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ABSTRACT

Cloud trails are primarily thermally forced bands of cloud that extend downwind of small islands. A novel

algorithm to classify conventional geostationary visible-channel satellite images as cloud trail (CT), nontrail

(NT), or obscured (OB) is defined. The algorithm is then applied to the warm season months of five years at

Bermuda comprising 16 400 images. Bermuda’s low elevation and location make this island ideal for isolating

the role of the island thermal contrast on CT formation. CTs are found to occur at Bermuda with an annual

cycle, peaking in July, and a diurnal cycle that peaks in midafternoon. Composites of radiosonde observations

and ERA-Interim data suggest that a warm and humid low-level environment is conducive for CT devel-

opment. From a Lagrangian perspective, wind direction modulates CT formation by maximizing low-level

heating on local scales when winds are parallel to the long axis of the island. On larger scales, low-level wind

direction also controls low-level humidity through advection.

1. Introduction

Bermuda is a small, flat island in the western North

Atlantic Ocean with a total land area of about 54 km2

and topography not rising more than 76m above sea

level (CIA 2017). Bermuda is also isolated, more than

1000km away from the nearest land in North America

to the west and the Caribbean to the south. This situa-

tion, somewhat unique to Bermuda, helps to isolate the

influence of the island on the impinging flow.

Cloud trails are bands of cloud that extend downwind

of small heated islands. This heating results in a thermal

perturbation over and downwind of an island in the form

of a turbulent plume with associated thermally forced

circulations that organize convection into one or more

cloud bands. These bands appear anchored to their par-

ent island in animations of visible-channel satellite im-

agery. Cloud trails are found to occur on ‘‘flat’’ islands

such as Nantucket (e.g., Malkus and Bunker 1952;

Malkus and Stern 1953); Anegada, British Virgin Islands

(Malkus 1963); the Bahamas (Bhumralkar 1973); and

Nauru (e.g., Nordeen et al. 2001; McFarlane et al. 2005;

Matthews et al. 2007). This phenomenon offers a some-

what simplified real-world setting to study the behavior of

convection associated with surface heterogeneities.

A similar phenomenon is also observed downwind of

heated islands with significant topography: for example,

in the Lesser Antilles (peaks near 1500m) (e.g.,

Garstang et al. 1975; Smith et al. 1997; Kirshbaum and

Fairman 2015), the eastern Pacific island of Guadalupe

(1300m) (Dorman 1994), and Hawaii (over 4000m)

(e.g., Smolarkiewicz et al. 1988; Yang and Chen 2008;

Yang et al. 2008b,a). Such studies suggest that the topog-

raphy plays a significant role in generating flow perturba-

tions. These perturbations are shown to be of greater

magnitude but often with the same sign as the thermal

perturbations that result from solar heating (Crook and

Tucker 2005; Kirshbaum and Wang 2014). The topog-

raphy also results in added downstream effects that

can interfere with or disrupt cloud trails. Drying because

of downstream wave breaking was mentioned by

Kirshbaum and Fairman (2015), while vortex shedding

could overwhelm any cloud trail signal. These studies

highlight the complicating role of topography, and mo-

tivate the focus on flat island cases.

In addition to elevation, island size is important in

determining the nature of convection that develops in

a heated flow. Williams et al. (2004) showed that the

island signal in lightning flash rates (a proxy for con-

vective intensity) becomes indistinguishable from the

Supplemental information related to this paper is available at the

Journals Online website: https://doi.org/10.1175/MWR-D-18-0141.s1.

Corresponding author: Michael C. Johnston, m.c.johnston@

pgr.reading.ac.uk

DECEMBER 2018 JOHNSTON ET AL . 4039

DOI: 10.1175/MWR-D-18-0141.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

https://doi.org/10.1175/MWR-D-18-0141.s1
mailto:m.c.johnston@pgr.reading.ac.uk
mailto:m.c.johnston@pgr.reading.ac.uk
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


background oceanic regime for islands with an area less

than 100 km2 (small islands). Similar results were found

for the pattern of precipitation over tropical islands by

Robinson et al. (2011) and Sobel et al. (2011).

One mechanism for the increase in convective intensity

over larger islands is the convergence of sea-breeze fronts

(e.g.,Crook2001).However, under nobackgroundflowand

for a given heating rate, two-dimensional simulations show

that the strength of a sea-breeze circulation decreases with

island/peninsula size (Savijarvi and Matthews 2004).

Savijarvi and Matthews (2004) also found that with some

background flow, the windward cell of the weaker sea

breezes for smaller islands can be displaced and tilted

downwind of the island, transforming the circulation into

that of a steady heat island like that in Estoque and

Bhumralkar (1969).

Analysis of intensive field campaign observations on

Nauru [as part of the Nauru Island Effect Study (NIES);

McFarlane et al. (2005)] revealed potential mechanisms

for the initiation and maintenance of cloud trails there

(Savijarvi and Matthews 2004; Matthews et al. 2007).

These authors propose that a thermal internal boundary

layer forms and grows as oceanic air advects across the

heated island. This turbulent thermal layer then evolves

into a warmer, cloud-topped plume downwind of the

island. This idea of a warm plume is consistent with the

observations at Barbados discussed by Garstang et al.

(1975). Matthews et al. (2007) also suggested that the

warm plume drives a thermal circulation that may be

responsible for the maintenance of the cloud trails that

were found to extend on average 125km downwind of

Nauru (Nordeen et al. 2001).

Cloud trail climatologies at Nauru and in the Lesser

Antilles were made using visible-channel satellite imag-

ery (Nordeen et al. 2001; Kirshbaum and Fairman 2015).

Each hourly image was manually classified by Nordeen

et al. (2001) as either ‘‘cloud plume’’—a line of cloud is

seen extending downwind of and anchored to the island;

‘‘nonplume’’—there is no evident band of anchored

cloud; or ‘‘obscured’’—the island is obscured from view

by larger-scale cloud phenomena. The current study will

follow this definition, but referring to cloud trail (CT),

nontrail (NT), and obscured (OB) scenes, respectively.

Both Nordeen et al. (2001) and Kirshbaum and

Fairman (2015) showed that strong surface heating

during the day was important for CT development. CT

occurrence was seen to peak in midafternoon both at

Nauru and the Lesser Antilles. At Nauru, this diurnal

cycle in CT occurrence combined with the low elevation

of Nauru (only rising to 30m above sea level) reinforces

the idea that cloud trails are primarily thermally driven

by the difference in low-level heating between the island

and surrounding ocean (Nordeen et al. 2001).

