
1 The Surface Energy Balance

The exchange of energy between the Earth’s surface and the overlying atmo-
sphere involves four important processes, namely:

• Absorption and Emission of ’natural’ electromagnetic radiation by the
surface.

• Thermal Conduction of heat energy within the ground.

• Turbulent transfer of heat energy towards or away from the surface within

the atmosphere.

• Evaporation of water stored in the soil or Condensation of atmospheric
water vapour onto the surface.

Each of these processes can be associated with an energy flux density.

Definition: Energy Flux Density The rate of transfer of energy normal to
a surface of unit area. The SI unit is J m−2 s−1 which is equivalent to W m−2.

The energy balance of a surface layer of finite depth and unit horizontal
area can be written as,

dQ

dt
= Rn − G − H − λE (1)

• Q is the total heat energy stored in the surface layer.

• Rn is the net surface irradiance (commonly referred to as the net

radiation). It represents the gain of energy by the surface from radiation.
It is a positive number when it is towards the surface.

• G is the Ground Heat Flux. It is the loss of energy by heat conduction
through the lower boundary. It is a positive number when it is directed
away from the surface into ground. The value at the surface is denoted
G0.

• H is the Sensible Heat Flux. It represents the loss of energy by the
surface by heat transfer to the atmosphere. It is positive when directed
away from the surface into the atmosphere.

• λE is the Latent Heat Flux. It represents a loss of energy from the
surface due to evaporation. (λ is the specific latent heat of evaporation,
units J kg−1 and E is the evaporation rate, with units kg m−2 s−1).
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For an infinitely thin surface layer the heat storage in Eq. 1 is zero and
reduces to,

Rn − G0 − H − λE = 0 (2)

or
Rn − G0 = H + λE (3)

The quantity Rn − G0 is known as the available energy. In modelling the
surface energy balance we need to be able to calculate the available energy and
partition it between the sensible and latent heat fluxes.

The way in which the available energy is partitioned between the sensible
and latent heat flux can be quantified by taking the ratio of the sensible to
latent heat flux, which is known as the Bowen ratio,

B0 =
H

λE
(4)

The Bowen ratio is non-dimensional and depends on the availability of
water at the surface.

• For surfaces where water is freely available B0 is small, and most of the
available energy is transferred to the atmosphere in the form of latent
heat.

• For arid surfaces (e.g. deserts) B0 is large, and most of the available
energy is transferred to the atmosphere in the form of sensible heat,
which warms the air close to the surface.

• Vegetation is a significant influence on the Bowen ratio.

In terms of the Bowen ratio the surface energy balance can be written as,

Rn − G0 = H
(1 + B0)

B0

(5)

or
Rn − G0 = λE(1 + B0) (6)
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2 Heat Conduction

Conduction of heat within the soil satisfies Fourier’s Law of Heat Conduction

Fh = −k
dT

dz
(7)

• Fh is the heat flux in the z-direction. Units W m−2.

• k is the thermal conductivity. Units J m−1 s−1 K−1.

If the temperature gradient in the soil is not constant with depth then the
heat flux Fh must also vary with depth. Conservation of energy requires,

ρc
dT

dt
∆z = Fh(z) − Fh(z + ∆z) (8)

• ρ is density.

• c is the specific heat capacity of the soil.

• T is the average temperature of the soil layer between z and z + ∆z.

The effects of any horizontal fluxes have been neglected, which is usually a
good approximation.

Using Eq. 7 for Fh(z) and Fh(z + ∆z) and taking the limit ∆z → 0 gives,

dT

dt
=

k

ρc

d2T

dz2
= κs

d2T

dz2
(9)

where it has also been assumed that the soil properties do not vary with depth.
The quantity κs = k/(ρc) is the Thermal Diffusivity, with units m2 s−1.

Note: Equation 8 can also be applied to the atmosphere by replacing the
specific heat capacity, c, by the specific heat of air at constant pressure, cp.
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3 The Diurnal Temperature Wave in the Soil

The ground heat flux at the surface, G0, varies approximately sinusoidally
through the day, in response to diurnal variations in the net radiation, i.e.,

G0 ≈ G0,max sin(Ωt) (10)

where Ω = 2π/(24 × 3600) ≈ 7.3× 10−5 s−1. From the dimensions of the
thermal diffusivity, κs and Ω the combination,

D =
(

κs

Ω

)1/2

(11)

has dimensions of a length. The full solution of Eq. 9 shows that at a depth
z the ground flux also varies sinusoidally, but with the amplitude reduced
by a factor of exp(−z/

√
2D), The amplitude of variations in temperature also

decreases with depth in the same way. In addition to the changes in amplitude,
the phase of the diurnal variation in temperature and flux also changes with
depth.

