE, have typically been

quoted for generalized CAPE (e.g., , Wang and Randall 1994, Xu and Randall 1998).

Recall also that β is rather underestimated here.

Finally, by putting all of these estimates together, the nondimensional forcing param-

eter is estimated to be in the range

f̃ =
Fτ2

D

β
∼ 1− 104
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Note that this is an upper bound estimate, because β could be larger, and the large–scale

forcing would be weaker under a descending environment.

d. Perturbation Analysis

The governing system of Eqs. (24a, b) is nonlinear. However, a perturbation analy-

sis around the equilibrium solution (x, y) = (0, 0) provides some hints about its general

behaviour. Linearization of Eqs. (24a, b) leads to

ẋ = y,

ẏ = −x,

which furthermore reduces to a single equation for x:

ẍ + x = 0.

The solution is a sinusoidal oscillation with unit frequency. The corresponding di-

mensional period is given by 2πτDf̃−1/2 = 2π(β/F )1/2. By substituting the parameter

estimates from the last subsection, a typical period is estimated as ∼ 6 × 103 s ∼ 2 hr.

Note that the period is longer for weaker forcing, F , and stronger convection, β. We

expect that the actual period may vary by an order of magnitude around this estimate,

depending on the specific case. Most importantly, though, the period is independent of

the kinetic–energy dissipation timescale, τD.

e. Nonlinear Periodic Orbit

Even in the fully nonlinear regime, it is straightforward to define the orbits of the

present system. Eqs. (24a, b) can be re-written as

dx

(1 + x)y
= −

dy

x
= dt.

From the first equality, we obtain

xdx

(1 + x)
+ ydy = 0.
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Since the two terms depend only on x and y respectively, the above equation is integrable,

and we obtain the solution:

x − ln(1 + x) +
y2

2
= C, (25)

where C is a constant.

It is straightforward to prove that X(x) ≡ x − ln(1 + x) is always positive, and thus

the above solution (25) constitutes a closed orbit. It also follows that even in the fully

nonlinear regime, the system presents a periodic cycle.

Examination of the form of the function X(x), provides some insight into the shape

of the solution orbit. Its Taylor expansion is:

X(x) =

∞
∑

n=2

(−1)n xn

n
=

x2

2
−

x3

3
+ · · ·

The most obvious conclusion is that in the small amplitude limit of |x| ≪ 1, the orbit

is asymptotic to a circle in the (x, y) plane, in agreement with the previous subsection.

More importantly, due to the contribution from the cubic term in the expansion, the orbit

exhibits an asymmetry between positive and negative x, with X(x) increasing more rapidly

for negative x when x moves away from the origin. Consequently, the system must respond

to changes in the renormalized cloud work function y by producing weaker changes in x on

the negative side (when convective is subdued) than on the positive side (when convection

is active).

It is this tendency that leads to the discharge–recharge mechanism to be shown graph-

ically in the next subsection. In the recovering (recharge) phase with negative x, the con-

vective mass flux, x, changes only weakly with increasing cloud work function, y. On the

other hand, once convection is triggered (discharge phase), the enhanced mass flux (x > 0)

makes a swing of growth and decay by following the decreasing cloud work function, y.

f. Examples of Nonlinear Solutions

A full solution for the time evolution of the system of Eqs. (24a, b) can be expressed

in terms of an elliptic function. However, we do not pursue that path here, because a
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closed expression for the elliptic function is not readily available. Instead, the following

results have been produced from numerical time integrations, although, for example, the

orbits shown in Fig. 1 could also have been plotted directly from Eq. (25).

Example solutions are shown in Fig. 1. Numerical time integration is performed with

the 4th–order Runge–Kutta method. The figure shows the evolution of the system in phase

space, initialized with y = 0 and various values for x(< 0). Note that all the solutions

evolve in a clockwise manner, and recall that x = −1 corresponds to zero mass flux (cf.,

Eq. 21a), whilst y = 0 is the equilibrium value of the cloud work function.

