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Motivation and questions

• Coarse-grid LES (dx > ~100 m) and high-resolution NWP (dx < ~1 km) are both 

characterised by partially-resolved turbulence.

• Sub-grid model matters more than in well-resolved LES.

• As LES resolution is coarsened, at what point does it start to matter what sub-

grid model is used? 

• What goes wrong as the resolution is degraded?

• Can this be fixed with a better choice for the sub-grid model?



LES: setups

• Convective BL simulations using the  UK Met Office LEM (MetLEM) 

• Setup 1: Weak heat flux of 30 Wm-2 ; No mean wind

– Initial constant temp of 290.8 K up to 1 km, then stable stratification of 0.003 K/m

– 1K amplitude perturbations, 2 hour simulations

– Based on Brown et al. (1994) and Weinbrecht & Mason (2008)

– Domain size: 5120 m x 5120 m x 2048 m

– Highest resolution: Δx = Δy = 10 m, Δz = 4 m  (512 x 512 x 512 grid points)

– Lower resolution runs: : Δx = Δy = 20 m, 40 m, 80 m, 160 m, Δz = 0.4Δx 

• Setup 2: Strong heat flux of 241 Wm-2; Weak geostrophic wind Ug = 1 m/s

– Initial constant temp of 300 K up to 1 km, then sharp jump of 8 K over 100 m near BL top

– 1K amplitude perturbations, 4 hour simulations

– Based on Sullivan & Patton (2011) 

– Domain size: 9600 m x 9600 m x 2000 m

– Highest resolution: Δx = Δy = 25 m, Δz = 10 m  (384 x 384 x 200 grid points)

– Lower resolution runs: : Δx = Δy = 50 m, 100 m, 200 m, 400 m, Δz = 0.4Δx 



LES: subgrid models

• Smagorinsky-Lilly as implemented in MetLEM

– With Cs = 0.23

– With different values of Cs

– With stochastic backscatter

• Several variants of the dynamic model newly implemented in the MetLEM

– Plane-averaged scale-invariant – PASI  (Germano et al. 1991)

– Lagrangian-averaged scale-invariant – LASI (Meneveau et al. 1996)

– Lagrangian-averaged scale-dependent – LASD (Bou-Zeid et al. 2005)



Boundary layer height – weak flux 

BL height diagnosed 

using gradient method

Lower resolutions give 

successively higher BL 

height – max difference 

of ~ 100 m

Coarse-graining gives 

higher values, but still 

short of native values –

max difference of ~ 60 m

Only for 10m – 20m does 

coarse-graining account 

for most of the difference



Potential temperature profile – strong flux 

Typical convective BL

potential temperature 

profile

Native resolution

simulations warmer

close to the surface

and inversion layer

Low resolution runs

show higher

temperature at z = zi



Resolved heat flux profile – strong flux 

Decrease with height to a 

minimum

Negative region = 

entrainment zone

Minimum is lower at lower 

resolutions

CG data is more converged 

below zi



Structures: weak flux, dx = 10 m 

Structures from “truth run”

Thermals rise and merge 

into larger structures

Temperature perturbation 

decreases due to mixing

Closer to BL height, 

negative ’ coincide with 

positive w’

i.e. cooler air continues to 

rise due to residual 

momentum

w’ ’
z = 192 m

z = 512 m

z = 1024 m



Quadrant analysis: weak flux, dx = 10 m

More Q3 events but Q1 

contributes more

Thermals rise, mix with 

environment, get colder

Hence, Q1 can become 

Q2 as they rise

More Q4 events close to

inversion layer – due to 

entrainment

Q4 events mix with the

environment and become 

cold, turning into Q3



Quadrant analysis: strong flux, dx = 25 m 

Generally similar picture



Resolution-dependence : weak flux, Smag 

At lower resolutions: 

- Smaller Q1 contribution 

closer to surface

- Smaller contribution 

from Q2 and larger from 

Q3 in lower BL

- Larger contribution of Q2 

in upper BL – less mixing 

– deeper into inversion –

higher BL 

- Smaller contribution 

from Q3 in upper BL 



Resolution-dependence : strong flux, Smag 

Qualitatively similar

Larger differences from 

200 m onwards



Model-dependence : weak flux, dx = 40 m 

At higher resolutions 

all models roughly 

agree – as they 

should!



Model-dependence : weak flux, dx = 160 m 

Larger differences 

than at higher 

resolutions

LASI slightly better



Model-comparison : strong flux, dx = 200 m

Difficult to distinguish 

between different models 

– all equally good



Model-comparison : strong flux, dx = 400 m

Difficult to distinguish 

between different models 

– all equally bad



Structures: strong flux, dx = 25 m – 50 m 

z = 60m

Mean variables almost 

the same

But structures look 

different

Smag is too smooth



Structures: strong flux, dx = 25 m – 50 m  

z = 600 m

All look roughly similar 

at this height



Structures: strong flux, dx = 25 m – 50 m  

z = 1100 m

Again all look similar

No obvious improvement 

using dynamic models



Structures: strong flux, dx = 25 m – 200 m  

z = 160 m

Smag and PASI are too 

smooth

Lagrangian–averaged 

dynamic models seem 

to reproduce structures 

seen in higher-res runs 

slightly better



Structures: strong flux, dx = 25 m – 200 m 

z = 600 m

Here Smag looks 

slightly better



Structures: strong flux, dx = 25 m – 200 m 

z = 1120 m

Strong w’ for all models

Lagrangian models make 

no improvement here



Conclusions

• Variants of dynamic model compared with Smagorinsky for 

convective boundary layer simulations

• Sub-grid model choice makes a difference for grid size of 200 m 

or larger

• Dynamic models in general neither better nor worse than 

Smagorinsky for the convective cases considered

• Improvements found using the dynamic model for morning 

transition (work in progress)



Extra plots



Potential temperature profile – weak flux 



Heat flux profile – weak flux 



Cs from dynamic models: weak flux 



Cs from dynamic models: strong flux 


