
Boundary-Layer Meteorology manuscript No.
(will be inserted by the editor)

An exponential model of urban geometry for use in radiative
transfer applications

Robin J. Hogan

the date of receipt and acceptance should be inserted later

Abstract In radiative transfer schemes for urban areas it is common toapproximate
urban geometry by infinitely long streets of constant width,or other very idealized
forms. It is argued in this paper that for solar and thermal-infrared radiative trans-
fer applications, horizontal urban geometry is described uniquely by the probability
distribution of wall-to-wall separation distances. Analysis of building layout from
contrasting neighbourhoods in London and Los Angeles reveals this function to be
well fitted by an exponential distribution. Compared to the infinite-street model, this
exponential model of urban geometry is found to lead to a significantly more accurate
description of the rates of exchange of direct and diffuse radiation between the sky,
the walls and the street of an urban canopy.

1 Introduction

With the increasing urbanization of the world’s population(United Nations, 2015)
and the ever higher resolution of weather and climate models, there is a need to
improve the fidelity with which urban areas are represented in such models. This is
a pre-requisite for better prediction of the urban heat island effect and its impact on
both city inhabitants at street level and the atmosphere downstream (e.g. Grimmond
et al., 2010). The complexity and variety of urban structure, with streets of different
widths, intersections, parking areas and parks, presents achallenge for modelling
both the exchange of solar and thermal-infrared radiation,and the turbulent transport
of heat, momentum and pollutants. Inevitably the geometry must be simplified in
order that processes can be represented efficiently, and thecomplexity needs to be
commensurate with the small number of parameters that are typically available to
describe variations in urban geometry within regional and global models.
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In the case of urban radiation schemes, a common simplification is to consider an
infinitely long street of fixed width with random azimuthal orientation relative to the
sun (e.g. Masson, 2000; Harman et al., 2004; Li et al., 2016).In the horizontal plane,
the geometry of thisinfinite-street modelcan be described by just two parameters: the
fraction of built-up area occupied by buildings,λP, and the street width,W. These are
accompanied by the building height,H, which is typically assumed constant. From
these parameters, severalradiative exchange factors(calledshape factorsby Har-
man et al., 2004) can be computed such as the fraction of direct (i.e. unscattered)
solar radiation that penetrates down to street level, and the fraction of diffuse radi-
ation emitted or scattered by the walls that then interceptsanother wall. Somewhat
more sophisticated descriptions of horizontal urban geometry have been proposed,
such as a regular array of square-based blocks with intersections at regular intervals
(Kondo et al., 2005), but in the intercomparison of urban models by Grimmond et al.
(2010), only 6 of the 33 models described horizontal urban geometry by something
more sophisticated than an infinite street canyon. A number of models now incorpo-
rate radiative interaction with buildings of different height (e.g. Martilli et al., 2002;
Schubert et al., 2012) and street trees (Krayenhoff et al., 2014; Redon et al., 2017),
but they are still typically underpinned by the infinite-street assumption. Clearly there
is a need to test and if necessary improve this assumption.

In this paper an alternativeexponential modelfor characterizing horizontal urban
geometry is proposed and evaluated. It uses the same number of parameters as the
infinite-street model, yet has the potential to describe themuch more complex ge-
ometry of real cities. Section 2 demonstrates that for the purposes of radiation, hor-
izontal building layout may be described uniquely by the probability distribution of
wall-to-wall separation distances, and it is shown how the radiative exchange factors
may be derived from this function. Section 3 describes how the infinite-street model
may be posed in terms of this probability distribution, and confirms that the resulting
formulas for the radiative exchange factors match those in the literature. Section 4
introduces the exponential model, and derives alternativeformulas for these factors.
Then in Sect. 5, probability distributions are derived fromreal building distributions
in residential and commercial parts of London and Los Angeles, and used to evaluate
the accuracy of the infinite-street and exponential models in terms of how well they
predict the ‘true’ radiative exchange factors. It is important to stress that radiative
exchange factors provide a convenient way of evaluating thevalidity of the two as-
sumptions for radiative transfer, but do not themselves represent the important effects
of street trees, buildings of different heights or absorption by air in the urban canopy.
In Sect. 6 we discuss how the exponential model could be incorporated into more
sophisticated schemes that do capture these effects.