The ground heat flux is determined by measuring the temperature dif-
ference between the faces of a plastic disc buried in the soil. The thermal
conductivity of the disc is known so the heat flux through the disk can be
calculated. The thermal properties of the plastic are chosen to be similar to
soils, so that the heat flux passing through the disc should be close to the
ground heat flux.

The disc must be put at some depth in the soil. Clearly the depth needs
to be small compared to D, or the measured flux will not be representative of
the flux at the surface.
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4 Atmospheric Radiation

Solar Radiation refers to electromagnetic radiation emitted by the sun.

• The sun emits approximately as a black body (energy emitted per unit
area=σT 4) with a temperature of 6000 K. Most of the emitted radiation
has wavelengths between 0.3 to 2.0 µm, with the maximum around 0.5
µm. Visible radiation has wavelengths between 0.4 and 0.7 µm. Solar
radiation is often referred to as short-wave radiation.

• At the top of the atmosphere the direct solar beam can be considered
to be formed of parallel rays. The irradiance of a surface normal to the
beam at the top of the atmosphere is about 1380 W m−2.

• The direct solar beam is attenuated as it passes through the atmosphere
due to absorption and scattering, so the irradiance at the surface (for
the sun directly overhead in cloud-free conditions) is reduced to about
1000 W m−2.

• Some of the radiation scattered from the direct beam by molecules and
aerosols reaches the surface as diffuse solar radiation

Terrestrial radiation refers to electromagnetic energy emitted by the
Earth’s surface and the atmosphere.

• The Earth’s surface emits like a blackbody with a temperature of about
290 K. From Wien’s displacement law (λmax ∝ 1/Ts) the wavelength of
terrestrial radiation will be much larger than for solar radiation. Most
of the energy is in the wavelength range 3 to 30 µm, with a maximum
around 10 µm. Terrestrial radiation is often referred to a long-wave

radiation.

• For most surfaces the long-wave radiation emitted per unit area is given
by ǫsσT 4

s , where ǫs is an effective emissivity. From Kirchoff’s law the
surface will absorb a fraction ǫs of any incident long-wave radiation and
reflect a fraction (1 − ǫs).

• The emissivity of the atmosphere varies strongly with wavelength, so the
atmosphere does not behave like a black body. For wavelengths between
8 and 12 µm the atmosphere is almost transparent so the emissivity is
very small. This wavelength range is known as a window region. For
wavelengths between 3 and 8 µm and for wavelengths greater than 12
µm the atmosphere is nearly opaque, i.e. the emissivity is close to one.

• The emission and absorption characteristics of the atmosphere vary with
the concentrations of green-house gases such as water vapour and carbon

dioxide. Variations in water vapour are responsible for the short term
variability in the radiative characteristics of the atmosphere.
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• Liquid water has an emissivity close to one, so that thick clouds act like
black body radiators.

5 Irradiance at the Earth’s surface

The net solar irradiance of the surface can be represented as,

Sn = S ↓ −S ↑ (12)

where S ↓ is the total down-welling short-wave radiation and S ↑ is the total
up-welling short-wave radiation. Since the Earth’s surface does not emit short-
wave radiation S ↑ is entirely associated with reflection of some of the down-
welling radiation. It follows that,

Sn = (1 − α) × S ↓= (1 − α) × (Sb + Sd) (13)

where α = S ↑ /S ↓ is the surface albedo, Sb is the direct-beam solar irradiance

and Sd is the diffuse solar irradiance

• The direct beam irradiance of the surface is,

Sb = Sp cos(θ) (14)

where Sp is the is the irradiance normal to the direct beam and θ is the
solar zenith angle.

• Under clear sky conditions the irradiance Sp normal to the direct beam
can be related to the irradiance normal to the direct beam at the top of
the atmosphere, Sext, by,

Sp = Sext exp(τ/ cos(θ)) (15)

where τ is the atmospheric turbidity coefficient which will depend on such
things as the aerosol content of the atmosphere.