In the following sections, a simple automated method

for classifying visible-channel satellite imagery at Ber-

muda as cloud trail, nontrail, or obscured is outlined. The

choice of an automated classification scheme has the

benefits of reproducibility, objectivity, and expedience

over manual classifications. Further, it has the potential to

be quickly adapted for other locations or similar problems.

This is applied to 16 400 images over five years to

construct a climatology. We then use these classifica-

tions in conjunction with radiosonde observations and

ECMWF interim reanalysis (ERA-Interim) data to de-

scribe the environments that coincide with each classi-

fication. Finally, we discuss some cloud trail behavior at

Bermuda and why some environments appear more fa-

vorable for CT formation.

2. Methods

a. Data

Imagery from the visible (0.64mm) channel of the

Geostationary Operational Environmental Satellite-13

(GOES-13) is used to identify CT and thereby

construct a climatology of their occurrence.GOES-13 is

operated by the U.S. National Oceanic and Atmo-

spheric Administration (NOAA) and National Aero-

nautics and Space Administration (NASA). Data with

a nominal resolution of 1 km and 30min used in this

study are accessed through the Comprehensive Large

Array-Data Stewardship System (CLASS) archives

at NOAA’s National Climatic Data Center (NCDC)

(NOAA/Office of Satellite and Product Operations

and NOAA/Center for Satellite Applications and

Research 1994).

Radiosonde observations taken at Bermuda, near

32.38N, 64.88W, are sourced from the Integrated Global

Radiosonde Archive, version 2 (IGRAv2). This dataset

replaces the previous version of IGRA (e.g., Durre et al.

2006, 2008). At Bermuda, radiosondes are regularly

launched once per day at 0900 LT (1200 UTC). In this

study, to compare radiosondes on different days, the

temperature, pressure, and relative humidity measure-

ments are linearly interpolated to regularly spaced pres-

sure levels from 1000 to 100hPa with 5-hPa increments.

After interpolation, the potential temperature is calcu-

lated as follows:

u5T

�
p
0

p

�Rd/cp

, (1)

where u is the potential temperature in kelvins, T is the

temperature in kelvins, p0 is a reference pressure set to

1000hPa, p is the pressure in hPa, Rd is the gas constant

for dry air taken to be 287 J kg21K21, and cp is the
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specific heat capacity of dry air at constant pressure,

taken to be 1004 J kg21K21.

Surface data at Bermuda are provided by the Bermuda

Weather Service. Wind speed and direction measure-

ments used in this study are 10-min averages measured at

10m above ground level with observations every 10min.

These measurements are taken at Bermuda’s L. F. Wade

International Airport, on runway 12 (at the northwest

end of the airfield). Air temperature and relative hu-

midity at 1.5m are also provided by the Bermuda

Weather Service in hourly observations.

Finally, ERA-Interim data (Dee et al. 2011) are used to

investigate the large-scale environment. Temperature,

specific humidity, three-dimensional wind components,

and mean sea level pressure are used.

The period of interest for this study isMay–October in

the years 2012–16. May–October is referred to as the

‘‘warm season’’ in this study. At Bermuda’s latitude,

there is a stronger annual cycle in the large-scale envi-

ronment than at Nauru or in the Caribbean Sea. Further,

the solar zenith angle is higher and therefore the diurnal

surface heating is weaker during the remaining months

(November –April, or the ‘‘cool season’’).

Reanalysis data show that the North Atlantic sub-

tropical high (Bermuda–Azores high) is most intense and

extensive during the warm season—peaking in July. The

cool seasonmarks the period where the Bermuda–Azores

high is less influential or absent and so midlatitude cy-

clones and their fronts play a larger role in the local

weather. It maintains largely settled weather across the

western Atlantic. This is consistent with findings by Davis

et al. (1997) on the variability of the North Atlantic anti-

cyclone. Given that large-scale disturbances can both

obscure the island in cloud and disrupt cloud trail for-

mation with precipitation and sudden wind shifts, only the

warm season is considered for its more settled regime.

b. Manual classification method

Initially, amanual classification of the firstwarm season

(May–October 2012) is performed to both aid in the de-

sign of an automated method for classification, and vali-

date the automated classifications. Scenes are classified

using the three categories (CT, NT, and OB) outlined

above. Here, a scene refers to a visible-channel satellite

image cropped to a 48 3 48 domain centered onBermuda.

The surfacewind direction is used to determinewhere the

downwind side of the island is in each scene.

Scenes are classified as CT if the area around the is-

land is not covered in cloud and a band or bands of cloud

are seen downwind of and apparently anchored to

Bermuda (e.g., Fig. 1a). If the area around the island is

not covered in cloud, but no band of cloud is seen an-

chored downwind of the island, the scene is classified as

NT (e.g., Fig. 1b). Finally, if the scene is mostly cloudy,

particularly in such a way that covers much of the island

from view, it is classified as OB (e.g., Fig. 1c).

While this exercise is somewhat subjective, the ma-

jority of scenes were straightforward to classify. The

biggest challenge was in distinguishing between down-

wind cloud bands that are CT against those that are

associated with other phenomena such as low-level

convergence not linked to the island, cold pools, etc. It

is suspected that these features may be misclassified by

an intentionally simplistic automated approach.

See supplemental material for a table of the dates and

times of manually classified visible-channel imagery,

and the corresponding manual classification.

c. Algorithm for automated classification

From our manual classification and the previous work

discussed above, we know that (i) CT are either absent or

hidden fromviewbyother large-scale cloud inOB scenes,

and (ii) CT are characterized bymore cloud downwind of

the island than upwind. These two ideas are used to de-

sign an algorithm to automate the classification of scenes

into our three categories.

First, cloudy and cloud-free pixels must be identified.

Each pixel is nominally 1km3 1km. The albedo from the

visible-channel satellite data is used to identify cloudy

pixels. For simplicity we create a binary cloud mask based

on an albedo threshold. Pixels are called ‘‘cloudy’’ and

given a value of ‘‘1’’ if the albedo is greater than the albedo

threshold. Remaining pixels with albedo less than this

threshold are given a value of ‘‘0.’’ Figure 2 shows an ex-

ample of a visible-channel satellite image in (Fig. 2a) and

the cloud mask that results from this method in (Fig. 2b).