2 Urban geometry in terms of probability distributions

This section considers how best to describe thehorizontaldistribution of buildings,
so for simplicity we assume that all buildings are the same height (H) with flat roofs
and vertical walls. Consider diffuse radiation emitted or reflected from a thin verti-
cal strip of wall in a particular azimuthal direction. Sinceradiation travels in straight
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(b) Ground−to−wall distances(a) Wall−to−wall distances (c) Relationship

Fig. 1 Plan view of a small section of an urban canopy illustrating the definitions of the probability dis-
tributions pww andpgw. (a) The red lines depict wall-to-wall distancesx originating from a small vertical
strip of wall (in blue); the probability distribution ofx from all such strips is denotedpww(x). The thick-
ness of each line is proportional to the angle subtended by the strip in that particular direction. (b) The
green lines depict the ground-to-wall distancesx from a small facet of the ground (depicted by the blue
square); the probability distribution ofx from all such facets is denotedpgw(x). (c) Illustration of the prop-
erty that a single wall-to-wall distancex′ (the red line) is associated with ground-to-wall distancesx in the
range 0< x< x′ (shown by the four green lines), leading to the relationshipbetween the two probability
distributions given by (1). In each panel the buildings are shown in light grey and the ground in black.

lines, the probability of it being intercepted by another wall, rather than escaping to
the atmosphere above or striking the ground, is a function ofthe distance between
the two walls and their height. To work out the fraction of diffuse radiation emit-
ted isotropically fromall the walls in the neighbourhood that intercept another wall,
we need to considerpww(x), the probability distribution of wall-to-wall horizontal
separation distances,x, considering all possible azimuth angles. Thus, a pedestrian
walking away from a randomly selected point on a wall in a random direction has a
probability pww(x)dx of encountering another wall after walking a distance between
x andx+ dx. This is illustrated in Fig. 1a, where the variable thickness of the red
lines highlights that the probability of light being emitted from the strip in a partic-
ular azimuthal directionφ varies as the cosine of the angle betweenφ and the wall
normal.

For computing radiative exchanges between the ground (or street) and the walls,
we need insteadpgw(x), the probability distribution of ground-to-wall horizontal dis-
tances within the urban canopy at all possible azimuth angles. In this case, a pedes-
trian walking in a random direction from a randomly selectedpoint at ground level
has a probabilitypgw(x)dx of encountering a wall after walking a distance betweenx
andx+dx, as illustrated in Fig. 1b.

There is a unique relationship betweenpww and pgw, since as shown in Fig. 1c,
any single wall-to-wall distancex′ can be split into many ground-to-wall distances
x, wherex is less than x′ Therefore, the probability densitypgw(x) of a particular
ground-to-wall distancex is proportional to the probability of wall-to-wall distances
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x′ beinggreater than x, i.e.

p′gw(x) =
∫ ∞

x
pww(x

′)dx′;

pgw(x) = p′gw(x)
/

∫ ∞

0
p′gw(x)dx, (1)

where the second equation above normalizes the ‘raw’ distribution p′gw such that the
normalized distributionpgw integrates to unity.

From these two probability distributions, and assuming a vacuum, we may com-
pute radiative exchange factors,Fi j , which denote the fraction of radiation originat-
ing from sourcei that illuminates destinationj, where we assign the ground, wall
and ‘sky’ facets the subscriptsg, w ands, respectively. We add an additional possible
source subscript ‘0’ denoting direct solar radiation from the sky facet, whereas all
other sources are diffuse. Some authors (e.g. Masson, 2000;Li et al., 2016) refer to
Fi j assky view factors,but we avoid this term as it is more commonly used in the
literature to refer to the sky fraction viewed by an observerat a specific point on a
facet (e.g. Johnson and Watson, 1984), rather than integrated over all points on a facet
as signified byFi j . All the equations for theFi j exchange factors that follow involve
integration over one of the two probability distributions above, and may be applied
either analytically to parametric models for the probability distributions (as in Sects.
3 and 4), or numerically to probability distributions derived from real building layouts
(as in Sect. 5).

