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Aims <% Reading

 Offline dynamic-model calculations of flow-dependent
Smagorinsky mixing length

« What are its dependencies in terms of the variable, location
within the flow, scale of analysis?

* Implement dependencies into the MONC LES model and
test their effect on shallow Cu test cases



Case Studies & Reading
Dry CBL BOMEX ARM

The sun heats the ground

Radiation

Air warms and rises
' Convection
~ — ~—

* Idealised dry case < Marine boundary - Diurnal cycle of

« Strong layer, quasi deepening
temperature steady cloud, reaching
inversion imposed * Ax=Az=20 m up to ~3km by
at 1Tkm 1630

e Ax=A7=20 m * AX=25, Az=10m



Smagorinsky scheme %7 Reading

Dissipation estimated using a [ = C.A Ly = CyA
mixing length ' 5
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Smagorinsky sets C; to a v py
constant, typically ~ 0.2. o v
. | / Injection
Scalar mixing is assumed to &

be related to momentum
mixing via a Prandtl number
Pry, typically 0.7
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Dynamic method %2 Reading

Compares flow filtered at two |
scales, A and A

L; is difference in stress

M; is Smagorinsky estimate
of the same

Minimizing L-M leads to an
estimate of C,

power spectrum

wavenumber
Momentum: Scalars:
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Smagorinsky as a filter operation  &reading
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 Departures from k'3 for dry
CBL run at different
resolutions

« Smagorinsky (and numerics)
act as a filter at small scales

» Similar to a Gaussian

» Gaussian filter applied to
fine-resolution data with a
width o = A/2 can well
approximate model
spectrum with grid length A



Filtering approach 5% Reading
(b) 4
* Filter the raw LES
data with grid length A
SO as to approximate
model spectrum with
grid length A = 2A
» And filter again to be
appropriate for A = 4A

[>1)

power spectrum

A
\%

wavenumber

* Apply dynamic mixing based on stress difference in
rangeA=2A->A=4A

« Similarly to consider the range 4A - 8A,8A - 16 A
etc
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Snapshots of €2, C5,and CZ.
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Strong variations
in space on fine
scales
Systematic
differences
between
variables and
between mixed-
layer, in-cloud
and cloud-free
parts

~+ BOMEX, xz section
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Z/ZM;_ (ZML = 430m)

Different sca

C? for heat, BOMEX DA at 4A
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« Average C? values agree in the absence of cloud

« Similar mixed-layer and in-cloud values but smaller outside cloud

« Within cloud, cloud-conserved variables 6, and g; have C? +ve but
0 and 6, have C? -ve
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C? for heat, BOMEX IC at 4A

(©) ~— C2
2
C'QL
2
— C2
—-0.04 —-0.02 0.00 0.02 0.04 0.06

C? value

In-cloud (truncated)



Variations with cloud-depth

* In-cloud C, (left) and
Cq, (right) profiles as a

function of normalized
height within the cloud

layer

* Modest differences
between BOMEX and
different times during

ARM
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Variations with filter scale %2 Reading

+ C,, in ARM at 1630

* Mixing lengths reduced
near surface, near
Inversion at cloud top but
approx. constant within
mixed layer and cloud
layer

* (4, reduces at larger
scales

* 1.8 Iy = C4 A InCreases
sub-linearly with A
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Variations with filter scale %2 Reading

Cs average in ML Cq,t average in ML
(a) —— BOMEX
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* Clear decreasein C; Mixed
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Simple parameterization &2 Reading

« Capture mean
dependencies on scale and
location within the flow 6 -

=

* Run cases in the grey zone

* Either for C, alone with fixed
Pr

* Or with a separate
parameterization for the

|} .
scalars T
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Parameterization results %P Reading

2000 Cloud top and base height: C; profile (solid) vs Smagorinsky (dotted)

ARM, evolution of | —2-zmus
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Apply C, profile diagnosed for 100m. Fixed Pr.

Solid C,=0.23. Dotted for the parameterization

Improves cloud initiation

C, is reduced from 0.23, with more motions represented
explicitly, larger resolved fluxes etc

A global reduction to a constant C is somewhat helpful

but not as effective 1



Parameterization results %P Reading

Cloud top and base height: Cs profile (solid) vs scale aware C; profile (dashed)

« ARM, evolution of “1— o
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Add scale awareness to Cs profile

Improves timing further

And improves rate of cloud growth

Distinction between in-cloud and cloud-free mixing is
valuable for reproducing the cloud-top height evolution
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Conclusions %% Reading

 Momentum, potential temperature and moisture are
mixed differently

* C is significantly higher in-cloud compared to “clear sky”
areas in the cloud layer

 Different areas within clouds do not seem to affect the
mean C

 Scale dependence of Cg

 This was the most important ingredient to enable
accurate cloud layer formation and development

» Vertical profile of C, improves cloud-top height, especially
later in the diurnal cycle
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