Sensitivity tests (not shown) on the choice of albedo

threshold for a mostly cloud-free day with a cloud trail in

the afternoon hours [according to observations from the

L. F. Wade International Airport (TXKF) and the manual

classification] indicate that if the albedo threshold is lower

than 0.10, the land area of Bermuda and the shallow water

surrounding Bermuda is falsely masked as cloud (e.g.,

Fig. 1b). Conversely, if the threshold is greater than 0.20,

pixels containing smaller cloud elements, or pixels that are

part of regions of thin cloud might be falsely masked as not

cloudy. The albedo threshold is taken to be 0.15, as a com-

promise between these two limits and the samevalue used in

Yang and Chen (2008) and Kirshbaum and Fairman (2015).

A known issue with this simple masking method is

that cloud cover over land and coastal regions remains

somewhat ambiguous. Land provides a higher back-

ground albedo than the ocean. Land pixels may there-

fore still erroneously be masked as cloudy. Pixels over

land, and one pixel away from the coastline are there-

fore excluded from calculations to account for this issue.
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Furthermore, for high solar zenith angles, spurious regions

of high or low albedo can appear depending on the cloud

cover. For instance, individual towering clouds might cast

shadows on other cloudy regions—these shadowed areas are

then falsely masked as cloud free. Similarly, at sunrise and

sunset (when the solar zenith angle is 908) there canbe a very
bright line through the scene. Scenesmust then be rejected

if the maximum solar zenith angle is too high. To accom-

plish this, five sample scenes that were obviously impacted

by the abovementioned effects were chosen. All scenes

with solar zenith angle less than some threshold are then

discarded. This threshold is determined by taking a first

guess of 908 and decreasing the threshold by 58 increments

until the five sample scenes are discounted. We find that

scenes with a solar zenith angle ,758 are sufficiently illu-

minated to avoid these high solar zenith angle issues.

Once a scene is subjected to this solar zenith angle test

and converted to a cloud mask, it is then assessed for the

presence of a CT. In the algorithm, a scene is first clas-

sified as OB, or non-OB (i.e., including both the CT and

NT classifications). Then, the non-OB scenes are further

subdivided into CT or NT categories.

A circular region of interest with radius 0.258 (about

25km) centered on Bermuda is considered. This circle

contains the entire island and the edges of this circle are at

least 0.108 (10km) away from any land points (Fig. 2c). To

determine how cloudy the scene is and, therefore, whether

or not to classify it asOB, the cloud fraction in that circular

area is calculated. Here, the cloud fraction is defined as the

spatial mean of the cloud mask over a given area. Scenes

with a cloud fraction in the circular region greater than a

thresholda are classified asOB. If the cloud fraction is less

than a, then the scene is non-OB and tested further.

The non-OB scenes are further sorted into NT and CT

classifications. As seen in loops of visible-channel sat-

ellite imagery and reported in the literature above, CT

initiate at the island and extend downwind, forming a

band of cloud anchored to the island. Nordeen et al.

(2001) used cloud level (the mean over the 950–850-hPa

layer) wind directions from once-daily radiosondes to

manually identify CT at Nauru. However, while it may

be reasonable to assume that there is no significant

change in wind direction during the day at Nauru be-

cause it is well embedded in the tropical Pacific trade

wind region, Bermuda is near the axis of the Bermuda–

Azores high and small changes in the position of this

ridge axis could mean a reversal in the wind direction.

McFarlane et al. (2005) showed that at Nauru, the

surface wind direction compares well with the heading of

identified CT. We have found that the 0900 LT pressure-

weighted cloud level (950–850-hPa mean) wind direction

from radiosonde ascents at Bermuda compare well with

the surface winds measured at the same time at Bermuda

(not shown). For the purposes of this study, it therefore

appears reasonable to use the half-hourly surface wind

direction from TXKF to determine where upwind and

downwind directions are relative to Bermuda.

The same circular 0.258 area used to test forOB scenes

is now divided into 108 sectors, 36 in all (Fig. 2d). The

first sector is centered on the north. We expect the CT

signal to be strongest nearer to the island because of the

anchoring described above. From sensitivity tests, if the

radius of the circle is too large, the sectors start to be-

come broader than the CT and so the signal in sector

cloud fraction becomes damped (not shown). At dis-

tances of 0.258, a sector is roughly 4.4 km wide.

FIG. 1.GOES-13 visible-channel satellite imagery showing example scenes. (a) CT scene where clouds organize into a band downwind

of Bermuda as indicated by a southwest–northeast-oriented band of higher albedo. (b) NT scene in which there are few clouds and some of

the higher albedo near and over the island might be shallow water and land showing up rather than cloud. (c) OB scene where the island

(and much of the surroundings) is obscured from view by widespread cloud as indicated by high albedo throughout the scene. In each

example, a wind barb is plotted showing 10-m wind direction and speed in knots at TXKF provided by the Bermuda Weather Service.
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As a result of Bermuda’s geometry, some sectors

contain more nonland pixels than others. Sensitivity to

the number of pixels used for cloud fraction computa-

tions was tested by using sectors of different lengths and

shapes to make them contain more similar number of

pixels. The results are found to be generally insensitive

to having a more equal pixel count in each sector.

Half-hourly 10-m wind direction observations are

used to locate the upwind and downwind sectors. To

account for fluctuations in the wind direction, differ-

ences between wind direction and CT heading, and CT

occurring across two sectors, nine sectors centered on

the wind direction are considered. Next, the cloud

fraction is calculated for each of nine sectors and

the maximum cloud fraction of those sectors is taken

to represent the upwind or downwind cloud fraction

(marked as ‘‘U’’ and ‘‘D,’’ respectively, in Fig. 2d).

The difference between the downwind and upwind

sector maximum cloud fractions (dF) is taken. Since CT

are characterized by organized cloudiness downwind of

islands, it follows that there should be a higher down-

wind cloud fraction than upwind cloud fraction. The

term dF must be .0 to satisfy this condition. However,

we also wish to exclude small differences that may be

due to random sampling of an undisturbed cloud field.

Hence, dF must be compared to a threshold (b) based on

cloud fraction statistics for the chosen definition of up-

wind and downwind sectors.

FIG. 2. A walk through of the steps taken to classify each scene. (a) GOES-13 visible-channel satellite imagery.