Consider first direct solar radiation, which travels horizontally a distancex0 be-
tween the top and bottom of the urban canopy given by

x0 = H tanθ0, (2)

whereθ0 is the solar zenith angle. This means that direct radiation entering the top of
the canopy at a particular point will only penetrate to ground level if the nearest wall
in the azimuthal direction of the radiation is at least a distancex0 away. Therefore, the
fractionF0g of direct radiation just below canopy top that penetrates down to ground
level without being intercepted by a wall is

F0g =

∫ ∞

x0

pgw(x)dx. (3)

Any direct radiation just below canopy top that does not reach the ground must be
intercepted by a wall, soF0w = 1−F0g.

The fraction of diffuse radiation emitted (or scattered) from ground level that is
intercepted by a wall is

Fgw =
∫ ∞

0
pgw(x) fgw(H/x)dx, (4)

where fgw(H/x) is the fraction of diffuse radiation emitted from a small horizontal
area at ground level into the quadrant towards a wall of height H a distancex away,
which is intercepted by the wall. To derive an expression forfgw, consider the beam
of radiation emitted from pointA in Fig. 2a that intercepts the wall at pointB. If
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Fig. 2 Schematic of thin slices through an urban area illustratingthe geometry used in Sect. 2 to compute
the fraction of diffuse radiation emitted or scattered from(a) the ground and (b) a wall, which subsequently
intercepts a wall. If the wall atBhas an azimuthal orientation such that the light beam strikes it at an oblique
azimuthal angle, then note that elemental length dy is the horizontal width of the beam, not the horizontal
length of the wall atB that is illuminated by the beam (which could be larger).

the emission is isotropic then the radiative power (in Watts) in this infinitesimally
narrow beam is proportional to the solid angle dλ dθ , multiplied by cosθ to account
for the dependence onθ of the angle subtended by the small horizontal area atA to
an observer atB. From geometry we have dλ = sinθ dy/x, so the radiative power is
proportional to sinθ cosθ dθ dy/x. The fraction of radiative power emitted into the
quadrant 0< θ < π/2 that intercepts the wall is therefore given by

fgw(H/x) =

∫ π/2
θc

sinθ cosθ dθ
∫ π/2

0 sinθ cosθ dθ
, (5)

where the dy/x term is not a function ofθ so cancels between numerator and denom-
inator. The critical zenith angle beyond which the beam starts to intersect the building
is θc = tan−1(H/x), so (5) simplifies to

fgw(H/x) =
1

1+(x/H)2 . (6)

The fraction of diffuse radiation emanating from the groundthat escapes to the
sky is simply the fraction not intercepted by the walls, so wecan writeFgs= 1−Fgw,
or equivalently

Fgs=
∫ ∞

0
pgw(x) fgs(H/x)dx, (7)

where

fgs(H/x) = 1− fgw=
1

1+(H/x)2 . (8)

Moreover, the symmetry of the problem with respect to the skyand the ground means
that for diffuse radiation emanating from the sky we can write Fsg= Fgs andFsw =
Fgw.
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The fraction of diffuse radiation emitted (or scattered) from a wall that then en-
counters another wall is a function of the wall-to-wall probability distribution:

Fww =

∫ ∞

0
pww(x) fww(H/x)dx, (9)

where fww(H/x) is the fraction of diffuse radiation emitted from a small width of
wall (but all heights up the wall) that intercepts another wall at distancex given that
the buildings are of heightH. This calculation is more involved as we need to inte-
grate over all emission heights. We definegww(z/x) as the fraction of diffuse radiation
emitted into the downward quadrant from a small area of wall at heightz that inter-
cepts the other wall at distancex, rather than the ground. Consider the infinitesimally
narrow beam of radiation emitted from pointA in Fig. 2b that arrives at pointB. The
radiative power in the beam is again proportional to cosθ dλ dθ , whereθ is now the
angle relative a horizontal line emanating from the wall in the direction ofB (not
necessarily the normal to the wall since the wall elements atA andB need not be
azimuthally parallel to each other). This time dλ = cosθ dy/x, so the radiative power
is proportional to cos2 θ dθ dy/x, leading to

gww(z/x) =

∫ θc
0 cos2 θ dθ
∫ π/2

0 cos2 θ dθ
=

2
π

[

tan−1 z
x
+

(

2+
z2

x2 +
x2

z2

)−1/2
]

, (10)

where the critical angle isθc = tan−1(z/x). Integratinggww over all heights up the
wall yields

fww =
1
H

∫ H

0
gwwdz=

2
π

tan−1 H
x
. (11)

Note that here we have considered only radiation emitted into the downward quadrant
(0< θ < π/2 in Fig. 2b), but the symmetry of the problem means that the fraction
of diffuse radiation emitted from a wall into the equivalentupward quadrant that
intercepts another wall is the same, so (11) is valid for radiation emitted into either
quadrant.

