A Modelling Framework for Statistical Cumulus Dynamics

Bob Plant

Department of Meteorology, University of Reading

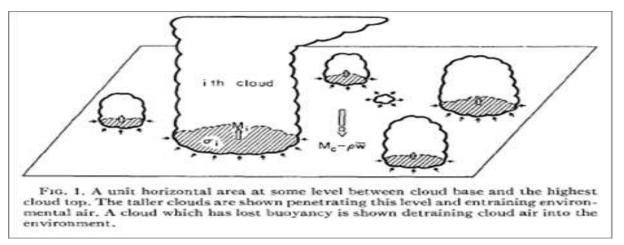
COST ES0905 meeting on Hamiltonian approaches and statistical mechanics in convection parameterisation LMU, Munich. 3rd May 2011

Outline

- Stochastic aspects (a very brief reminder)
- Prognostic aspects
- Combining the stochastic and prognostic
- From the microscopic to the macroscopic
- Some numerical results
- Generalizations?
- Summary

The cumulus ensemble

The Arakawa and Schubert (1974) picture



- Convection characterised by ensemble of convective plumes
- Scale separation in both space and time between cloud-scale and the large-scale environment

Philosophy of this talk

- Convective parameterization can be thought of as an attempt to make a macroscopic (cumulus ensemble) description of a microscopic (plume level) system \implies we should be interested in techniques that provide firm links between the microscopic and macroscopic
- Such links are a necessary first step towards understanding mesoscopic behaviour (stochastic effects, organization...)
- We are going to see one such technique (a simple one!)
- Does the Hamiltonian framework provide us with another linking technique?
- Is it an appropriate one for further generalization?

The plumes

- These are characterised by the cloud base mass flux, $M_i = \rho \sigma_i w_i$
- Assume a reasonable plume model exists to compute vertical structure $M_i(z > z_B)$ But will not ask what exactly the plume model is
- Assume one type of plume only, and so will drop all plume subscripts
- Does not mean that a bulk approximation is needed
- Extension to multiple types is very easy, but would only complicate the presentation

Methodology

- Consider a microscopic-level, individual-based model that evolves according to transition probabilities for births, deaths etc
- We do not know all the rules for such a microscopic model of convection, but they are not just guesswork
- Choose processes and probabilities so that in the macroscopic limit we recover appropriate deterministic ODEs
- We do not know all the rules for a macroscopic model of convection, but they are not just guesswork
- i.e., useful constraints can be found by explicitly calculating the microscopic/macroscopic links

Stochastic aspects of convection

<u>....</u>

Mass flux variability

- Convective instability is released in discrete events
- The number of clouds in a GCM grid-box is not large enough to produce a steady response to a steady forcing
- In equilibrium, for non-interacting clouds:
 - pdf of mass flux of a single cloud is exponential delta function here as only one type
 - number of clouds in finite region is given by Poisson distribution

See previous talk!

Prognostic aspects of convection

<u>....</u>

Why consider time dependence?

- For relatively rapid forcings, we may wish to consider a prognostic equation for cloud-base mass flux
- Even for steady forcing, it is not obvious
 - that a stable equilibrium must be reached
 - which equilibrium might be reached

Systems for time dependence

- Let A be the vertical integral of in-cloud buoyancy (cloud work function)
- From its definition (after some algebra):

$$\frac{dA}{dt} = F - \gamma M$$

where A, F and γ are calculable with a plume model

• The convective kinetic energy equation is

$$\frac{dK}{dt} = AM - \frac{K}{\tau_D}$$

Need further assumption to close these energy equations

Population dynamics system

Wagner and Graf (2011)

- Assume that $K \sim M^p$
- If K equation approaches equilibrium quickly compared to M equation,

$$(p-1)A\frac{dM}{dt} = FM - \gamma M^2$$

• For any p > 1, analogous to a Lotka-Volterra system of biological populations competing for resource

Pan and Randall system

• Pan and Randall (1998) choose p = 2. i.e.

$$K \sim M^2$$

- Recall $K \sim \sigma w^2$ and $M = \rho \sigma w$ so $p \approx 2$ if variations in w dominate variations in K and M
- Time dependence is a damped oscillator that approaches equilibrium after a few τ_D

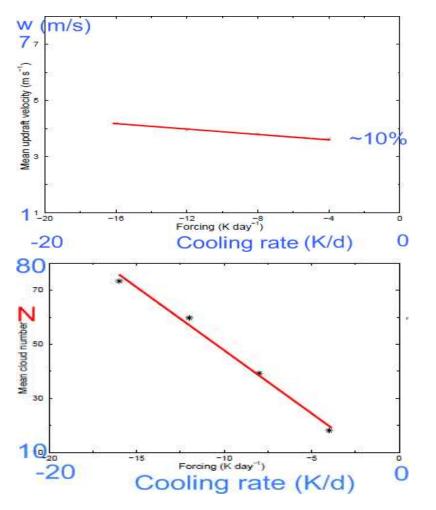
Yano and Plant system

• Yano and Plant (2011) choose p = 1. i.e.