(b) Cloud mask applied to (a), cloudy pixels are shown in gray. (c) The cloud fraction in the circular area centered

on 32.38N, 64.88W with a radius of 0.258 (dark gray shaded region) is used to determine if the scene is OB. In this

example, the cloud fraction is 0.071, which is less than a5 0:33 and so the scene is non-OB. (d) Since the scene is

non-OB, the same circular area from (c) is split into 108wide sectors, 36 in total. The 10-mwind direction at TXKF is

used to find the upwind and downwind quadrant (i.e., nine sectors in each direction). The cloud fraction is cal-

culated for each sector of the upwind quadrant (light gray) and the downwind quadrant (dark gray). The difference

between the maximum downwind cloud fraction (arrow marked with ‘‘D’’) and the maximum upwind cloud

fraction (arrow marked ‘‘U’’) has to be greater than b5 0:08 for the scene to be classified as CT.
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Values chosen in our algorithm for a and b are dis-

cussed in section 2d.

d. Algorithm parameters

Assuming the manual classification is the ‘‘truth,’’ it is

used to estimate optimal values for a (the cloud fraction

threshold above which a scene is classified as OB) and b

(the dF difference threshold above which a scene is

classified as CT). For a, the cloud fraction is computed

for each manually classified scene as described in the

above section for discriminating between OB and non-

OB scenes. We then consider the cumulative distribu-

tion of this cloud fraction for the OB scenes, and the

inverse cumulative distribution for the non-OB scenes.

The cloud fraction at which these two distributions in-

tersect is taken to be the optimal value for a. With our

manual classifications, we find a to be 0.33.

To determine the value of b we again refer to the

manual classification. We apply our above method for

discriminating betweenNT andCT scenes to all non-OB

scenes. We then consider the cumulative distribution of

dF for CT scenes, and the inverse cumulative distribu-

tion of dF for the NT scenes. Again, the dF where these

two distributions intersect, 0.08, is taken as the value for

b. For more information on this process, please refer to

the appendix.

Sensitivity tests (not shown) suggest that the overall

patterns of the annual and diurnal cycle are not very

sensitive to the choice of a and b. We remark that

a 5 0.33 is of a similar magnitude to the mean cloud

fraction for all days across the period of interest (0.342).

A more conservative (higher) value for b yields a more

confident CT classification at the expense of rejecting

the cases with more complex background cloud.

3. Results and discussion

a. Algorithm validation

In effect, by our definitions for a and b, we are max-

imizing the Peirce skill score (PSS). This score ranges

from 21 to 1 where 1 indicates a perfect classification,

and 0 indicates no skill in classifying scenes. Peirce

(1884) defines it as follows:

PSS5

�
H

H1M

�
2

�
F

F1C

�
, (2)

where PSS is the Peirce skill score, H is the number of

hits, M is the number of misses, F is the number of false

alarms, and C is the number of correct negatives. This

score describes the match when there are two possible

outcomes, a (event occurs) or b (event does not occur).

The corresponding algorithm–manual pairs are aa for

hit, ba for miss, ab for false alarm, and bb for correct

negative. For a, a refers to an OB classification, and

b refers to non-OB classification. At this stage the al-

gorithm has only made OB and non-OB classifications,

the manual NT and CT classifications both count toward

non-OB. For b, we ask what classification would the

algorithm assign to the scenes that are manually classi-

fied as non-OB. In this case, a refers to a CT classifica-

tion and b refers to an NT classification.

The PSS can then be applied to the individual cate-

gories. Following the a and b framework above for CT

classifications, a refers to a CT classification, and b refers

to either NT or OB classification. In these cases a correct

negative (bb) can be any combination of the two nonevent

scenes (e.g., NT–NT, NT–OB, OB–NT, or OB–OB).

For CT, the PSS is 0.51. It is 0.46 for NT classifications,

and 0.82 for OB classifications. Overall, the algorithm

has a score of 0.60. The reader must be reminded that

the manual classification process is subjective, so while

we take it to be the truth in determining our algorithm

parameters in the previous section, and for validation

purposes here, it should be understood that it is subject

to human error and interpretation differences. Despite

this, the manual classification is still instructive for

building intuition for what to expect from the algorithm

classifications.

However, the PSS does not describe every aspect of

algorithm performance. Contingency tables have been

produced to further aid in quantifying the algorithm’s

performance. Shown in Table 1 (left) are the contin-

gency table results for the CT classification. Included in

the table are the number of ‘‘hits,’’ ‘‘misses,’’ ‘‘false

alarms,’’ and ‘‘correct negatives’’ as described above.

The same four categories are shown for NT and OB

classifications in Table 1 (middle and right).

In all cases, there are more hits than either false

alarms or misses. Commonly used metrics derived from

such contingency tables are the ‘‘hit rate’’ and ‘‘false

alarm rate’’ given by

HR5 1003
H

H1M
, (3a)

FAR5 1003
F

F1C
, (3b)

respectively, andH,M, F, and C are as explained above.

Compared to the manual classification of the 2012

warm season, we find that the hit rate [Eq. (3a)] is much

higher than the false alarm rate [Eq. (3b)] for each

classification. These are 67.0% versus 15.6% for CT,

59.5% versus 13.1% for NT, and 91.0% versus 9.1%

for OB.
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Finally, we consider the bias score for each of our

algorithm classifications. The bias score is defined as

follows:

BIAS5
H1F

H1M
. (4)

This quantity can range from 0 to ‘, where a score of 1

represents a perfect classification, values less than 1 in-

dicates the algorithm is biased against making a classifi-

cation, and values greater than 1 indicate that the

algorithm is biased toward making a given classification.

Using the data provided in Table 1 we find the bias to be

1.05 for cloud trail classifications, 0.82 for nontrail classi-

fications, 1.07 for obscured classifications, and 0.97 overall.

Taken all together, these scores suggest that the al-

gorithm is skillful in making classifications as compared

to our subjective manual classification. Furthermore, it

is not strongly biased toward or against making any

particular classification. We therefore apply the algo-

rithm to subsequent data to extend our analysis period

to include May–October of 2012–16.

We have repeated much of the following analysis for

the manual classifications and the algorithm classifica-

tions for 2012 only to provide further confidence in our

conclusions. See the appendix for details.

b. Cloud trail climatology

We have shown that for May–October of 2012, the

algorithm compares well with the manual classification.