In assessing different models for urban geometry, we shall use the equations in
this section to evaluate how well the models predict the exchange factorsF0g, Fgs and
Fww. The other exchange factors are unique functions of these three; we have already
seen thatF0w = 1−F0g, Fgw = 1−Fgs, Fsg = Fgs andFsw = Fgw. Furthermore, the
diffuse radiation emanating from a wall that does not hit another wall must be evenly
divided between the sky and the ground, soFwg = Fws= (1−Fww)/2.

3 The infinite street canyon model

To demonstrate how the general approach in terms of probability distributions may be
applied to a specific geometry, we consider the case of infinitely long street canyons
of width W, a common assumption as discussed in Sect. 1. The wall-to-wall distance
in the horizontal plane is then given by

x=W/cosφ , (12)
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whereφ is the azimuthal direction from the wall normal such thatφ = 0 is the direc-
tion of shortest distance across the street, andφ = π/2 is directed along the street. If
the fraction of the urban area occupied by buildings isλp then the distance between
adjacent streets in directionφ is S=W/ [(1−λp)cosφ ]. The probability of wall-to-
wall separation distances lying in the rangex to x+dx is then equal to the probability
of azimuthal angles lying in the rangeφ to φ +dφ , i.e.

pww(x)dx= p(φ)dφ . (13)

Each azimuthal street orientation is equally likely, implying thatp(φ) should be con-
stant, but from the definition ofSwe see that the distance between streets in direction
φ is proportional to 1/cosφ , which means that the probability density of streets in
directionφ is actuallyp(φ) = cosφ . Differentiating (12) and substituting into (13)
yields pww = cos3 φ/(Wsinφ). Using (12) to express this in terms ofW andx, and
recognizing that this expression is only valid for distances larger than the street width,
yields

pww(x,W) =

{

0 : x≤W,
W2

x2

(

x2−W2
)−1/2

: x>W.
(14)

The probability distribution of ground-to-wall distancesis found by applying (1) to
(14), to obtain

pgw(x,W) =
2

πW

(

1−

√

1−
min(W,x)2

x2

)

. (15)

The radiative exchange factors may now be derived. Applying(3) to (15) we
obtain

F0g =
2
π

[

Y− x0

W
+ tan−1 W

Y

]

, (16)

whereY = max(x2
0−W2,0)1/2. This is mathematically equivalent to Eq. 13 of Mas-

son (2000). Similarly we apply (7) and (8) to (15), and (9) and(11) to (14), to obtain
(after considerable manipulation)

Fgs=

√

H2

W2 +1−
H
W

; (17)

Fww =

√

W2

H2 +1−
W
H
, (18)

which match the formulas of previous authors for this geometry (Sparrow and Cess,
1970; Noilhan, 1981; Masson, 2000; Harman et al., 2004).
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4 The exponential model

In this section an alternative model for horizontal urban geometry is proposed in
which the two probability distributions are assumed to follow an exponential distri-
bution:

pww(x) = pgw(x) = exp(−x/X)/X, (19)

which satisfies the relationship between the two distributions given by (1). This distri-
bution was assumed for the separation of trees in the forest radiative transfer scheme
of Hogan et al. (2018). The validity of the exponential modelfor urban areas is evalu-
ated using real building layouts in the next section. As withthe infinite-street model,
only one parameter is used to characterize the distribution, in this case the ‘e-folding’
building separationX. SinceX is also the mean value of the exponential distribution,
it can be interpreted physically as the mean wall-to-wall distance considering all di-
rections (i.e. the mean length of the red lines in Fig. 1a) or the mean ground-to-wall
distance (i.e. the mean length of the green lines in Fig. 1b).However, when fitting
an exponential distribution to the geometry of real cities,the method described in
Sect. 5 should be used rather than simply settingX to the observed mean wall-to-wall
separation distance.

The radiative exchange factors may again be derived by applying the integrals in
Sect. 2. The penetration of direct radiation to ground levelalso has an exponential
form:

F0g = exp(−x0/X), (20)

wherex0 is given by (2). This is essentially the Beer-Lambert law, and indicates that
the penetration of direct radiation through an urban scene obeying the exponential
model is the same as the penetration of direct radiation through a turbid medium with
an extinction coefficient that does not vary with height.

