Friction in Mid-latitude Cyclones

Ian Boutle

Bob Plant, Stephen Belcher, Bob Beare, Andy Brown

National Centre for Atmospheric Science

Motivation

- Many studies have shown the significance of friction in formation and dissipation of cyclones
- Up to 50% reduced growth rate
- Met Office Unified Model still has trouble with cyclone depth
- Underlying physical mechanism not well understood

scheme operating

Ekman Pumping

boundary layer

tropopause

 $\xi_1 > \xi_2$

- Boundary layer forces convergence
- Continuity forces ascent:

 What about temperature?

Potential Vorticity

 $PV = \frac{1}{\rho} \zeta . \nabla \theta$

 $\frac{D}{Dt}(\mathbf{PV}) = \frac{1}{\rho} \left(\zeta \cdot \nabla \left(\frac{D\theta}{Dt} \right) + (\nabla \times \mathbf{F}) \cdot \nabla \theta \right)$

Diabatic Term:Surface heat fluxesLatent heat fluxes

Frictional Term:

- Ekman pumping
- Baroclinic mechanism

Baroclinic Mechanism

Depth averaged PV generation in boundary layer:

$$\left[G_{B}\right] = \frac{1}{\rho^{2}h^{2}}\mathbf{k} \times \boldsymbol{\tau}_{s} \cdot (\nabla_{H}\theta)_{h}$$

Depends on alignment of surface and thermal winds

Baroclinic Mechanism 2

Boundary Layer Stability

Summary

- Boundary layer friction has a large affect on cyclone development
- Ekman pumping is significant, but not the only process acting
- PV perspective provides another mechanism, which appears similarly important

Switching off BL

 Surface stress parameterised in terms of "eddy diffusivities"

$$\tau_{xz} = \rho K_m \frac{\partial u}{\partial z}$$

• Define SBL by $\theta(\text{level } 1) > \theta(\text{surface})$

• Set $K_m = 0$ here