$$K \sim M$$

- Recall $K \sim \sigma w^2$ and $M = \rho \sigma w$ so $p \approx 1$ if variations in σ dominate variations in *K* and *M*
- This is consistent with scalings and CRM data for changes in mass flux with forcing strength
 Emanuel and Bister 1996; Robe and Emanuel 1996; Grant and Brown 1999; Cohen 2001; Parodi and Emanuel 2009
- Time dependence is periodic orbit about equilibrium state

CRM data for changes in mass flux

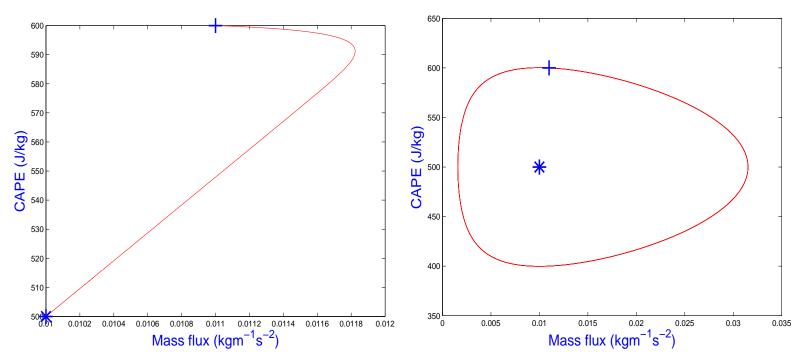


Increased forcing linearly increases mass flux

- achieved by increasing cloud number N (and fractional cloud area σ)
- not the in-cloud velocities
- or the sizes of clouds

Cohen 2001

Illustrative results



Pan & Randall (left) and Yano & Plant (right) systems

- $p = 1 + \varepsilon$ has slow spiral into equilibrium;
- $p = 1 \varepsilon$ slow spiral outwards

From the microscopic to the macroscopic

Combined framework

- Develop simple microscopic description for plumes with probabilistic rules
- By choosing appropriate rules can recover...
 - any of the above prognostic systems in the limit of large-system size
 - Poisson distribution of cloud number at equilibrium
- \bullet ...if we also take the limit of small cloud fraction, $\sigma \ll 1$

Ingredients

- $P(N,A,\tau)$ is pdf for N clouds and cloud work function A at time τ
- Domain has size Ω elements, each of which may be either empty or occupied by a single cloud
- P evolves through master equation

$$\frac{\partial P(N,A,\tau)}{\partial \tau} = \int dA' \sum T(N,A|N',A') P(N',A',\tau)$$

 $-T(N',A'|N,A)P(N,A,\tau)$

T(f|i) is probability per unit time of a transition from i to f

Transition Rules

- At each time, look at one site with probability $1-\mu$ or two with probability μ
- Suppose we look at one. With probability $1 (N/\Omega)$ it is empty
- Suppose it is empty:
 - With probability a we allow cloud formation here, $N \rightarrow N + 1$
 - Otherwise it remains empty and atmosphere continues to be destabilized, $A \rightarrow A + s$
- e.g. for spontaneous birth we have

$$T(N+1,A|N,A') = a(1-\mu)\left(1-\frac{N}{\Omega}\right)\delta(A-A')$$

Possible Processes

 $E \xrightarrow{a} O$ $A \rightarrow A$ $E \xrightarrow{1-a} E$ $A \rightarrow A + s$ $O \xrightarrow{d} E$ $A \rightarrow A$ $O \xrightarrow{1-d} O$ $A \rightarrow A - r$ $EO \xrightarrow{b} OO$ $A \rightarrow A$ $EO \xrightarrow{1-b} EO$ $A \rightarrow A + s - r$ $OO \xrightarrow{c} EO \qquad A \to A$ $OO \xrightarrow{1-c} OO$ $A \rightarrow A + 2s$ $EE \xrightarrow{e} EO \qquad A \rightarrow A$ $EE \xrightarrow{1-e} EE \quad A \to A-2r$

spontaneous birth (primary initiation) environmental destabilization death environmental stabilization induced birth (secondary initiation) environmental modification competitive exclusion strong stabilization birth

strong destabilization

Current status

- We have specified possible rules describing a system of $0 \le N \le \Omega$ objects and an environmental field A
- Given the probabilities μ, a, b, c, d, e can integrate this numerically
- To relate this to convection, could allow probabilities to depend on A

e.g., birth is more likely for larger A

- But how exactly should we choose the appropriate rules to include and appropriate parameters of our system?
- Solution: insist on recovering particular macroscopic systems in the appropriate limits