The radiative exchange factors for diffuse radiation have amore complex form:

Fgs= 1+ ζ
[

cosζ
(

Siζ −
π
2

)

− sinζ Ciζ
]

; (21)

Fww = 1+
2
π

[

cosζ
(

Siζ −
π
2

)

− sinζ Ciζ
]

= 1+
2

πζ
(Fgs−1) , (22)

whereζ = H/X, Si(·) is the Sine Integral and Ci(·) is the Cosine Integral. In an
operational model, these exchange factors could be implemented efficiently as 1D
look-up tables or Padé approximants.

Figure 3 compares the radiative exchange factors between the infinite-street model
and the exponential model, as a function of the ratio of totalwall areaAw to total
ground areaAg. In the case of the infinite street, the ratio is

Aw/Ag = 2H/W, (23)

since there are two walls for every street. For the exponential model, we apply energy
conservation principles: if each surface of the urban area is at the same temperature
(including the sky) and has an emissivity of unity then the energy emitted from a
surface equals the energy received. For the walls this leadsto

AwB= 2AgFgwB+AwFwwB, (24)
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Fig. 3 Comparison of radiative exchange factors between the infinite-street model and the exponential
model. The wall/ground area ratio,Aw/Ag, is defined in terms of the parameters of the two models by (23)
and (25), and varies in the range 0.26–1.4 for the scenes analyzed in Sect. 5. Panel b showsF0g for the
three different solar zenith angles indicated in the legend.

whereB is the power emitted per unit area (in W m−2), the term on the left-hand-
side is the total power emitted from the walls, the first term on the right is the power
received at the walls from the ground and sky (which is the same) and the second
term on the right is the power received from other walls. Combining with (22) and
noting again thatFgw = 1−Fgs, we obtain

Aw/Ag = πH/X. (25)

Equations 23 and 25 enable the two models to be plotted on the same axes in Fig. 3.
These equations imply that the parametersW andX could be fitted to real cities from
measurements ofAw/Ag, but in practice the wall areaAw is a somewhat ill-defined
quantity in that it depends on the resolution of the measurements, and some buildings
have fine-scale details that are not important for radiativeexchange. Therefore we
prefer the approach taken in the next section, whereW andX are fitted such that one
of the radiative exchange factors is predicted exactly, andthe validity of the model is
assessed by how well the other factors are predicted.

5 Analysis of real cities

In this section the wall-to-wall and ground-to-wall probability distribution functions
are computed for real cities, from which the radiative exchange factors are calculated
numerically. This enables us to evaluate the different approximations to urban geom-
etry described in Sects. 3 and 4. Building outlines and heights have been obtained for
London and Los Angeles, and Fig. 4 depicts four 3×3 km scenes in which the build-
ings have been rendered on grid with a resolution of∆x= 2 m. The scenes have been
chosen to be very contrasting: the streets in Central Londonhave an irregular layout
and a range of different widths, the Residential London scene consists of a patchwork
of rows of terraced housing, Downtown Los Angeles consists of a grid layout with
large buildings in each block, and the Residential Los Angeles scene consists of a
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grid layout but with many small detached houses in each block. In the case of Cen-
tral London, the location of the River Thames has been added manually using Google
Maps imagery. The choice of 3×3 km domains is a compromise between the need for
a scene to be large enough to sample streets of different orientation and to minimize
sampling noise in the probability distributions, but smallenough that the ‘character’
of the building layout is similar everywhere in a scene. The datasets do not contain
information about the location of trees, which are known to be important for urban
radiative transfer (Grimmond et al., 2010), but in Sect. 6 wediscuss how the find-
ings of this section could be incorporated into a more sophisticated urban radiation
scheme that includes urban vegetation.

Before analyzing the building spacings, a question arises as to how to treat large
open areas such as rivers and parks. Most global weather and climate models treat
each gridbox of the surface by a number of tiles of different types, including open
water, grassland and forest, in addition to urban. When green areas are small, such
as gardens and small parks, their associated radiative and turbulent fluxes are sig-
nificantly affected by nearby buildings and they are best treated as part of the urban
tile. When they are large and most of their area is a long distance from the nearest
building, it is more appropriate to treat them as a separate tile. However, there is no
consensus on the size of the green space at which the transition should take place. We
do not attempt to answer this question in this paper, but rather examine its effect on
the probability distributions.