We can therefore confidently apply the algorithm to au-

tomate the classification of longer periods of satellite

imagery and explore a longer climatology than previously

investigated in literature. From this climatology, it will

then be possible to study the environmental differences

between days predominately in each classification.

The algorithm is used to classify visible-channel sat-

ellite imagery for May–October of 2012–16. These

classifications are then sorted by time of day and by

month. This aids in exploring the annual and diurnal

cycles (Fig. 3). As part of the annual cycle, the per-

centage of OB scenes decreases to a local minimum in

July—the same month in which the percentage of CT

scenes increases to a maximum. For all times of day, the

percentage of CT scenes nearly doubles from 24% in

May to 44% in July, while OB scenes decrease from

45% to 22%.Meanwhile, the percentage of NT scenes is

steadier at between 29% and 35% (on the higher end in

July and August).

Similarly, a diurnal cycle is evident when considering

rows in Fig. 3. The morning is characterized by a higher

percentage of NT than CT scenes, and this reverses in

the afternoon and evening. As a seasonal average, the

percentage of NT scenes declines from near 38% in the

morning to near 28% in the afternoon. Concurrently,

CT scenes increase from near 24% in the morning, to

near 36% in the afternoon—offsetting the majority of

the change in NT percentage. The percentage of OB

scenes varies less through the day; between 40% in the

FIG. 3. The fraction of total scenes in each classification arranged

by local time and month for the (a) CT, (b) NT, and (c) OB cate-

gories. For example the top left cell of (a) represents the percent of

all scenes in May between 0800 and 0900 LT that are classified as

CT. The three panels sum to 100%. The diurnal cycle progresses

from (left) morning to (right) evening, and the annual cycle prog-

resses from (top)May to (bottom)October in each panel. The cells

with an ‘‘3’’ in them represent times when all images are rejected

because of high solar zenith angles.

TABLE 1. Contingency tables for CT classifications, NT classifi-

cations, and OB classifications. Using the CT classification as an

example: top left are ‘‘hits’’ where the algorithm and the manual

classifications are both CT; top right are ‘‘false alarms’’ where the

algorithm classification is CT, but the manual classification is not

CT; bottom right are ‘‘correct negatives’’ where the algorithm and

the manual classifications are both not CT; and bottom left are

‘‘misses’’ where the algorithm classification is not CT, but the

manual classification is CT.

Class CT NT OB

Hits False alarms 649 371 743 275 1117 193

Misses Correct negatives 320 2008 506 1824 111 1927
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early morning and late evening, and 34% around 1100 LT.

This local minimum in OB scenes occurs around the same

time as the decrease in the percentage of NT scenes and

the increase in the percentage of CT scenes.

For days with CT scenes, the median first such scene is

identified at 0945 LT and median final scene at 1745 LT.

The first CT scenes are identified earliest in the day in

June and the last scene is latest in the day in August. The

first CT scene occurs later and the last occurs earlier in

May and October. In this part of the analysis, only days

with two or more consecutive CT scenes are considered.

Cases in which CT occurred outside of the range of times

with sufficiently low solar zenith angles are expected,

and such scenes cannot be classified by the algorithm.

This would result in a real start time that is earlier than

detected in the algorithm. However, there is a counter-

acting tendency for the algorithm to make more early

morning CT classifications than what was manually

classified (see the appendix).

More than one period of consecutive CT scenes may be

classified on a given day. This is seen in both the manual

classification of justMay–October 2012, and the algorithm

classification for the same period. Comparing the manual

classification to just the algorithm classification formonths

in 2012, we see that 59% of days have just one period in

the manual classification, and up to three periods occur

per day. However, in the algorithm classification for 2012,

only 23% of days have one continuous period of CT

scenes (an additional 31% have two periods, and there

were four days on which six periods were identified by the

algorithm). Physically, we can explain more than one CT

period as occurring when the environment is marginal for

CT formation. Changes in the wind direction might then

alter the strength of the island thermally driven lift by no

longer paralleling the long axis of the island, or a decrease

in low-level humidity might make cloud formation un-

obtainable by lift of the same strength. Either change, or

some combination of both might cause the CT to tem-

porarily dissipate before conditions return to allow theCT

to redevelop. However, these may also be explained as

artifacts of the algorithm. If the large scale cloudiness is

near the threshold for distinguishing between OB and

non-OB scenes (a) a small increase in cloud cover might

fool the algorithm into classifying real CT as OB scenes.

Similarly, if there is an increase in the ambient upwind

cloud (e.g., due to an advancing front), the algorithm

might be fooled into making an NT classification as the

downwind–upwind cloud fraction difference is no longer

greater than our threshold b.

This climatology reveals that during the period of

peak CT occurrence in July, there is also a peak in their

duration. The mean duration increases from 1h 58min

in May to a peak of 3 h 17min in July before decreasing

to 1h 34min in October when our period of study ends

(not shown). CT that persist for just one scene are taken

to have a duration of half an hour here, and those that

persist for two or more consecutive scenes are consid-

ered to have one hour duration. Each additional con-

secutive scene is counted as a further half hour of

duration. On days in whichmore than one period occurs,

the longest duration is taken as the value for that day.

Comparing the manual and algorithm classifications for

just 2012, we find that the manually classified CT last

roughly twice as long because of the increased in-

termittency in the algorithm classification.

For scenes that were manually classified as having CT

(May–October of 2012), we manually estimated the

length of the CT in that scene by finding its end-point in

the visible-channel satellite imagery and calculating the

distance between that point and the center-point of the

island (assuming that this is where the CT originated).

This follows the methodology outlined by Nordeen

et al. (2001).

We then consider the half-hourly mean CT length

estimated for the manually classified imagery. First,

there is a local maximum in CT length (78 km) at 0815

LT, and this then decreases to a local minimum (41km)

by 0915 LT (not shown). This early morning CT is

consistent with the discussion above on the one or more

short-lived CT.

Our second observation is that the CT length tends to

increase through the remainder of the day. The CT on

average grow from the local minimum length at 0915

LT, until 1515 LT when they are about 90 km in length.

Themean length remains near 90–95 km through sunset.