A process for discharge and recharge is noticeable for all of the solutions shown.

Initially, the cloud work function, y, simply increases with time by constant forcing with

little change in the convection (i.e., x ∼ constant). Once the cloud work function reaches

a threshold, convection suddenly begins to increase in strength, rapidly consuming the

cloud work function. This marks the beginning of the discharge process. Convective

mass flux increases until the cloud work function reduces to its equilibrium value (y = 0),

and thereafer the convective activity reduces towards the initial minimum level while the

cloud work function continues to decrease. This marks the beginning of another recharge

process: the cloud work function begins gradually to recover in order to prepare for another

convectively active phase.

g. Mechanism of Discharge–Recharge Process

The discharge–recharge of the system stems from the nonlinearity in the generation

rate of cloud work function found in the right–hand side of Eq. (19a). This led to an

asymmetry in the orbit shape (Eq. 25).

To consider this asymmetry further it is instructive to perform a perturbation analysis

of the system initialized with a state that has near–zero convective activity:

x = −1 + ǫζ,

where ζ is a new variable representing the mass flux, and the small parameter ǫ measures

the closeness of the initial condition to the zero mass flux state (we may set ζ = 1 as an
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initial condition). Substitution of the above into Eq. (24a, b) leads to

ζ̇ = yζ, (25a)

ẏ = 1. (25b)

Eq. (25b) shows that the cloud work function increases linearly with time, y = t, as a

recharge process. Substitution of this result into Eq. (25a) shows that the evolution of

mass flux is exponential, ζ = et2/2, with its enhancement becoming noticeable only after

a finite time, t = O(1). This marks the beginning of the discharge process.

In order to demonstrate the recharge–discharge elucidated by the perturbation analysis

above, we plot a time series of a solution in Fig. 2, using the initial condition x = −0.95,

y = 0. In the initial recharge phase, the cloud work function (long–dash) increases linearly

with time while the mass flux (solid) grows exponentially and only becomes substantial

within the following discharge phase. Note that the mass flux (convective activity), as a

whole, has a pulse–like behaviour with a clear dichotomy of a quiescent phase (recharge),

and an active phase (discharge). The decrease of cloud work function in the discharge

phase is slightly faster than the increase in the recharge phase.

h. General Features

As seen from the perturbation analysis in the previous subsection, discharge–recharge

is well manifested when the initial condition has a small value of mass flux. In this

subsection, we turn our attention to some more general features of the system.

A first point to note is that the zero mass flux state is singular, in the sense that

convective activity never develops, and so the cloud work function simply continues to

increase linearly with time. In other words, a small but finite convective seed is required

in order for convection to grow. This reflects the fact that the system only describes the

evolution of an ensemble of convection, and is incapable of describing the initiation of

individual convection, as already emphasized in the beginning of Sec. 2.a.

As the initial condition departs more from zero mass flux (i.e., x = −1) and approaches
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the equilibrium state (i.e., x = 0), then discharge–recharge becomes less manifest, as seen

in Fig. 1. The limit of small x is well described by a linear perturbation around the

equilibrium solution, as presented in Sec. 3.d.

The period of the discharge–recharge cycle can, in principle, be evaluated by perform-

ing an elliptic integral. Instead, here, we prefer a simple numerical approach, defining the

period from the time at which y changes sign for the second time (with the initial condition

y = 0 being used throughout). The result is shown in Fig. 3 as a function of the initial

mass flux value, x(t = 0). Here, the period is scaled such that unity corresponds to the

prediction from the perturbation analysis in Sec. 3.d. It is found that the prediction from

this linear analysis works quite well for a wide range of the initial conditions, except for a

tendency towards infinity as the initial condition approaches x = −1.

i. Modifications to the model

The model proposed here is extremely simplified, and thus it is easy to point out

various unphysical features, and even to simply condemn it as unphysical. At the same

time, the model is so simple that it is also extremely easy to try various mathematical

variations of the problem, but without firm physical basis. With that general caveat in

mind, in this subsection we briefly consider some possible modifications of the model in

order to improve its physical relevance.