Contiguous regions of the domain that are at least 0.5 hectares in area and at
least 20 m from the nearest building or river pixel have been identified automatically.
Google Maps was then used to manually determine whether eachsuch region is a
parking area or plaza, a park, or a built-up surface not frequented by pedestrians
(such as a railway or major highway). Parking areas and plazas are assigned to the
same category as streets, while the other two are treated separately as shown in Fig.
4. The rationale of keeping major highways separate is that one of the main purposes
of an urban model is to predict the conditions experienced bypedestrians at street
level, but the impact of this decision is investigated at theend of this section. The first
three rows of Table 1 list some basic properties of the four scenes.

Each gridded scene has been analyzed in four azimuthal directions, as illustrated
in Fig. 5. Considering first the North–South and East–West directions in panels a and
b, the scene is analyzed in 1D strips of width∆x, and in each strip the transitions
from building-to-street and street-to-building are identified. From these the contigu-
ous spans of the street category are identified, shown by the red lines. Note that in the
first analysis any spans that include rivers, parks, railways or major highways are ex-
cluded, but in the second analysis towards the end of this section only those including
rivers are excluded. Thus we may build up the probability distribution of wall-to-wall
separation distances,pww, at the resolution of the grid (in this case 2 m). A similar
analysis of the diagonal strips (Figs. 5c and 5d) produces a probability distribution
with a grid spacing

√
2 times larger. This is interpolated back on to the 2-m grid and

averaged with the firstpww estimate, using a weighting that accounts for the fact that
each diagonal strip is a factor of

√
2 times narrower. The probability distribution of

ground-to-wall separation distances,pgw, is computed by applying (1) numerically to
pww. A small fraction of the street pixels in the scene, particularly in the corners and
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Fig. 4 Building layouts for four contrasting neighbourhoods of London and Los Angeles. The axes in
the top two panels are indicated relative to a point 51.45◦N, 0◦E. The axes in the bottom two panels are
indicated relative to a point 34◦N, 118.25◦W. Panel b shows the Palmers Green area of North London,
while Panel d shows the Panorama City area of Los Angeles.

at the borders of parks, are not sampled by this analysis in any of the four directions
due to them not lying between two buildings in the directionsconsidered; these are
shown in dark grey in Fig. 4.

Care should be taken in applying the strip method of Fig. 5 to parts of some
North American cities if all the streets are preferentiallyaligned along two of the
strip directions. One approach to mitigate potential biases would be to rotate the
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Table 1 Numerical properties of the four scenes depicted in Fig. 4. ‘Urban fraction’ is the fraction of
the domain occupied by streets, plazas, parking areas, gardens or buildings, and ‘building fraction’ is the
fraction of this urban area that is occupied by buildings. The street width (W) of the infinite-street model
and the e-folding separation (X) of the exponential model have each been fitted to ensure thatthese models
predict the ground-to-sky factor (Fgs) exactly. Therefore, the errors presented in the table are only for the
predicted wall-to-wall factor (Fww).

Central Residential Downtown Residential
Property London London Los Angeles Los Angeles
Mean building heightH (m) 17.0 6.6 19.7 4.8
Urban fraction 0.88 0.83 0.94 0.97
Building fractionλp 0.47 0.20 0.43 0.25
Diffuse ground-to-sky factorFgs 0.60 0.84 0.66 0.88
Diffuse wall-to-wall factorFww 0.39 0.16 0.37 0.15
Fitted street widthW (m) 32.0 38.8 46.4 36.0
Fitted e-folding separationX (m) 38.2 52.8 56.9 50.1
Error in Fww from infinite-street model −36% −48% −45% −55%
Error in Fww from exponential model +10% +27% +3% +18%

a c b d 

Fig. 5 Illustration of how the wall-to-wall probability distribution, pww(x), is computed numerically from
a digitized building layout, in this case considering an 80×80-m subset of Fig. 4a at a resolution of 2 m.
The scene is analyzed in four directions: (a) North–South, (b) East–West, (c) NE–SW and (d) NW–SE, and
pww(x) is constructed from the valid wall-to-wall distancesx depicted by the red lines in each panel. The
dark grey triangles in panels c and d are excluded from consideration since they are too small to contain
the largerx values so could skew the distribution towards smallx.

building polygon data by several different angles before discretizing to a grid and
performing the strip analysis. There is some preference forNW–SE and NE–SW
street orientation in the Residential Los Angeles scene (Fig. 4d), but we find below
that the results for this scene are very similar to those fromthe Residential London
scene (Fig. 4b), which has a much more random street orientation.