Recovering the macroscopic systems

System size expansion

- Due to van Kampen, Stochastic processes in physics and chemistry (3rd edn, 2007)
- Widely used in chemistry, biochemistry, population biology...
- Basic idea is to expand master equation in powers of $1/\sqrt{\Omega}$
- Obtain determinstic ODE's at leading order
- Leading correction for a non-infinite system is stochastic and accounts for fluctuations in cloud number via a Fokker-Plank equation
- Will illustrate the method for the spontaneous birth process $E \rightarrow O$

Decomposition of model variables

First we introduce a macroscopic timescale

$$t = \Omega^{-1} \tau$$

• For a large system, expect *A* to be intensive: i.e. almost independent of system size, with some small fluctuations

$$A(t) = \varphi(t) + \Omega^{-1/2} \lambda(t)$$

• Similarly *N* is extensive

$$N(t) = \Omega \sigma(t) + \Omega^{1/2} \eta(t)$$

so that σ is fraction of domain covered

LHS of master equation

- ϕ and σ evolve slowly and determinstically whereas λ and η are the fluctuating parts
- Want to capture slow evolution of φ and σ and evolution of the probabilistic behaviour of the fluctuating variables $\Pi(\eta, \lambda, t)$
- The transformation of variables from P to Π gives

$$\frac{\partial P}{\partial \tau} = \Omega^{-1} \left[\frac{\partial \Pi}{\partial t} - \Omega^{1/2} \frac{d\sigma}{dt} \frac{\partial \Pi}{\partial \eta} - \Omega^{1/2} \frac{d\phi}{dt} \frac{\partial \Pi}{\partial \lambda} \right]$$

RHS of master equation I

For spontaneous birth, RHS has terms

 $= T(N,A|N-1,A)P(N-1,A,\tau) - T(N+1,A|N,A)P(N,A,\tau)$ $= (\Upsilon - 1)T(N+1,A|N,A)P(N,A,\tau)$

• where we have introduced the transition operator

$$\Upsilon f(N) = f(N-1)$$

 In a large system, transition by one cloud is small effect, and can expand operator as

$$\Upsilon = 1 - \Omega^{-1/2} \frac{\partial}{\partial \eta} + \frac{1}{2} \Omega^{-1} \frac{\partial^2}{\partial \eta^2} \pm \dots$$

RHS of master equation II

• So terms on RHS of master equation become

$$\begin{bmatrix} -\Omega^{-1/2} \frac{\partial}{\partial \eta} + \Omega^{-1} \frac{1}{2} \frac{\partial^2}{\partial \eta^2} + \dots \end{bmatrix} a(1-\mu) \times \frac{1}{\Omega} (\Omega - \Omega \sigma - \Omega^{1/2} \eta) \Pi$$

Macroscopic equation I

• Collecting terms of leading order, $O(1/\Omega)$, we have that

$$\frac{d\sigma}{dt} = a(1-\mu)(1-\sigma)$$

due to spontaneous birth

To make contact with existing mass flux models for convection we also take the limit $\sigma \ll 1$

$$\frac{d\sigma}{dt} = a(1-\mu)$$

Repeating such expansions for all of the possible processes we get

Macroscopic equation II

$$\frac{d\sigma}{dt} = a(1-\mu) + e\mu\sigma[2b\mu - d(1-\mu)] - c\mu\sigma^2$$

$$\frac{d\varphi}{dt} = \tilde{s} \left[2(1-e)\mu + (1-a)(1-\mu) \right]$$
$$+ \sigma \left[2(\tilde{s}-\tilde{r})(1-b)\mu - \tilde{r}(1-d)(1-\mu) \right]$$
$$- 2\sigma^2 \mu \tilde{r}(1-c)$$

- Recall that $\sigma \propto M$ since there is only one cloud type
- Now just have to choose our processes to get desired structural form of the macroscopic equations
- And automatically get formulae giving microscopic parameters a, b... in terms of macroscopic ones $F, \gamma...$

Example: Pan and Randall

We are required to have the following processes:

E ightarrow O	$A \rightarrow A$	spontaneous birth (primary initiation)
$E \rightarrow E$	$A \rightarrow A + s$	environmental destabilization
$O \rightarrow E$	$A \rightarrow A$	death
O ightarrow O	$A \rightarrow A - r$	environmental stabilization

• We are required to omit the following processes:

 $OO \rightarrow EO$ $A \rightarrow A$ competitive exclusion $OO \rightarrow OO$ $A \rightarrow A + 2s$ strong stabilization

Example: Pan and Randall

- All other processes are optional:
 - not structurally harmful but complicate the formulae linking the parameters
 - some processes cannot be fully distinguished at the macroscopic level, but only if we consider fluctuations of the system

Example: Yano and Plant

• Main difference is that it excludes:

 $E \rightarrow O$ $A \rightarrow A$ spontaneous birth (primary initiation)

• and instead requires the process:

 $EO \rightarrow OO$ $A \rightarrow A$ induced birth (secondary initiation)

Example: Population Dynamics

Only has a macroscopic equation for mass flux, and this requires us to exclude

$$E \rightarrow O$$
 $A \rightarrow A$ spontaneous birth (primary initiation)

• while including

 $EO \rightarrow OO$ $A \rightarrow A$ induced birth (secondary initiation) $OO \rightarrow EO$ $A \rightarrow A$ competitive exclusion

(Actually the microscopic form of this system is already well studied by population biologists: e.g. power spectrum of N has resonance-like peaks)

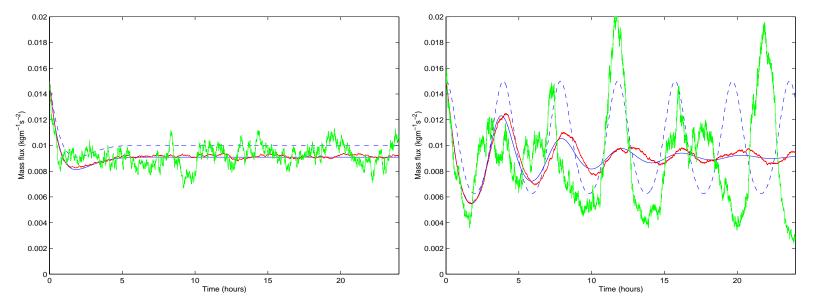
Some numerical results

Example results

- Choose some typical values of macroscopic parameters
- Here we show simulation results the minimal microscopic equivalents to the Pan & Randall and Yano & Plant macroscopic systems
- Microscopic parameters are well constrained by our choice of macroscopic parameters
- NB: Have checked that for simulations at different Ω the standard deviations of *A* and *N* scale with Ω in just the way assumed in the expansion

100 realizations for $\Omega = 1000$

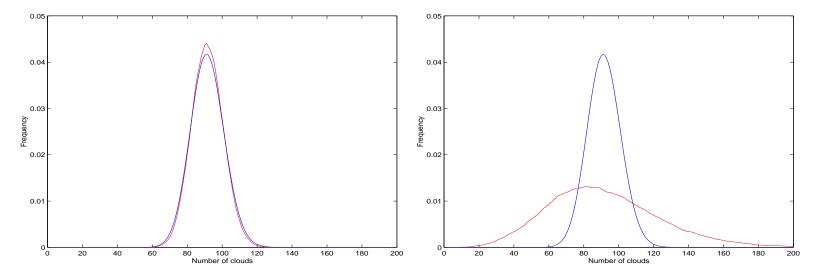
Timeseries of M for Pan & Randall (left) and Yano & Plant (right) systems



Dashed blue: solution of ODE. Blue: solution of the ODE derived without assuming $\sigma \ll 1$ Green: a single realization. Red: ensemble mean.

Fluctuations in N

pdf of N for Pan & Randall (left) and Yano & Plant (right) systems



Red: model data. Blue: Poisson distribution Pan & Randall, spontaneous birth depends on number of empty sites, $\Omega - N \approx \Omega$ Yano & Plant, not yet at equilibrium; secondary birth depends

on N & A

Generalizations

Generalizations I

- Intermediate models which admit primary and secondary initiation mechanisms
 - would seem more physically reasonable and could very easily be built
- Investigate multiple cloud types
 - Can we can recover the Boltzmann distribution of mass fluxes
 - If so, are there any conditions on $\{F_i, \gamma_{ij}\}$?

Generalizations II

- Investigate stochastic behaviour out of equilibrium
- More generally, might be able to correct CRM data systematically for finite domain effects
- Spatially explicit forms
 - Processes depend on location of site(s), rather than global (nearest neighbour dependencies for transition probabilities)
 - Interactions between patches with rules applied within each patch (less relevant for convection?)
 - Would result in spatial organization

Summary

- Proposed framework for a non-equilibrium, finite N model of cumulus clouds
- Encompasses previous studies in appropriate limits
- Could be a useful intermediate system to study, sitting between CRM/observations and parameterization?
- Many generalizations are possible
- Relationship to Hamiltonian framework (?)