The most noticeable defect of the present model is a consequence of its prediction that

the cloud work function sustains larger variations for larger values of the nondimensional

forcing f̃ and also for smaller values of the initial mass flux (i.e., x → −1+). The model

permits such variations to be large enough that the cloud work function can become

overdamped, even producing negative values.3)

3) In fact, this is not totally unphysical, but it is clearly against our observational knowl-

edge that the tropical atmosphere is almost always conditionally unstable. A state with a

strongly negative CAPE is not observationally known in the tropical atmosphere (cf., Roff

and Yano, 2002).
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The reason for this defect is our basic premise that the large–scale state is fixed with

time. As a result, the convective damping rate, γ, which is a function of the environmental

state in reality, is treated as a constant in the present formulation. More mathematically,

the cloud work function is damped only linearly (Eq. 22b), and thus there is no possibility

to control the overdamping tendency. This is in contrast to the mass–flux equation, (22a),

which is controlled by a nonlinear damping that ensures the mass flux always remains

positive.

The overdamping of the cloud work function can be prevented by introducing a similar

nonlinear damping rate to the cloud–work function equation, re–writing Eq. (22b) as

ẏ = −f̃(1 + y)x. (22c)

Physically, this re–formulation is achieved by assuming that both the convective damping

rate, γ, and the large–scale forcing, F , are proportional to the cloud work function. The

latter assumption could be justified by reasoning that large–scale forcing is less effective

as the atmosphere approaches neutral stability (i.e., vanishing cloud work function). This

assumption leaves the equilibrium solution for the mass flux independent of the cloud work

function.

The results after this modification are shown in Fig. 4, for the same set of initial

conditions as in Fig. 1 and for the case with f̃ = 1. Note that due to the modification of

the system, it is no longer possible to transform it into a universal form as for the original

system. The modification leads to behaviour still closer to our expectations of discharge–

recharge: convective activity continues to increase until the cloud work function is almost

depleted, and only then does it begins to decay.

A similar modification would be to allow the large scale forcing to be maintained

independently of the value of the cloud work function, while making the convective damping

rate, γ, proportional to the cloud work function, as above. In that case, the solution turns

into a damping oscillator.
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In fact, examination of Appendix B of Arakawa and Schubert (1974) shows that the

convective damping rate, γ, is not constant even under a constant environment, but rather

that it has some explicit dependence on the cloud work function. This stems from the

tendency of the mixed layer height, zB , to decrease under a given cloud–base mass flux,

as seen in their Eq. (B23):

∂

∂t
zB ∼ −

MB

ρB
.

According to their Eq. (B21), this tendency results in an increasing cloud work function:

∂

∂t
A ∼ −λA

∂

∂t
zB ∼

λ

ρB
AMB.

In our notation, this term corresponds to a convective damping rate that depends on the

cloud work function as

γ = γ0 −
λ

ρB
A

with γ0 a constant. Qualitatively speaking, the additional term can be considered as a

destabilization tendency of the system due to the boundary–layer forcing.

The same perturbation analysis as in Sec. 3.d shows that this modification leads to

an exponentially–growing oscillator. Numerical experiments support this tendency for

larger departures from the equilibrium state. However, the growth rate is rather slow and

substitution of standard values gives an estimate λM0/ρB ∼ 10−6 s−1 as a growth rate.

Finally, we mention the effect of a modification of the functional relationship of Eq. (9)

by setting the power p = 1 + µ. A small positive value for µ is suggested by the CRM

results discussed in Sec. 2.d, in the sense that variations in σB are not completely sufficient

to explain the CRM results described. The solution becomes a decaying orbit, with a slow

approach towards the equilibrium state being governed by the value of µ. If µ is taken

to be small and negative, however, the solution spirals slowly away from the equilibrium

state.