The black lines in Figs. 6a–6h depict the probability distributions derived from the
four scenes. From these the various radiative exchange factors have been calculated
numerically. The black lines in Fig. 6i–6k depictF0g as a function of cosθ0, while the
diffuse factorsFgs andFww are shown in Table 1. Building height appears to be the
dominant factor controlling radiative exchange, with the two downtown scenes hav-
ing much lower penetrations of direct and diffuse radiationbetween sky and ground
than the two residential areas.

We next investigate how well these distributions are fitted by the infinite-street and
exponential models. The question arises of how best to fit thecharacteristic lengths
for the two models,W andX. We have chosen to select these lengths such that the
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Fig. 6 (a–d) In black, the wall-to-wall probability distributions, pww, derived from the locations of the
‘street, plaza, parking area or garden’ category for the four scenes shown in Fig. 4. In red and blue, the fitted
infinite-street and exponential models. (e–h) The corresponding ground-to-wall probability distributions,
pgw. (i–l) The corresponding direct penetration fractionF0g as a function of the cosine of solar zenith
angle.

diffuse ground-to-sky exchange factor,Fgs, is predicted exactly. This is achieved by
numerically inverting (17) and (21) to obtain the values ofW andX from the observed
values ofFgs andH; the values obtained by this method are shown in Table 1. The
associated analytical probability distributions for the two models (Eqs. 14, 15 and 19)
are shown by the red and blue lines in Figs. 6a–6h. For all scenes, and for bothpww

and pgw, the exponential distribution fits much better than the infinite-street model
for building separations between 0 and at least 200 m. The infinite street is a partic-
ularly poor fit for pww(x), predictingpww = 0 for x< W, a delta function atx= W,
and an underestimation by around a factor of two atx ≃ 200 m. For larger building
separations there is more variability between scenes, but arguably the infinite-street
model fits a little better.

The red and blue lines in Figs. 6i–6l depict the predicted direct sky-to-ground
exchange factor,F0g, revealing that the exponential model provides a better match to
the values calculated from the real building distributionsfor all solar zenith angles.
This is because the probability distribution of building separations in the 0–200 m
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Fig. 7 Relationship between the diffuse wall-to-wall exchange factor Fww and ground-to-sky exchange
factor Fgs for the two analytic models (red and blue lines) and the four scenes depicted in Fig. 4 (black
symbols). The green symbols depict the results from an alternative analysis of the four scenes in which
parks, railways and major highways are added to the ‘street’category.

range, where the exponential model performs best, is more important for radiative
exchange than larger building separations; indeed, only 1.0–3.9% ofpww and 1.6–
6.6% ofpgw is contained in building separations greater than 200 m.

In the case of diffuse exchange factors, the two models have already been fitted to
ensure thatFgs is predicted exactly, butFww provides an independent point of evalua-
tion. The lowest two rows of Table 1 show that the infinite-street model under-predicts
Fww by on average 46%, whereas the exponential model tends to over-predictFww but
by only 15% on average. This is analyzed in more detail in Fig.7, which depicts
the unique relationships betweenFgs andFww predicted by the two analytical models.
The black symbols show the corresponding values for the fourreal scenes. The poorer
performance of the infinite-street model is due toFww being particularly sensitive to
pww(x) for small x, where the two models are most different. Figure 3c also shows
much lowerFww for the infinite-street than the exponential model for wall/ground
area ratios in the range found in these four scenes (0.26< Aw/Ag < 1.4).

We now examine the impact of an alternative analysis of the four scenes, in which
parks, railways and major highways are included in the ‘street’ category when deriv-
ing wall-to-wall and ground-to-wall probability distributions. The results are shown
in Fig. 8, revealing that the probability distributions show somewhat higher tails for
the larger building separations, but the fitted exponentialmodel still fits better for
separations of less than 200 m, and also for the direct exchange factor shown in Figs.
8i–8l. The green symbols in Fig. 7 show theFgs andFww values for this alternative
analysis, and again it is clear that the exponential model fits better.