Using the 10-m wind speed and the estimated length, we

predict the length half an hour later (the time of the next

scene) assuming advection is the only factor controlling

changes in length. We find these predictions to be in

generally good agreement with the manually estimated

lengths with a correlation coefficient of 0.75 (R2 5 0.55)

on 109 length predictions (not shown). Additional fac-

tors, such as precipitation or evaporation of cloud liquid

due to entrainment of drier surrounding air might act

against the increase due to advection.

c. Environmental characteristics

One goal of this study is to describe and highlight

differences between CT-, NT-, and OB-dominated en-

vironments. To do this, we composite radiosonde data

and ERA-Interim reanalysis data by classification. As

there is an annual cycle at Bermuda in both the classi-

fications and the environmental conditions, we only

consider the peak of the CT season June–August (JJA)

to avoid reproducing the signal of the annual cycle in our

composites.
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Most days are not completely in one single classifica-

tion. However, the radiosonde data are available once

per day at 0900 LT. This presents the challenge of

assigning a single classification to a day made of several

classifications.

To do this, the fraction of each day in each classifi-

cation is calculated for all days in the period May–

October 2012–16. Next, we evaluate the 75th percentile

of these fractions for each classification. If the fraction

of a given day in a given classification is greater than its

75th percentile, that day is assigned to that classification

and included in that classification’s composite.

For example, the 75th percentile for the fraction of day

classified as CT is found to be 59%. If at least 59% of the

day’s classified scenes are CT, then the data for that day

are included in the CT composite. The 75th percentiles

for NT and OB are 50% and 59% respectively. The same

day cannot be assigned to more than one classification by

this method since any two of the three 75th percentile

thresholds will always sum to greater than 100%.

The interpolated IGRAv2 data are used to consider

the anomalies from the 0900 LT JJA 2012–16 mean

potential temperature and relative humidity profiles.

Radiosonde ascents that are incomplete below 700hPa

are not included in the composites. The resulting ra-

diosonde composites for each classification are shown in

Fig. 4. The mean profile of potential temperature and

composite anomalies (Figs. 4a,b) and themean profile of

relative humidity and composite anomalies (Figs. 4c,d)

are shown for the layer between the surface and 700 hPa.

With this method, about 25% of the JJA days are as-

signed to each classification’s composite—leaving about

25% of the days to be discarded.

For each composite, we assume that themean anomaly

is the center of a normal distribution of anomaly profiles.

We then estimate this uncertainty as the standard error:

s/
ffiffiffiffi
N

p
, where N is the number of observations in a given

composite.

The CT-dominated days (dark gray dash–dot profiles

in Fig. 4) have the highest surface potential tempera-

ture of the three classifications. Potential temperature

anomalies (Fig. 4b) decrease in magnitude to near zero

above 950 hPa, indicating a less stable than normal

boundary layer. The anomalies then increase to become

positive again by 700 hPa, indicating that the layer aloft

is slightly more stable than climatology for this period.

These conditions have long been regarded as favorable

for shallow convection (e.g., Malkus 1952).

The composite profile of potential temperature

anomalies for NT-dominated days (medium gray dashed

profiles in Fig. 4) has a similar shape to that for the CT-

dominated days indicating a similar pattern of stability

anomalies. However, the NT anomalies are smaller than

the CT anomalies throughout the entire lower tropo-

sphere shown, and feature potential temperatures below

normal between 1000 and 850hPa (Fig. 4b).

A very different potential temperature regime occurs

for the OB-dominated days (the light gray, dotted pro-

files in Fig. 4). The lowest 100 hPa is more stable than

normal, while the profile is less stable than normal aloft.

This pattern is consistent with the idea that the OB days

are associated with large-scale cloudiness. Lower than

normal near-surface potential temperatures are an ex-

pected consequence of cloud shading and possible

evaporative cooling from precipitation.

Similarly, a clear separation between the classifications

is evident in the relative humidity anomaly composites

(Fig. 4d). The OB-dominated days have the highest sur-

face relative humidity, but the OB- and CT-dominated

days have similar, near-normal relative humidity between

1000 and 950hPa. Above 950hPa, the CT profile remains

near normal, becoming slightly drier than normal while

the OB profile becomes much more humid than normal.

TheNTprofile again has a similar shape to theCTprofile,

but is drier than normal throughout this layer.

Overall, CT-dominated days are warmer than normal

below 700hPa with near-normal relative humidity,

while NT-dominated days are cooler and drier than

normal below 700hPa. The higher low-level relative

humidity on CT-dominated days implies a lower lifting

condensation level (LCL) than for NT-dominated days.

However, the warmer low levels on CT-dominated days

imply a higher LCL than for the NT case. We therefore

calculate the height of the LCL to further examine this

relationship. We use Bolton (1980)’s formula for the

temperature of the LCL:

T
LCL

5
1

1

T
D
2 56

1
ln(T

K
/T

D
)

800

1 56, (5)

where TD is the surface dewpoint temperature and TK is

the surface temperature (both temperatures are in kel-

vin). This can then be used to find the pressure of the

LCL as follows:

p
LCL

5 p
s

�
T
LCL

T
K

�cp/Rd

, (6)

where pLCL is the pressure of the LCL, ps is the surface

pressure, and cp and Rd are as defined in the previous

section.

The composite LCL pressure for each classification

and the climatology are marked in Fig. 4c. We find that

the mean composite LCL pressure for CT-dominated

days is 955 hPa. This corresponds to a lower height than
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FIG. 4. (a) The climatological potential temperature (u) profile. The mean surface u is marked with a black dot.

(b) The composite u anomalies for CT (dash–dot line with dark gray shading), NT (dashed line with gray shading),

and OB (dotted line with light gray shading). The shaded region represents the uncertainty about the mean

anomaly:6s/
ffiffiffiffi
N

p
. The surface u for each classification is shown by dots with the corresponding shade of gray. The

range on the surface values is again 6s/
ffiffiffiffi
N

p
. (c) The mean climatological relative humidity profile as in (a). The

mean LCL for each classification and for the climatology are shown as horizontal line segments with corresponding

line styles. (d) The composite relative humidity anomalies. Composites are for the 0900 LT radiosondes for JJA in

2012–16. In each case, only data between the surface and 700 hPa are shown. LCL pressures are calculated using the

temperature and dewpoint of the lowest altitude reported by the radiosonde and Eqs. (5) and (6).
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both climatology (949 hPa) and NT-dominated days

(941 hPa). Lower LCL heights suggest cloud formation

is more readily achievable and these results provide a

plausible explanation for why cloud trail formation is

sensitive to low-level humidity.