4. Discussions
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The present paper shows that under an idealized, constant, large–scale forcing a con-

vective system under convective damping does not necessarily approach an equilibrium

state over time, but rather that it could remain in a perpetual periodic cycle. A typical

period cycle, of the order of hours, identified in the present model is arguably much shorter

than a characteristic timescale, of the order of days, expected for typical large–scale pro-

cesses. For this reason, the finding does not necessarily contradict with the observational

evidence for convective quasi–equilibrium (most notably Fig. 13 of Arakawa and Schubert,

1974; but see also Yano et al. 2000).

However, the persistent, finite departure from equilibrium is potentially relevant for

various convective systems, especially because the cycle is longer for weaker large–scale

forcing. A first possible application could be as a (partial) explanation for the delay of

convective onset in the diurnal cycle (cf., Guichard et al. 2004). In the diurnal cycle, it is

commonly believed (ibid) that the pre-existence of shallow convection is crucial in order to

trigger deep convection. However, a finite departure from quasi–equilibrium could be more

fundamental as emphasized by Jones and Randall (2011). The present model captures the

basic behavior of a convective system under such a finite departure, even though shallow

convection is not explicitly considered.

The present model could even be considered as a very crude prototype for the MJO

under a discharge–recharge mechanism (Bladé and Hartmann 1993, Benedict and Randall

2007, Thayer–Calder and Randall 2009) with very weak large–scale forcing. The gap in

scales that would have to be breached in order to justify such an application is rather

large, but may not be totally unreasonable, given that the large–scale forcing can vary

from positive to negative over the whole cycle of the MJO, and thus the mean large–

scale forcing could be rather weak. This interpretation may even not be inconsistent with

the “observed” convective quasi–equilibrium, because the cloud work function (CAPE) is

expected to fluctuate only weakly and slowly in the limit of a weak forcing. Nevertheless,

further study is clearly required by explicitly coupling the present model with a simple
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large–scale dynamical model.

Some subtle issues of the present model are also remarked upon here:

• The discharge–recharge process in the present study is a consequence of the special

choice p = 1 for the similarity–relation parameter in Eq. (9). Note that the case with

p = 2 considered by Pan and Randall (1998) leads to a damping solution under con-

stant large–scale forcing, with the damping timescale being given by τD as inspection

of their Eq. (30) suggests.

• No “triggering” process can be considered under the present formulation in the strict

sense: rather, the presence of pre–existing convection is an important pre–condition

in order to see the subsequent enhancement of convection.

• The present formulation provides a way of predicting the convective–plume population

with time under the assumption of a fixed strength for the individual convective

plumes. In order to consider also the possible time dependence of this strength, as

measured by the cloud–base convective vertical velocity wB , an additional prognostic

equation would be required, for which additional assumptions would be needed (cf.,

Yano et al. 2010).

• Although the present study makes a bulk simplification, it is straightforward to gen-

eralize the formulation to treat a spectrum of convective plumes.

5. Conclusions

We have proposed a simple equation set suitable for studying the time evolution of

a convective system. The equations used are those for the energy cycle of an ensemble of

convective plumes, as originally introduced by Arakawa and Schubert (1974). The system

is closed by introducing an Ansatz for the functional relationship between the convective

kinetic energy and the cloud–base mass flux. Thus, the derivation of our equation set

is conceptually similar to that of Randall and Pan (1993) and Pan and Randall (1998).

The key difference is in the Ansatz chosen. The earlier authors posited K ∼ M2
B but

we have argued that this form is unfavoured by dependencies expected from equilibrium
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statistical theories and results from various equilibrium CRM studies (Emanuel and Bister

1996, Shutts and Gray 1999, Parodi and Emanuel 2009). In order to better respect those

CRM results we investigate instead the equation set resulting from K ∼ MB .