If an urban radiation scheme using the exponential model were to be deployed
in a weather or climate model then naturally the e-folding lengthX would first need
to be estimated from the building layouts of a much larger number of cities. The
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Fig. 8 As Fig. 6, but with parks, railways and major highways added to streets before performing the
analysis.

strip method illustrated in Fig. 5 could of course be used to derive pww andpgw, but
the inversion of the rather complex formula (21) to find the value of X that predicts
Fgs (and henceFgw = 1−Fgs) exactly could be regarded as cumbersome. A simpler
approach is to instead find the value ofX that predicts an approximate form ofFgw in
which fgw in (4) is replaced by an exponential of the formfgw ≃ e−x/Z, whereZ is a
length scale to be defined. This leads to the following formula for estimatingX from
an observed ground-to-wall probability distributionpgw:

X ≃ Z

[

(

∫ ∞

0
pgwe−x/Z dx

)−1

−1

]

. (26)

When used with a length scale ofZ = 1.5H, the estimated values ofX agree with
those in Table 1 to within 1%. Mean building heightH can be a somewhat ill-defined
quantity in real cities, but we have found that using a fixed length scale ofZ = 10 m
also leads to acceptable results, withX estimates then agreeing with those in Table 1
to within 1.2%.



16 Robin J. Hogan

6 Discussion and conclusions

In this paper it has been demonstrated that treating urban areas as streets of infinite
length and constant width, as done in many weather and climate models, leads to
significant errors in modelling the mean rates of exchange ofsolar and infrared radi-
ation between the sky, walls and ground. Analysis of the probability distributions of
wall-to-wall separation distances from real cities reveals that an exponential distribu-
tion is a good fit, and leads to a significantly better prediction of radiative exchange
factors. Naturally, if this ‘exponential model’ of urban radiation were combined with
an existing treatment of turbulent fluxes to create a full urban exchange scheme, care
would need to be taken to ensure a consistent assumption about the areas of walls and
ground. The exponential model for urban geometry could alsobe useful for other ap-
plications sensitive to building layout, such as blockage of mobile telephone signals
(Bai et al., 2014).

While the radiative exchange formulas presented in this paper are a straightfor-
ward replacement for those in ‘simple’ existing urban radiation schemes (such as
that described by Harman et al., 2004), an important question is how to incorporate
the exponential model into more sophisticated schemes (e.g. Schubert et al., 2012;
Krayenhoff et al., 2014; Redon et al., 2017) that represent vegetation and buildings
of different height, yet are still underpinned by the infinite-street assumption. One
approach could be to explore a useful property of the exponential model, which is
that streams of radiation with a particular zenith angle in an urban canopy are at-
tenuated according to the Beer-Lambert law, in the same way as light propagating
through a turbid atmosphere. Equation 20 demonstrates thisfor direct solar radiation,
but it is applicable to the entire radiation field if diffuse radiation is represented by a
set of discrete zenith angles (e.g. Stamnes et al., 1988), anapproach that underpins
almost all 1D multi-layer atmospheric radiative transfer schemes. This suggests that
the infrastructure of such schemes could be adapted to the urban problem, enabling
the prediction of the vertical profile of radiation within anurban canopy contain-
ing buildings of different heights, as well as the treatmentof atmospheric absorption,
emission and scattering. Note that it is ubiquitous for current urban radiation schemes
to treat the space between buildings as a vacuum, but this is adubious assumption in
the thermal infrared.

In terms of vegetation, Hogan et al. (2018) used ideas from 1Datmospheric radia-
tion schemes to develop an accurate multi-layer model for treating radiation in forest
canopies, embedded within which is the assumption that the horizontal separation
of obstacles (which could be trees or buildings) follows an exponential distribution.
This would therefore be an appropriate starting point for a more comprehensive urban
radiation scheme that could accommodate street trees, atmospheric effects and mul-
tiple building heights. Naturally a crucial step is to evaluate any new urban radiation
scheme using calculations on real urban geometry by explicit 3D radiation models
(e.g. Krayenhoff and Voogt, 2007; Gastellu-Etchegorry, 2008; Lindberg et al., 2008).
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