In addition to thermodynamic profiles, wind speed

is expected to influence the types of circulation that re-

sult from island surface heating by contributing to the

organization of any cloud that forms. In dry idealized

two- and three-dimensional simulations, Savijarvi and

Matthews (2004), Kirshbaum (2013), and Kirshbaum

andWang (2014) show that for light or calm background

wind regimes, thermally induced circulations form

over a surface heat source (reminiscent of pure sea

breezes). For stronger background winds, thermally in-

duced circulations form a band of ascent downwind of

the heat source (reminiscent of CT).

Themean wind speed for each classified scene is shown

in Table 2 (top). The NT scenes are associated with

lighter winds and OB scenes are associated with stronger

winds than both CT scenes and all scenes. While lighter

winds on NT days are possibly related to the turbulent

generation of cloud over the island, or instances of cloud

related to sea-breeze convergence rather than CT for-

mation, stronger winds associated with OB scenes are

likely related to large-scale disturbances.

Furthermore, Bermuda is oriented such that its long

axis runs approximately southwest–northeast. From a

Lagrangian perspective, surface heating is maximized

for low-level flow parallel to the long axis of an island as

an air parcel remains over the island heat source longer.

For southwesterly and westerly winds, more non-OB

scenes are classified as CT (36%–39%) than NT (23%–

28%) [Table 2 (bottom)]. For all other wind directions,

including northeasterly flow, which is also parallel to the

long axis of the island, a greater proportion of non-OB

scenes are classified as NT than CT.

Examining the larger-scale fields aids in explaining

this result. We have already established that low-level

moisture is a dominant control on cloud trail formation.

ERA-Interim composites of the 0900 LT 1000-hPa

specific humidity for JJA in Figs. 5a, 5c, and 5e show

that Bermuda lies in a moisture gradient pointing from

northeast to southwest for all classifications. Given this

background moisture pattern, northeasterly flow results

in advection of drier low-level air on average. Such a

flow therefore tends to make the environment less fa-

vorable for CT on average despite maximizing low-level

heating by maintaining a direction parallel to the long

axis of the island.

Indeed, these composites are consistent with the ra-

diosonde and surface composites in Fig. 4. They indicate

that CT and OB days have similarly high low-level

specific humidity while NT days have lower specific hu-

midity. Additionally, the western part of the Bermuda–

Azores high (indicated by the 1020-hPa contour) is

shown to extend its control on this region for much of

JJA, and it retreats to the east on OB days. This pressure

pattern implies a wind field dominated by westerlies and

southwesterlies at Bermuda with the lightest winds on

NT days.

Finally, the composites show 500-hPa vertical motion

between 0.00 and 0.01Pa s21 near Bermuda on CT-

dominated days (Fig. 5b), about 0.01Pa s21 on NT-

dominated days (Fig. 5d), and about 20.11Pa s21 on

OB-dominated days (Fig. 5f). Weak 500-hPa vertical

motions or subsidence seen on CT- and NT-dominated

days is consistent with the expected lack of large-scale

cloudiness and favors shallow convection. This sub-

sidencemay also help to explain the drier andmore stable

than normal layer seen in the sounding composites for

NT-dominated days.

4. Conclusions

This study presents an algorithm to automate the

classification of conventional visible-channel satellite

imagery into cloud trail, nontrail, and obscured cate-

gories at Bermuda. The algorithm first filters out

morning and evening images with high solar zenith an-

gles. It then masks cloudy pixels using a simple binary

threshold method. Next, the algorithm determines

whether a scene is obscured by cloud by considering the

cloud fraction within 0.258 of the island. For non-

obscured scenes, the observed 10-m wind direction at

the time of the satellite image is then used to define an

upwind and downwind region with respect to the island.

A scene is then determined to include a cloud trail by

TABLE 2. (top) Mean 10-m wind speed (m s21) at Bermuda’s

L. F. Wade International Airport by algorithm classification. The

number of observations in each classification is included in pa-

rentheses. (bottom) The percent of scenes in each classification and

the total number of classified scenes by wind direction.

CT NT OB All

Mean wind speed

5.27 (5191) 4.83 (5196) 6.18 (6013) 5.46 (16 400)

Wind direction

N 27% 44% 29% 1197

NE 26% 39% 35% 1318

E 23% 31% 46% 1578

SE 27% 32% 41% 2000

S 33% 33% 34% 2747

SW 36% 23% 41% 2861

W 39% 28% 33% 3399

NW 29% 40% 31% 1300
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FIG. 5. JJA 2012–16 ERA-Interim reanalysis composites centered on Bermuda. Composites for (a),(b)

cloud trails; (c),(d) nontrails; and (e),(f) obscured. (left) The mean sea level pressure in hPa (solid black contours),

1000-hPa temperature in 8C (dashed gray contours), and 1000-hPa specific humidity in g kg21 (shading). (right) The

500-hPa vertical velocity in Pa s21, ascent (red) and subsidence (blue) are shown in dashed and solid contours,

respectively.
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considering the difference between downwind and up-

wind cloud fractions. The resulting classification is found

to be consistent with a manual classification of a subset

of the data from May to October 2012.

The resulting classifications for the May–October

2012–16 period from this algorithm show both an an-

nual and diurnal cycle in cloud trail occurrence at

Bermuda. The CT occurrence is found to peak in July

and between 1300 and 1500 LT. Between May and

July CT occurrence increases while OB occurrence de-

creases. This corresponds to the period in which the

Bermuda–Azores high enforces increasingly settled

weather across Bermuda into July. From July toOctober,

the fraction ofOB scenes increases and the fraction of CT

scenes decreases.

Similarly, CT occurrence increases during the day

while the fraction of NT classifications decreases. This is

likely in response to the stronger solar heating present in

the afternoon, and therefore stronger thermal forcing

for the development of CT on otherwise non-OB days.

These classifications are then used to explore the

characteristics of the environments present in the

morning of days in JJA on days predominately in each

classification. Radiosonde composites show that CT-

dominated days are characterized by conditions that are

near the mean potential temperature and relative hu-

midity for the JJA period in 2012–2016. Surface obser-

vations and ERA-Interim data show that lower than

normal low-level potential temperature and relative

humidity, lighter than normal 10-m winds, and 500-hPa

subsidence are associated with NT-dominated days.

Lower than normal low-level potential temperature,

higher than normal low-level relative humidity, stronger

than normal 10-m winds, and 500-hPa ascent are asso-

ciated with OB-dominated days.