• The magnitude of the diffuse solar irradiance depends on atmospheric
aerosol and clouds.

The out-going long-wave radiation from the surface is

L ↑= ǫsσT 4

s + (1 − ǫs)L ↓ (16)

The first term on the right-hand side of this equation is the radiation emitted
by the surface and the second term is the reflected down-welling long wave
radiation incident on the surface.
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The net long-wave irradiance of the surface is,

Ln = L ↓ −L ↑= ǫs × (L ↓ −σT 4

s ) (17)

In the field the net longwave irradiance will be measured directly and the
surface temperature will also be estimated. With these measurements Eq. 17
can be used to estimate the downward longwave irradiance as,

L ↓= σT 4

s +
Ln

ǫs

(18)

The net surface irradiance is just,

Rn = Sn + Ln (19)
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6 Turbulent Flows

From experience we know that wind near the surface is not steady but fluc-
tuates in time and space. It is often possible to consider the windspeed to
consist of a steady, or slowly varying part with fluctuations superimposed, so
that instantaneously the windspeed can be written as,

U = U + u′ (20)

Here U is the mean windspeed (which we will consider to be constant) and u′

is the fluctuating or turbulent component. Partitioning the wind into a mean
and fluctuating part is known as a Reynolds decomposition.

Other meteorological parameters, such as vertical velocity, temperature,
vapour density can also be decomposed into a mean and fluctuating part, i.e.

w = w + w′

T = T + T ′

χ = χ + χ′

where the vapour density χ has units of kg m−3. Close to the surface w ≈ 0
so that w ≈ w′.

Note: from the definition of the mean, the mean value of the

fluctuations is zero.

In general the turbulent fluctuations in different parameters are correlated.
It is through these correlations that turbulence is responsible for the transport
heat, moisture and momentum in the atmosphere.

7 Turbulent Eddies

The turbulent fluctuations have a spatial extent and it is useful to think about
these fluctuations as ‘blobs’ of air with properties that differ from the mean
properties of the atmosphere. These ‘blobs’ are usually known as turbulent

eddies. The most important characteristics of these eddies are,

• They are three dimensional.

• The fluctuations in the three components of the velocity are of similar
magnitude, when averaged over many eddies.

• Turbulent eddies can be characterised by a length, representing the typ-
ical size of the eddy, and typical magnitude of the velocity fluctuation.
These are usually termed the turbulent length scale and the turbulent

velocity scale.
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8 The Turbulent Heat Flux and Eddy Covari-

ance

Consider a series of N turbulent eddies with vertical velocities wi and temper-
atures Ti = T + T ′

i . The sensible heat flux per unit area associated with the
ith eddy is,

Fhi = ρcpwiTi (21)

(you might like to verify the units of this are W m−2)

The average flux associated with the N eddies is,

Fh =
1

N

N
∑

i=1

Fhi = ρcp ×
1

N

N
∑

i=1

(wiTi) (22)

Using wi = w+w′

i, Ti = T +T ′

i , and recalling that w ≈ 0 and T is constant,
leads to

Fh = ρcp

N
∑

i=1

(w′

iT
′

i ) = ρcpw′T ′ (23)

Although w′ and T ′ are both zero, fluctuations in the vertical velocity and
temperature may be correlated (for example, if when w′ > 0, on average T ′ > 0
and vice-versa, w′T ′ would be positive) so that the covariance w′T ′ is not zero.

The same reasoning can be applied to moisture to give,

Fχ = w′χ′ (24)

Fλχ = λw′χ′ (25)

Fχ is an estimate of the surface evaporation rate (E, kg m−2 s−1) while Fλχ is
an estimate of the surface latent heat flux (λE, W m−2).

• This technique of estimating turbulent fluxes is known as the eddy cor-

relation technique

• Quantities such as w′T ′ and w′χ′ are known as eddy covariances, or less
correctly as eddy correlations.

