

Numerical simulations of a COPE-type case

Robert Warren, Bob Plant, Humphrey Lean & Dan Kirshbaum

My PhD Project

- Quasi-stationary convective systems in the UK
- Motivation
 - Numerous case studies of QSCS from USA and Mediterranean region; comparatively little work from the UK
 - Want to improve understanding of and ability to forecast QSCSs
- Key project questions:
 - 1. How common are QSCSs in the UK and how does their occurrence vary seasonally, geographically and with synoptic conditions?
 - 2. What are the typical mechanisms by which QSCSs in the UK form?
 - 3. How well are QSCSs represented in a high-resolution operational NWP model (MetUM, UKV)?

Climatology

Case studies

Southwest Peninsula Convective Bands

(a) -1000

- Frequently observed under conditions of southwesterly flow
- Not always associated with precipitation
- Cloud is co-located with a well-defined boundary layer convergence line
- Most common during Spring and Summer → suggests importance of differential land and sea surface temperatures

(b)

The Boscastle Case: 16/08/2004

Our Case Study: 21 July 2010

Simulation Strategy

- MetUM UKV model:
 - Grid spacing: 1.5-km inner domain stretching to 4-km outer domain
 - Explicit convection
 - 70 vertical levels
- Initialised from operational 0400 UTC UKV analysis
- LBCs from operational NAE run
- Smaller domain with same resolution nested within UKV to reduce expense

Control simulation: Rainfall

Control simulation: Divergence

10⁻⁴ s⁻¹

- Differential surface heating is a necessary condition for the convergence line to form → convergence line was a sea-breeze
- Orography, differential surface roughness and cold pools not found to be important in this case

500m Simulation

 Convergence line is better resolved with 500m grid-spacing → timing and pattern of convective initiation is significantly improved

Robert Warren

COPE Science Meeting, 25 October 2012

Perspectives for COPE

- Would expect convergence line to form under WSW / SW / SSW flow provided $T_{land} > T_{sea}$
- Hypothesised dependence of convergence line on flow direction:
 - For SW flow, sea breeze effect on both coasts may be important → convergence line along centreline of peninsula
 - For SSW flow, sea breeze effect on south coast 'washed out' by onshore flow → convergence line along west coast of peninsula
- N.B. UKV model may give a poor representation of convective initiation and organisation in these cases

Perspectives for COPE

- Useful observations for this type of event:
 - Land-sea temperature contrast
 - Convergence lines: location, intensity, and width
 - Sea breeze circulation
 - Low-level flow around Land's End and Lizard peninsulas
 - Convective initiation
 - Convective downdraughts and their effect on the convergence line

Comparison with Boscastle Storm

- Warmer, moister atmospheric column → higher rain rates
- Slow evolution of large-scale flow \rightarrow^{16} more stationary system

500m simulation: Rainfall

500m simulation: Divergence

10⁻⁴ s⁻¹

Robert Warren

Synoptic setting comparison

Tephigram comparison

Sensitivity Tests

• Aim: To investigate the factors controlling the development and maintenance of the coastal convergence line

Name	Factor under investigation	Methodology
WEAKSUN	Differential surface heating	Solar constant reduced to 400 Wm ⁻²
SAMEROUGH	Differential surface roughness	Roughness length for momentum over land fixed to sea value
NOOROG	Orography	Land height over southwest peninsula set to zero
NOOUTFLOW	Convective outflow	Latent cooling in microphysics scheme switched off

Rain intensity bias

Control simulation: Divergence

10⁻⁴ s⁻¹