Large Scale

Storm Scale

Summary

## Error Growth at The Convective Scale

#### Giovanni Leoncini, Bob Plant, Sue Gray Pete Clark

Meteorology Department, University of Reading

Lunchtime Seminar June 16<sup>th</sup> 2009





Storm Scale

## Outline







3 At the storm scale







Storm Scale

Summary

## Outline

#### Introduction

- Uncertainties and ensembles
- The problem at the convective scale
- Snapshot of current efforts
- Our approach

## 2 At The Large Scale

3 At the storm scale

# 4 Summary





| Introduction |  |
|--------------|--|
| 00000        |  |

Storm Scale

#### Introduction The FREE program

Flood Risk from Extreme Events:

- comprehensive: pluvial, fluvial and coastal flooding
- across scales: from wave modelling to NWP
- across disciplines: oceanography, hydrology, meteorology and data assimilation
- with policy and climate change in mind
- our bit: ensemble technique for storm and flood forecasting





Storm Scale

# Introduction

An Ensemble Forecasting System provides estimation of uncertainties: this benefits

- forecast user: more conscious choices
  - flood warning & alerts
  - transport related issues
  - energy company
  - ۰...
- research: can be used to explore reality





Storm Scale

Summary

# Introduction

An Ensemble Forecasting System provides estimation of uncertainties: this benefits

- forecast user: more conscious choices
  - flood warning & alerts
  - transport related issues
  - energy company
  - ...
- research: can be used to explore reality







Storm Scale

# Introduction

Ensemble Forecasting System is an ideal tool for severe convective events:

- improves risk quantification
- severe convective weather has high societal impacts
  - principal cause of flash flood
- high uncertainties





Large Scale

Storm Scale

Summary

# Introduction

Ensemble Forecasting System is an ideal tool for severe convective events:

- improves risk quantification
- severe convective weather has high societal impacts
  - principal cause of flash flood
- high uncertainties





| Introduction | Large Scale | Storm Scale | Summary |
|--------------|-------------|-------------|---------|
| 000000       |             |             |         |
|              |             |             |         |

Where does the uncertainty come from?

- data
- parameterisations: we do our best, but
  - some processes need more research
  - CPU, robustness
- there are fast propagation processes (gravity and acoustic waves)
- strong sensitivity to LBC
  - slightly different position/intensity/timing of synoptic system
  - g-waves can propagate error upstream ... or not
- reality: convection is often a subtle and complex problem





| Introduction | Large Scale | Storm Scale | Summary |
|--------------|-------------|-------------|---------|
| 000000       |             |             |         |
|              |             |             |         |

The problem is a difficult one:

Introduction

- geostrophic, hydrostatics and linearity assumptions all break down at the convective scale
- error double times are < 10 h (Hohenegger and Schar, 2007)
- DWD is working on a combination of LBC and parameterisations
- SLAF (Kong et al, 2007)
- and a lot more is being done (NCEO, JCMM)







Storm Scale

Summary

# Introduction

We introduce a novel technique:

perturb model state

as the perturbation progresses

We face the problem from two different perspectives:

at the large scale several storms within domain

- processes involved in error propagation
- general overview of model response to perturbation
- use ensemble to explore reality
- at the storm scale focus on one specific flood
  - accumulation within an area
  - what needs to be changed: µphysics or perturbation?
  - more practical approach





Storm Scale

Summary

# Outline

## Introduction



#### At The Large Scale

- The event
- Perturbation Strategy
- Results
- Discussion
- Conclusions

## 3 At the storm scale

# 3 Summary





Storm Scale

Summary

## The event - CSIP IOP18

why this case?

- good large scale forecast
- tropopause fold
- interesting mesoscale features:
  - surface forcing
  - scattered convection
  - MCS within domain
  - cold pools







Storm Scale

## **Perturbation Structure**

The Perturbation

- 2D Gaussian kernel applied to random numbers
- potential temperature
- applied at fixed model level (~ 1280 m agl)
- at regular intervals (30 mins)
- 3 amplitudes: 1, 0.1 and 0.01 K
- 3 std: 24, 8 and 0 km





κ

ĸ

Storm Scale

### Perturbation Structure























Storm Scale

Summary

## **Experiments**

Single Perturbations:

- IC
- 0700 UTC
- 0830 UTC
- 1000 UTC
- 2 amplitudes: 0.01 and 1 K
- 1 scale length: 24 km

Sequential Perturbations:

- 9 combinations of
  - 1, 0.1 and 1 K
  - 24, 8 and 0 km





Storm Scale

Summary

## **Experiments**

Single Perturbations:

- IC
- 0700 UTC
- 0830 UTC
- 1000 UTC
- 2 amplitudes: 0.01 and 1 K
- I scale length: 24 km

Sequential Perturbations:

- 9 combinations of
  - 1, 0.1 and 1 K
  - 24, 8 and 0 km

Model of choice: UM

- 4 km grid spacing
- modified convection
- PBL scheme has 7 types





Large Scale

Storm Scale

Summary

### **Experiments**



2m Temperature and Rain Rates, on August 25<sup>th</sup> at 1000 UTC





Storm Scale

## **Direct Effects**

compare:

- perturbed run values 1 time-step after the perturbation
- unperturbed run at the same time
- CAPE: ± few Jkg<sup>-1</sup>, rarely in discontinuous ways
- $\bullet\,$  BL types change: 1 K  $\sim$  5%, 0.01 K 0.05%





Large Scale

Storm Scale

Summary

### **Direct Effects**

#### pressure bias over positive points



consistent with a Lamb wave, in a linearised atmosphere





Storm Scale

Summary

### **Direct Effects**





- not consistent with a Lamb wave
- scales linearly with amplitude
- max w 38% > unperturbed w
- spreads very fast





Large Scale

Storm Scale

Summary

### **Direct Effects**

$$\mathbf{RMSE} = \sqrt{\frac{1}{N_i N_j} \sum_{ij} (x_{ij} - y_{ij})^2}$$





Large Scale

Storm Scale

Summary

### **Direct Effects**







Large Scale

Storm Scale

Summary

### Indirect Effects







Large Scale

Storm Scale

Summary

### **Indirect Effects**







Storm Scale

Summary

## **Indirect Effects**

#### Non cirrus TWP > 0.05 kgm<sup>-2</sup>

Non Precipitating Clouds



Direct cloud distribution changes:

- 0700-0.01 number of non-cirrus up 5.6
- everything else: < 1%
- mean size even less





| ntroduction | Large Scale                             | Storm Scale | Summary |
|-------------|-----------------------------------------|-------------|---------|
|             | 000000000000000000000000000000000000000 |             |         |

### Discussion

#### sensitivity to time of the day:







Storm Scale

## Conclusions

- processes involved: CAPE, BL types, acoustic waves
  - $\theta$  and cloud condensate
- CAPE can affect development
- BL changes have more potential
- acoustic waves unlikely to trigger new storms, but can propagate error quickly
- amplitude first factor in determining RMSE
- sensitivity to time of the day





Storm Scale

Summary

## Outline





#### 3 At the storm scale

- Aims
- The event: Boscastle flood
- Methodology
- Results
- Conclusions









- Verify ensemble technique is useful
- Use model error scales to analyse precipitation accumulations
- Compare growth due to perturbation v warm μphysics changes





Storm Scale

Summary

# The event - Boscastle flood of August 16th 2004

- very intense over 130 mm in 5 hours
- very localised, typical scale < skillful ones</li>
- interesting mesoscale meteorology
  - near shore convergence line
  - moving convective elements
  - which precipitate over the same small catchment







Storm Scale

Summary

# Methodology

- UM, 1 km grid spacing
- Perturbation Strategy:
  - use 0.1 K and 8 km
  - 8 realisations (ie members)
- Accumulation is the quantity of interest:
  - model reaches acceptable skills between 40 and 70 kilometres
  - flooded river catchment is really tiny (20 km<sup>2</sup>)
  - accumulations on a circle centred over Boscastle with diameters of 20, 40 and 60 km
- vary a few warm  $\mu$ physics parameters
- std deviation of ensembles as measure of spread





Storm Scale

# Methodology

Autoconversion & the UM:

- large cloud droplets collect smaller ones
- if they are larger then a threshold they become rain (drizzle)
- 2 schemes for computing threshold
- each has 2 values of aerosol concentration: over sea & over land

| Scheme | Land                    | Sea                       |
|--------|-------------------------|---------------------------|
| 3B     | $6.0 	imes 10^8 m^{-3}$ | $1.5 	imes 10^8 m^{-3}$   |
| 3C     | $3.0 	imes 10^8 m^{-3}$ | $1.0 	imes 10^{8} m^{-3}$ |





| Introduction |  |
|--------------|--|
|              |  |

Storm Scale

Summary

# Methodology

- 4 experiments:
  - revert 3D to 3B (areo 3D to 3B)
  - 3D land aerosol everywhere (3D land)
  - 3D sea aerosol everywhere (3D sea)
  - no autoconversion (no auto)

each base run, standard run included is the control run of its own ensemble

6 ensembles:

- base runs
- control
- 4 µphysics





| Introd | uction |
|--------|--------|
| 0000   | 00     |

Storm Scale

Summary

## Results









Large Scale

Storm Scale

Summary

### **Results**









Large Scale

Storm Scale

Summary

## Preliminary Results









Storm Scale

## Conclusions & Future Work

- results consistent for 60 and 40 km, a bit less for 20 km
- spread generated by perturbation similar to changed µphysics
- accumulations of the same order as well
- perturbation before and at convection start is crucial for differentiation
- changed ice and sfc roughness
- how are these changes achieved?





# Summary

- fundamental processes are: CAPE, BL type changes and acoustic waves
- scattered convection regime: error growth driven by amplitude and time of the day
- flood storm: ensemble generates variability comparable to μphysics
- perturbation technique useful, particularly tn capture the sensitivity to the time of the day