• Strictly ρcpw′T ′ is a statistical estimate of the turbulent flux, if we sam-
pled a different series of eddies we would get a different answer. How
different depends on how large our sample of eddies is, the larger N the
smaller the differences.
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• To estimate fluxes using the eddy correlation technique, measurements
must be made at some height above the surface. The fluxes are only the
same as the surface flux if they don’t vary with height. In the atmosphere
fluxes usually vary with height (what tells us this must be the case, at

least for the sensible heat flux ?), however the variation is is sufficiently
gradual that the difference between the flux at 100m and the surface flux
is typically less that 10%. The layer between the surface and about 100m
is known, somewhat incorrectly, as the constant flux layer or the surface

layer

In practice we don’t try to isolate individual eddies. Outputs from fast
response anemometers and thermometers are sampled (just like music samples)
and means, eddy covariances are calculated by averaging over these samples.
By doing this we average over the eddies, but also average fluctuations within
the eddies.

9 The Momentum Flux

Defining the momentum per unit volume as µ = ρU exactly the same reasoning
as above can be applied to the windspeed to give the momentum flux as,

Fµ = ρw′u′ (26)

Fµ is the flux of horizontal momentum along the vertical direction. The
flux of a component of momentum in a direction normal to that component is
known as a shear stress. It has units of kg m−1 s−2 which is equivalent to N
m−2 or Pascals, i.e. the same units as pressure.

Near the surface Fµ is usually negative (why ?), so that momentum is being
transported from the atmosphere to the surface. This acts to decelerate the
flow, and exerts a force on the surface in the direction of the mean wind.

10 K-Theory, and the Mixing Length

An eddy with a positive vertical velocity will have originated below the mea-
surement height. If we assume it originates a distance l below the measurement
height the fluctuation in the horizontal windspeed is,

u′ = −l
dU

dz
(27)

similarly an eddy with a negative vertical velocity will have originated above
the measurement height and be associated with a fluctuation in the horizontal
windspeed of u′ = ldU/dz. The momentum flux becomes,
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Fµ = −ρ|w′|ldU

dz
= −ρKµ

dU

dz
(28)

(taking the modulus of the fluctuations in vertical velocity accounts for the
signs in the u′ and w′. Note, that although the mean of the vertical velocity
is zero, the mean of the absolute value isn’t, and can be taken as a measure of
the magnitude of a typical turbulent fluctuation in velocity).

Equation 28 is known as a flux-gradient relationship. It is analogous to the
Eq. 7 for heat conduction.

• Kµ is known as the eddy diffusivity (units m2 s−1). However unlike the
diffusivity in Eq. 7 which is a property of the material, the eddy diffu-
sivity is a property of the turbulent flow (so there is no such thing as the
eddy diffusivity for air).

• l is known as the mixing length. The mixing length is related to the
turbulent length scale.

• |w′| is a measure of the strength of the turbulence. This is usually known
as the turbulent velocity scale.

• We need to understand what determines the mixing length and turbulent

velocity scale.

The vertical velocity must be zero at the surface, this means that,

∣

∣

∣

∣

∣

dw′

dz

∣

∣

∣

∣

∣

∼ |w′|
z

(29)

Also,
∣

∣

∣

∣

∣

du′

dx

∣

∣

∣

∣

∣

∼ |w′|
L

(30)

where it has been assumed that the magnitude of the fluctuations in the hor-
izontal windspeed is similar to the turbulent velocity scale |w′|. From the
continuity equation |du′/dx| ∼ |dw′/dz| which means that,

L ∝ z (31)

i.e., the size of turbulent eddies increases with distance from the surface.

The mixing length is usually taken to be

l = κz (32)

where the proportionality constant κ is known as the von Karman constant,
and has a value of about 0.4.
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If there is no potential temperature gradient then conditions are termed
neutral and the turbulence is referred to as shear driven or mechanical. Under
these circumstances it turns out that,

|w′| =
(

−w′u′

)1/2

= u∗ (33)

where u∗ is known as the friction velocity.

Combining these results gives,

Kµ = κu∗z (34)

and

w′u′ = −κu∗z
dU

dz
(35)

As it stands Eq. 35 may not seem very useful, since in order to calculate
the momentum flux using the eddy diffusivity it is necessary to know the
momentum flux to calculate the eddy diffusivity, which means it is time to
introduce :

11 The Logarithmic Wind Profile

From the definition of u∗, Eq. 35 can be rearranged to give,

dU

dz
=

u∗

κz
(36)

which can be integrated to give,

U(z) =
u∗

κ
(ln(z) − ln(zo)) =

u∗

κ
ln

(

z

zo

)

(37)

Notice that U(zo) = 0.