A linear analysis shows that the equilibrium state is neutral, such that any perturba-

tion from the equilibrium state produces a periodic solution. The fully nonlinear analysis

shows further that any solution from any initial condition takes the form of a periodic

cycle. An exact solution is available in terms of an elliptic function, while the shape of the

orbit in phase space can be determined by a simple analytical method. The orbital period

depends on the distance of the initial state from the equilibrium state.

Qualitatively, the periodic orbit takes on an approximately “triangular” form. With

the system initialized from a state of low convective kinetic energy and low cloud work

function, it gradually evolves towards a high cloud–work function state but without notice-

able change of kinetic energy (a recharge process). Once the cloud work function reaches a

threshold, convective activity increases rapidly. The kinetic energy increases by following a

roughly linear trajectory and this continues until the cloud work function has been reduced

to its equilibrium value. From there, the kinetic energy makes a sudden turn and begins

to decrease by following a roughly linear trajectory until it reaches a minimum. The orbit

has then been closed, the discharge process is over, and a new cycle of recharge begins.

The recharge-discharge mechanism is often invoked in the context of the MJO. Note

that although the period predicted for the recharge–discharge periodic cycle by the present

study is much shorter, a particular regime with much weaker mean large–scale forcing and

stronger individual convective elements (i.e., larger β) could help to explain the MJO

cycle. The present study also suggests that a consideration of finite departures from the

equilibrium state may be important in order to understand the time evolution of various

atmospheric convective systems, not only the MJO, but also the diurnal cycle of convection,

for example.

Further investigations are clearly warranted. For an application to the MJO, coupling
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of the model with large–scale dynamics would be crucial. For an application to the diurnal

cycle, the inclusion of shallow convection as a second convective type in the energy–cycle

description would be the next step to take. At the most fundamental level, more extensive

CRM analyses are required4) in order to define the most plausible exponent value, p, in

the proposed generalized similarity theory of Eq. (9).

The energy–cycle of the convective system considered in the present work has much

wider applicability. It opens a possible route towards statistical cumulus dynamics, a

methodology proposed by Arakawa and Schubert (1974) as a systematic approach to the

closure problem. At the present, only semi-phenomenological descriptions of some aspects

of equilibrium statistical cumlus dynamics exist (e.g., Cohen and Craig 2004, 2006, Craig

and Cohen 2006, Plant and Craig 2008, Plant 2009). In order to address time-varying

applications, such investigations should also be compared with suitable CRM analyses of

plume statistics, such as those produced Xu and Randall (2001).
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Fig. 1: Examples of the solutions in phase space for the simple model (Eqs. 24a, b) representing

the convective discharge–recharge process. The x and y–axes are the nondimensionalized

mass flux and cloud work function respectively. Five solutions are shown with different

initial conditions. All solutions evolve in a clockwise manner, following a cycle of discharge,

with decreasing cloud work function y, and recharge with increasing cloud work function

y.
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Fig. 2: An example time series representing the discharge–recharge process. Enhanced convec-

tive activity, measured by the mass flux x (solid line), is triggered only after the cloud work

function y (long dashed line) has been fully recharged. A discharge of convective energy

(sudden decrease in both curves) then leads to the next phase of the recharge process.

Note that both variables as well as time are given in nondimensional units. See text for

details.
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Fig. 3: The period of the convective discharge–recharge system as a function of the initial

nondimensional mass flux value, x(t = 0). The initial cloud work function is assumed at

equilibrium (i.e., y = 0), and x is defined such that x = 0 is the equilibrium state, and

x = −1 corresponds to the state of no convection. Note that the period is normalized by

2π(β/F )1/2 as predicted by a perturbation analysis for small x in Sec. 3.d.
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Fig. 4: As Fig. 1, but with a cloud–work function dependence having been introduced to

the cloud–work function tendency equation (cf., Eq. 22c). This additional nonlinearity

prevents the cloud work function from overdamping into a negative state (y < −1).
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