COST Action WG1+2 Meeting 22-23 February 2012

Liquid detrainment in convection embedded in a cold front

Oscar Martínez-Alvarado Bob Plant

Department of Meteorology University of Reading

DIAMET project DIAbatic influences on Mesoscale structures in ExTratropical storms

- Consortium constituted by four UK universities (Manchester, Leeds, Reading and East Anglia) and the Met Office
- Three Work Packages
 - WP A. Structure of mesoscale anomalies and their wide-scale consequences
 - WP B. Physical processes and their parameterisation
 - WP C. Predictability

DIAMET project DIAbatic influences on Mesoscale structures in ExTratropical storms

- Consortium constituted by four UK universities (Manchester, Leeds, Reading and East Anglia) and the Met Office
- Three Work Packages
 - WP A. Structure of mesoscale anomalies and their wide-scale consequences
 - WP B. Physical processes and their parameterisation
 - **1. Improving convective parameterisation**
 - 2. Air-sea fluxes and their influence on storm development
 - 3. Microphysical processes
 - WP C. Predictability

1. Lagrangian moisture budget diagnostics

• Budgets decomposed by parameterised processes:

$$\Delta \theta(x,t) = \sum_{i=\text{proc}} \Delta \theta_i(x,t)$$
$$\Delta q(x,t) = \sum_{i=\text{proc}} \Delta q_i(x,t)$$

proc = {convection, boundary layer, microphysics,...}

Current field configuration given by

$$\theta = \theta_0 + \Delta \theta_0 + \Delta \theta$$
Initial field at t=0
Change in initial field
due to advection only

2. Spectral decomposition of bulk mass flux parameterisation output

- Spectral decomposition using entrainment ε as single parameter.
 - 1. Construction of a plume ensemble consistent with the model sounding
 - 2. Solve

$$\min \left| M(z^{\alpha}) - \sum_{i} c_{i} M_{i}(z^{\alpha}) \right|, c_{i} \ge 0$$

- *z^a* : *a*-th height level
- M: bulk mass flux
- M_i : *i*-th plume mass flux
- *c_i* : *i*-th coefficient

Analysis method: Motivation Plant (2010)

Mean West Indies sounding data for "hurricane season" (Jordan 1958)

Vertical profiles of mass flux in ensemble (after Plant 2010)

Analysis method: Motivation Plant (2010)

The liquid water detrained from each individual plume is given by the bulk value:

$$l_{D_i} = l_i = l_B = \frac{\sum_i M_i l_i}{\sum_i M_i}$$

University of

💎 Reading

Ensemble detrained liquid water Bulk liquid water (after Plant 2010)

Preliminary results

- Case from DIAMET first field campaign:
 - 30 September 2011
 - Low-pressure system centred to the south-west of Iceland
 - Long trailing active cold front
- Model:
 - Met Office Unified Model (MetUM) version 7.3
 - North-Atlantic—Europe (NAE) domain
 - Grid spacing 0.11° (~12 km)
 - 38 vertical levels (lid ~40 km)
 - (MetUM Modified) Gregory—Rowntree convection scheme

DIAMET field campaign 0600 UTC 30 September 2011

Model-derived OLR

30 September 2011 0600 UTC

850-hPa equivalent potential temperature

Lagrangian budget diagnostic

Change in theta due to convection

Total change in theta

Rain

Updraught mass flux

cv, mflux, 30 September 2011 0600 UTC

University of Reading

Updraught mass flux

T-φ-gram and plume ensemble Reading

T-φ-gram and plume ensemble Reading

Summary and conclusions

- Two tools for the analysis of convection in bulk mass flux models have been developed
 - 1. Spectral decomposition of bulk mass flux convection
 - Lagrangian budget of energy (heating/cooling) and moisture (drying/moistening)
- These tools are being applied to a realistic case involving an active cold front.
- Preliminary analysis shows discrepancies between spectral and mass flux approaches

On-going work

- Quantification of the effect of discrepancies between spectral and bulk convective scheme formulations on the large-scale circulation
- Use of Lagrangian budget method to determine origin and downstream impact of moisture and energy sources/sinks from convection (and other parameterised processes)

References

- Jordan, C. L. 1958 Mean soundings for the West Indies area, J.
 Meteorol. 15, 91—97.
- Plant, R. S. 2010 A review of the theoretical basis for bulk mass flux convective parameterization, *Atmos. Chem. Phys.* 10, 3529—3544.
- Yanai, M., Esbensen, S. and Chu, J.-H. 1973 Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets, *J. Atmos. Sci.* **30**, 611–627.