The height zo is known as the roughness length. It depends on the nature
of the surface. For smooth surfaces the roughness length is small, while for
rough surfaces it is large.

12 K-Theory and Other Fluxes

The arguments given above can be applied to any atmospheric property Q,
with volumetric concentration q to give,

Fq = −Kq
dq

dz
= −κu∗z

dq

dz
(38)
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This turns out to be only approximately true, and then only for near-neutral

conditions (dθ/dz close to zero). The reason for the differences between Kµ

and Kq is where the problem of turbulence becomes difficult (it is related

to an important difference between momentum and other quantities such as

temperature and humidity). Equation 38 suggests that within the constant
flux layer the profile of q(z) should also satisfy a logarithmic profile law.

13 The Aerodynamic Method for determining

fluxes

Equations 36 and 38 can be integrated between two heights, z1 and z2 in the
constant flux layer to give,

U(z2) − U(z1) =
u∗

κ
ln

(

z2

z1

)

(39)

q(z2) − q(z1) = − Fq

κu∗

ln
(

z2

z1

)

(40)

which can be re-arranged to give,

Fq = −u2

∗
× (q2 − q1)

(U2 − U1)
= −(q2 − q1)

ra
(41)

where ra = (U2 − U1)/u
2

∗
is known as the aerodynamic resistance of the layer.

Notice the similarity between Eq. 41 and Ohm’s law in electricity. The differ-
ence in the mean value of q at the two heights playing the role of the potential
difference and the flux the role of the current.

For z1 = zo,

ra =
U(z)

u2
∗

=
[ln(z/zo)]

2

κ2U(z)
(42)

Equation 41 shows that we can estimate surface fluxes by making mea-
surements at two heights within the constant flux layer. This is known as an
aerodynamic method for estimating fluxes. So for example, the heat flux can
be estimated by measuring the temperature and winds at two heights, so that

Fh = H = −ρcp
(T 2 − T 1)

ra
(43)

14 So what if dθ/dz is not equal to zero.

In several places it has been assumed that dθ/dz is small or zero. Although
it is possible to deal with situations where this is not so, how this is done is
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beyond the scope of this course. However, it is possible to get a qualitative
idea of the effects of non-zero dθ/dz on the eddy diffusivity. We’ll consider
dθ/dz < 0, which is usually the case during the day.

With dθ/dz < 0, if a turbulent eddy is moving upwards past the mea-
surement level, it will in general be warmer than average. This means that
the eddy is positively buoyant and experiences and upward acceleration. The
reverse is true for downward moving eddies. This suggests that the typical
vertical velocity scale in the presence of a potential temperature gradient will
be larger than if the atmosphere is neutral (dθ/dz = 0). We might, therefore
expect that,

|w′| > u∗ (44)

You should be able to show from this that for a given value of u∗, when
dθ/dz < 0, the eddy diffusivity will be greater, the windshear smaller and the
aerodynamic resistance smaller than when dθ/dz = 0.

As an additional complication the approximation, Kµ ≈ Kq becomes less
accurate when dθ/dz < 0, although the reason for this involves a more detailed
understanding of turbulence. Generally Kq > Kµ in the daytime, convective
boundary layer.

Although it is possible to account for these effects, in the analysis of the
data collected in this course they will be ignored (which might affect the ac-
curacy of your surface energy balance results).

15 The Bowen Ratio revisited.

As dθ/dz becomes more negative, taking the eddy diffusivities for heat and
moisture to be the same as the diffusivity for momentum becomes increas-
ingly inaccurate. However, it is still a good approximation to take the eddy
diffusivities for heat and moisture to be the same.

The aerodynamic method (Eq. 41) applied to heat and moisture gives,

Fh = −ρcp
(T 2 − T 1)

rH
(45)

λFχ = −λ
χ2 − χ1

rχ

(46)

where rH and rχ are the aerodynamic resistances for heat and moisture.

Since rH ≈ rχ is a reasonable approximation, the ratio of these two equa-
tions gives,
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Fh

λFχ

=
ρcp(T 2 − T 1)

λ(χ
2
− χ1)

=
H

λE
= B0 (47)

From Eq. 47 the Bowen ratio, B0 can be estimated from measurements of
temperature and humidity at two levels without having to know Kµ. Knowing
the Bowen ratio and the available energy the sensible and latent heat fluxes
can be estimated.
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