# Quasi-stationary convective storms in the UK: A case study



Robert Warren<sup>1</sup> | Bob Plant<sup>1</sup> | Humphrey Lean<sup>2</sup> | Dan Kirshbaum<sup>3</sup>

<sup>1</sup> Department of Meteorology, University of Reading; <sup>2</sup> MetOffice@Reading; <sup>3</sup> Department of Atmospheric and Oceanic Sciences, McGill University

#### **1. Introduction**

Quasi-stationary convective storms (QSCSs) occur when convective cells are repeated triggered in roughly the same location for an extended period of time, and subsequently move with a consistent track over a confined area. The combination of high rain rates and a long precipitation duration gives large accumulations and the potential for flash flooding [1]. Here, we present a case study of a QSCS in the UK from summer 2010.

# 2. Case Study – 21/07/2010

- Persistent, narrow line of storms along north coast of Southwest Peninsula.
- Line was quasi-stationary between 12 and 15 UTC, and propagated inland thereafter.

### 4. Simulation Methodology

- Event simulated using Met Office Unified Model (UM) with 1.5-km grid-length and 70 vertical levels (UKV model).
- Simulation initialised from 04 UTC analysis from operational UKV model; lateral boundary condition (LBC) data from operational NAE model.
- Smaller domain covering Southwest Peninsula, with same resolution, nested within UKV model for computational efficiency in sensitivity tests.

# **5. Control Simulation**

- Model reproduces observed precipitation accumulation pattern fairly well (Fig. 3, top panels)
- Captures storm development along coastline and inland propagation after 15 UTC

## 6. Sensitivity Tests

• Several sensitivity tests carried out to investigate mechanisms controlling the convergence line.

| Name | Factor under investigation     | Methodology                                                                               |
|------|--------------------------------|-------------------------------------------------------------------------------------------|
| OROG | Orography                      | Land height over southwest peninsula set to zero                                          |
| DZ0  | Differential surface roughness | Roughness length for momentum over land fixed to sea value                                |
| DT   | Differential surface heating   | Solar constant reduced to 400 W m <sup>-2</sup>                                           |
| СР   | Cold pools                     | Temperature changes associated<br>with evaporation of rain and<br>melting of snow removed |



Maximum accumulations exceeding 50 mm; most of this fell from 12–15 UTC.







# 3. Comparison to Boscastle storm

Similarities:

- Several issues with simulated storm evolution (Fig. 3):
- Initiation is ~ 1.5 hours too late and ~ 30 km too far north along coastline
- > Cells are isolated rather than forming a continuous line
- > Precipitation intensity is too great during afternoon



**Figure 3.** Top panels: Accumulated rainfall (mm) from radar (left) and model (right) for 09–18 UTC. Boxes show the regions for which Hovmoller diagrams were created – points were taken along the long axis of each box and averaged over the short axis. Bottom panels: Hovmoller diagrams of rain rate (mm  $hr^1$ ) from radar (left) and model (right) for the boxes in the corresponding top panels. Colour scale is same as in Figure 1.



**Figure 5.** Time series of four variables computed over box shown in Fig. 4 for control run and each of the sensitivity tests listed in the table above. Variables are: (a) mean land-sea temperature difference at 1.5 m, (b) mean zonal wind speed at 10 m over sea-points, (c) number of grid-points with 10-m convergence greater than  $5 \times 10^{-4}$  s<sup>-1</sup>, and (d) mean rain rate. Black line in (d) shows values from radar.

• Differential heating of land and sea surface is the primary control on the convergence line - frictional backing of wind over land, orography, and storm cold pools all have only a minor influence.

## 7. Conclusions and Future Work

- Convergence line which forced QSCS appears to be due to a balance between the shore-parallel low-level flow and a thermal circulation associated with differential surface heating (c.f. Boscastle case [2]).
- Convergence was only weakly sensitive to frictional effects over land, orographic features, and latent cooling associated with microphysical phase changes.

- QSCS over north coast of Southwest Peninsula;
- Highest accumulations along slopes of Bodmin Moor;
- Moist southwesterly flow over a deep layer.

#### Differences:

- Significantly higher rain rates and accumulations in Boscastle case, leading to severe flash flooding;
- Greater instability and column moisture in Boscastle case (Fig. 2);
- Slower synoptic evolution in Boscastle case;
- Boscastle storm developed later but remained stationary for longer.



**Figure 2**. Vertical profiles of equivalent potential temperature (left), wind speed (middle), and wind direction (right) derived from 12 UTC Camborne soundings on 21/07/2010 (red) and 16/08/2004 (blue).

- Divergence field (Fig. 4) shows that, like the Boscastle storm [2], this QSCS was forced by a persistent narrow convergence line.
- Inland propagation of storms after 15 UTC is due to veering wind ahead of approaching trough to the west.





**Figure 4**. Horizontal wind divergence at 10 m (colours,  $10^{-4}$  s<sup>-1</sup>), rain rate (black contours; 1, 5, 10, 20 and 40 mm hr<sup>-1</sup>), and wind vectors at 10 m for 13 UTC (left) and 16 UTC (right). Black box in left panel shows area used in Fig. 5.

#### **Contact information**

- r.a.warren@pgr.reading.ac.uk
- www.met.reading.ac.uk/~hy010960

- Delayed storm initiation may be a resolution issue a run with 500-m grid-spacing is being carried out to investigate this possibility.
- A climatology of QSCSs in the UK is being developed to identify favourable regions for QSCS development.
- Idealised simulations will be used to investigate further the development of stationary convergence lines alone coasts.

#### References

10 m s

- 1. Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash Flood Forecasting: An Ingredients-based Methodoloy. *Weather and Forecasting*, **11**, 560–581.
- 2. Golding, B., P. Clark, and B. May, 2005: The Boscastle Flood: Meteorological analysis of the conditions leading to flooding on 16 August 2004. *Weather*, **60**, 230–235.

#### Acknowledgements

Sylvia Bohnenstengel, Kirsty Hanley, Andy Heaps, Giovanni Leoncini, Adrian Lock, Andy McAllan, Willie McGinty, Jonathan Wilkinson