Differences in low-level humidity appear to be the

most important factor in determining whether or not a

non-OB day will have a CT. Days with higher low-level

humidity result in lower LCL and therefore the level to

which turbulent mixing must reach in order for con-

densation and cloud formation is lower. Also of impor-

tance is the role of the low-level wind speed and

direction, which controls the low-level heating following

air across the island.Wind speed controls whether or not

the buoyant production of turbulence and the induced

circulation is confined to the island in light wind regimes,

or whether thermally generated circulations are formed

downwind of the island in regimes with some back-

ground wind. Particularly for noncircular islands, wind

speed and direction control the residence time of air as it

crosses the heated island and therefore the strength of

the thermally induced circulation.

Some additional insight into the behavior of cloud

trails through the day is gained. We find that more than

one cloud trail can form per day, each lasting a few

hours. Other times, a single continuous cloud trail is

observed. In an environment that is only marginally

conducive for cloud trail formation, this transient be-

havior might be explained by subtle changes in wind

direction, low-level humidity, or large-scale vertical

motion through the day that periodically cut off activity

before allowing it to resume later in the day.

Composites based on days predominantly in each

classification, and theory from past literature, suggest

that nonobscured days are likely to have cloud trails

given the following:

1) Sufficient low-level humidity and therefore relatively

low LCL to support cloud formation.

2) Maximized low-level heating from a Lagrangian

perspective. This is achieved via long-axis parallel

low-level flow and low solar zenith angles.

3) Sufficiently strong low-level flow such that a pure

sea-breeze circulation is not favored over a steady

heat island circulation.

This study takes a step closer to fully characterizing the

environments that are conducive for CT formation,

however, it presents further questions about their be-

havior. A future study might be able to use multispectral

satellite imagery to extend this analysis through the

nighttime hours and this could further our understanding

of what happens to cloud trails after sunset. For instance,

imagery from the newly operational GOES-16 satellite

includes a 3.9-mm channel at 2-km resolution that might

be appropriate for this purpose (Schmit et al. 2017).

As operational numerical weather prediction systems

are approaching the ability to resolve phenomena on

these scales, it is increasingly important to present a

complete characterization of their behavior. For instance,

thermally driven circulations may still be present down-

wind of islands in NT cases and incorrectly simulating the

strength of this circulationmight result in cloud formation

where it should not exist. Therefore, future investigation

is required to fully understand the initiation, persistence/

transience, and any potential transition from a shallow to

deep convective state. However, conventional observa-

tions like those presented are likely insufficient to de-

scribe these characteristics, and high-resolution idealized

simulations are therefore planned.
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APPENDIX

Additional Algorithm Assessment

a. Choice of algorithm parameters

The choice of a and b as described in section 2d is

expanded upon here. Figure A1 shows the cumulative

distribution functions for the cloud fraction for scenes

that were manually classified as OB, and the inverse

cumulative distribution function for the cloud fraction

for scenes that were manually classified as either NT or

CT (i.e., non-OB). Similarly, Fig. A2 shows the cumu-

lative distribution function for the difference between

the sector with maximum cloud fraction in the down-

wind quadrant and the sector with the maximum cloud

fraction in the upwind quadrant for scenes that were

manually classified as CT, and the inverse cumulative

distribution function for scenes that were manually

classified as NT.

In Figs. A1 and A2, the point of intersection is taken

to be the optimal value for distinguishing between the

two classifications—either OB or non-OB in the case

of a, and either CT or NT in the case of b. This max-

imizes the Peirce skill score and yields a 5 0.33 and

b 5 0.08.

b. Algorithm versus manual classification for 2012
warm season

In addition to the verification metrics presented in the

text, and the contingency table in Table 1, we also re-

produce part of the analysis on the manually classified

data fromMay toOctober 2012, and compare that to the

analysis performed on the algorithm classifications for

the same period.

Figure A3 shows the variation of the percentage of

classifications with time of day and month of year. It is

found that there is generally good agreement between

the manual and algorithm classifications; however, the

biggest differences are between the CT and NT classi-

fications in Figs. A3a and A3b. In the algorithm, there

are too many morning CT classifications and too few

morning NT classifications when compared to the

manual classification. This is particularly the case in the

July–October timeframe. However, the algorithm re-

produces both the annual and diurnal cycles reasonably

well, although the amplitude of the diurnal cycle is

somewhat lower in algorithm classifications compared

to the manual classification because there are more

morning algorithm CT.

Similarly, the frequency of each classification by

month also shows a high level of agreement (Fig. A4). A

total of 51 more scenes were classified as CT by the al-

gorithm than manually, 231 fewer scenes were classified

as NT by the algorithm, and 82 more scenes were clas-

sified as OB. As a percentage of the corresponding

manual classifications, this amounts to 5% more CT

scenes in the algorithm, 18% fewer NT scenes in the

algorithm, and 7% more OB scenes in the algorithm.

Qualitative characteristics (e.g., the timing of peak oc-

currence) of the annual cycle are largely preserved by

the algorithm.

FIG. A1. Cumulative distribution function of the cloud fraction

for OB scenes and the inverse cumulative distribution function of

the cloud fraction for non-OB scenes. The cloud fraction value at

the intersection of these two distributions, 0.33, is taken as the

value of our parameter a.

FIG. A2. Cumulative distribution function of the difference in

maximum downwind and upwind cloud fraction dF for CT scenes

compared to dF for NT scenes. The difference at the intersection of

these two distributions, 0.08, is taken as the value of our parameterb.
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Finally, Fig. A5 shows the composite profiles on CT,

NT, and OB days in JJA 2012. We show that, again, the

algorithm classification is able to adequately reproduce

the results from the manual classification. The composite

sounding anomalies from the analysis performed using

the algorithm classifications is within the uncertainty

ranges of the analysis performed using the manual clas-

sifications for both the relative humidity and potential

FIG. A3. As in Fig. 3, but for the classifications from May to October 2012. (a)–(c) Algorithm classifications are

compared with (d)–(f) the manual classifications.

FIG. A4. The percentage of all scenes in each month from May to October 2012 that are classified as cloud trail

(solid line), nontrail (dotted line), and obscured (dashed line). This analysis is done for (a) the algorithm classifi-

cation and (b) the manual classifications.
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temperature anomalies. The two classificationmethods are

consistent in terms of the relationship between classifica-

tions and the LCL—obscured days have the lowest LCL,

followed by CT, and then NT days with the highest LCL.
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